
18. Large Cardinals and L

In Chapter 17 we proved that while “smaller” large cardinals (inaccessible,
Mahlo, weakly compact) can exist in L, the “bigger” large cardinals (measur-
able, Ramsey) cannot. In this chapter we isolate and investigate the concept
of 0� (zero-sharp), a great divide in the landscape of large cardinals.

Silver Indiscernibles

Theorem 18.1 (Silver). If there exists a Ramsey cardinal, then:

(i) If κ and λ are uncountable cardinals and κ < λ, then (Lκ,∈) is an
elementary submodel of (Lλ,∈).

(ii) There is a unique closed unbounded class of ordinals I containing all
uncountable cardinals such that for every uncountable cardinal κ:
(a) |I ∩ κ| = κ,
(b) I ∩ κ is a set of indiscernibles for (Lκ,∈), and
(c) every a ∈ Lκ is definable in (Lκ,∈) from I ∩ κ.

The elements of the class I are called Silver indiscernibles. Before giving
the proof of Theorem 18.1 we state some consequences of the existence of
Silver indiscernibles.

By the Reflection Principle, if ϕ is a formula, then there exists an un-
countable cardinal κ such that

(18.1) L � ϕ(x1, . . . , xn) if and only if Lκ � ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ Lκ. By (i), the right hand side holds in and only if
Lλ � ϕ(x1, . . . , xn) for all cardinals λ ≥ κ. In view of this, we can define
satisfaction in L for all formulas ϕ ∈ Form: If ϕ(v1, . . . , vn) is a formula of
the language L = {∈} and if 〈a1, . . . , an〉 is an n-termed sequence in L, we
define

(18.2) L � ϕ[a1, . . . , an]

as follows: For every uncountable cardinal κ such that a1, . . . , an ∈ Lκ, Lκ �
ϕ[a1, . . . , an].
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Note that this gives us a truth definition for the constructible universe:
T = {#σ : Lℵ1 � σ}. If σ is a sentence, then σL ↔ #σ ∈ T . (Note that the
set T is constructible but not definable in L: Otherwise, T would be a truth
definition in L. Hence the cardinal ℵ1 is not definable in L.)

Moreover, as a consequence of (i) we have (Lκ,∈) ≺ (L,∈) for every
uncountable cardinal κ. As a consequence of (ii) Silver indiscernibles are
indiscernibles for L: If ϕ(v1, . . . , vn) is a formula, then

(18.3) L � ϕ[α1, . . . , αn] if and only if L � ϕ[β1, . . . , βn]

whenever α1 < . . . < αn and β1 < . . . < βn are increasing sequences in I.
Every constructible set is definable from I. If a ∈ L, there exists an increasing
sequence 〈γ1, . . . , γn〉 of Silver indiscernibles and a formula ϕ such that

L � a is the unique x such that ϕ(x, γ1, . . . , γn).

By (18.3), every formula ϕ(v1, . . . , vn) is either true or false in L for any
increasing sequence 〈γ1, . . . , γn〉 of Silver indiscernibles; moreover, the truth
value coincides with the truth value of Lℵω � ϕ[ℵ1, . . . ,ℵn] since Lℵω ≺ L
and ℵ1, . . . , ℵn are Silver indiscernibles. Thus let us define

(18.4) 0� = {ϕ : Lℵω � ϕ[ℵ1, . . . ,ℵn]}

(zero-sharp). Later in this section we shall give another definition of the set 0�.
We shall show that a set 0� satisfying the definition exists if and only if (i)
and (ii) holds, and then 0� is as in (18.4).

Thus the conclusion of Theorem 18.1 is abbreviated as

0� exists.

In the following corollaries we assume that 0� exists.

Corollary 18.2. Every constructible set definable in L is countable.

Proof. If x ∈ L is definable in L by a formula ϕ, then the same formula
defines x in Lℵ1 and hence x ∈ Lℵ1 . ��

In particular, every ordinal number definable in L is countable.
In the following corollary ℵα denotes the αth cardinal in V , not ℵL

α.

Corollary 18.3. Every uncountable cardinal is inaccessible in L.

Proof. Since L � ℵ1 is regular, we have

L � ℵα is regular

for every α ≥ 1. Similarly, L � ℵω is a limit cardinal, and hence

L � ℵα is a limit cardinal

for every α ≥ 1. Thus every uncountable cardinal (and in fact every γ ∈ I)
is an inaccessible cardinal in L. ��
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Corollary 18.4. Every uncountable cardinal is a Mahlo cardinal in L.

Proof. By Corollary 18.3, every Silver indiscernible is an inaccessible cardinal
in L. Since I ∩ω1 is closed unbounded in ω1, ℵ1 is a Mahlo cardinal in L. ��

Corollary 18.5. For every α ≥ ω, |Vα ∩ L| ≤ |α|. In particular, the set of
all constructible reals is countable.

Proof. The set Vα ∩L is definable in L from α. Thus Vα ∩L is also definable
from α in Lκ where κ is the least cardinal > α. Hence Vα∩L ⊂ Lβ for some β
such that |α| = |β|. However, |Lβ| = |β|. ��

Models with Indiscernibles

The proof of Silver’s Theorem is based on a theorem of Ehrenfeucht and
Mostowski in model theory, stating that every infinite model is elementarily
equivalent to a model that has a set of indiscernibles of prescribed order-type.
We shall deal only with models (Lλ,∈) (and models elementarily equivalent
to these); we shall prove below a special case of the Ehrenfeucht-Mostowski
Theorem.

We shall use the canonical well-ordering of L to endow the models (Lλ,∈)
with definable Skolem functions. For each formula ϕ(u, v1, . . . , vn), let hϕ be
the n-ary function defined as follows:

(18.5) hϕ(v1, . . . , vn) =
{

the <L-least u such that ϕ(u, v1, . . . , vn),

∅ otherwise.

We call hϕ, ϕ ∈ Form, the canonical Skolem functions.
For each limit ordinal λ, hLλ

ϕ is an n-ary function on Lλ, the Lλ-interpre-
tation of hϕ, and is definable in (Lλ,∈).

When dealing with models (Lλ,∈) we shall freely use terms and formulas
involving the hϕ since they as definable functions can be eliminated and
the formulas can be replaced by ∈-formulas. For each limit ordinal λ, the
functions hLλ

ϕ , ϕ ∈ Form, are Skolem functions for (Lλ,∈) and so a set
M ⊂ Lλ is an elementary submodel of (Lλ,∈) if and only if M is closed
under the hLλ

ϕ . If X ⊂ Lλ, then the closure of X under the hLλ
ϕ is the smallest

elementary submodel M ≺ Lλ such that X ⊂ M , and is the collection of all
elements of Lλ definable in Lλ from X .

The fact that the well-ordering <λ of Lλ is definable in Lλ uniformly for
all limit ordinals λ (by the same formula) implies the following:

Lemma 18.6. If α and β are limit ordinals and if j : Lα → Lβ is an
elementary embedding of (Lα,∈) in (Lβ ,∈), then for each formula ϕ and all
x1, . . . , xn ∈ Lα,

(18.6) h
Lβ
ϕ (j(x1), . . . , j(xn)) = j(hLα

ϕ (x1, . . . , xn)).
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Hence j remains elementary with respect to the augmented language L∗ =
{∈} ∪ {hϕ : ϕ ∈ Form}. ��

Let λ be a limit ordinal, and let A = (A, E) be a model elementarily
equivalent to (Lλ,∈). The set OrdA of all ordinal numbers of the model A is
linearly ordered by E; let us use x < y rather than x E y for x, y ∈ OrdA.
A set I ⊂ OrdA is a set of indiscernibles for A if for every formula ϕ,

(18.7) A � ϕ[x1, . . . , xn] if and only if A � ϕ[y1, . . . , yn]

whenever x1 < . . . < xn and y1 < . . . < yn are elements of I. Let hA
ϕ denote

the A-interpretation of the canonical Skolem functions (18.5). Given a set
X ⊂ A, let us denote HA(X) the closure of X under all hA

ϕ , ϕ ∈ Form. The
set HA(X) is the Skolem hull of X and is an elementary submodel of A.

If I is a set of indiscernibles for A, let Σ(A, I) be the set of all formulas
ϕ(v1, . . . , vn) true in A for increasing sequences of elements of I:

(18.8) ϕ(v1, . . . , vn) ∈ Σ(A, I) ↔ A � ϕ[x1, . . . , xn] for some x1, . . . , xn ∈ I

such that x1 < . . . < xn.

A set of formulas Σ is called an E.M. set (Ehrenfeucht-Mostowski) if there
exists a model A elementarily equivalent to some Lλ, λ a limit ordinal, and
an infinite set I of indiscernibles for A such that Σ = Σ(A, I).

Lemma 18.7. If Σ is an E.M. set and α an infinite ordinal number, then
there exists a model A and a set of indiscernibles I for A such that :

(i) Σ = Σ(A, I);
(ii) the order-type of I is α;
(iii) A = HA(I).

Moreover, the pair (A, I) is unique up to isomorphism.

Proof. We prove uniqueness first. Let (A, I) and (B, J) be two pairs, each
satisfying (i), (ii), (iii). Since both I and J have order-type α, let π be the
isomorphism between I and J . We shall extend π to an isomorphism between
A and B.

Since A is the Skolem hull of I, there is for each a ∈ A a Skolem
term t(v1, . . . , vn) (a combination of the Skolem functions hϕ) such that
a = tA[x1, . . . , xn] for some x1 < . . . < xn in I; similarly for B, J . Thus
we define

(18.9) π(tA[x1, . . . , xn]) = tB[π(x1), . . . , π(xn)]

for each Skolem term t and all x1, . . . , xn ∈ I such that x1 < . . . < xn. Since
Σ(A, I) = Σ(B, J), we have
(18.10)

tA1 [x1, . . . , xn] = tA2 [y1, . . . , yn] ↔ tB1 [πx1, . . . , πxn] = tB2 [πy1, . . . , πyn],

tA1 [x1, . . . , xn] EA tA2 [y1, . . . , yn] ↔ tB1 [πx1, . . . , πxn] EB tB2 [πy1, . . . , πyn]
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for any terms t1, t2 and indiscernibles x, y: Let z1, . . . , zn+m be the enumera-
tion of the set {x1, . . . , xn, y1, . . . , ym} in increasing order. Then the equality
in (18.10) holds (simultaneously in A and B) just in case ϕ(v1, . . . , vn+m) ∈
Σ where ϕ(z1, . . . , zn+m) is the formula that says that t1[x1, . . . , xn] =
t2[y1, . . . , yn]. Hence π is well-defined by (18.9) and is an isomorphism be-
tween A and B extending the order-isomorphism of I and J .

To prove the existence of a model with indiscernibles with properties (i),
(ii), and (iii), we use the Compactness Theorem. Since Σ is an E.M. set, there
exists (A0, I0) such that Σ = Σ(A0, I0). Let us extend the language {∈} by
adding α constant symbols cξ, ξ < α. Let ∆ be the following set of sentences:

(18.11) cξ is an ordinal (all ξ < α),

cξ < cη (all ξ, η such that ξ < η < α),

ϕ(cξ1 , . . . , cξn) (all ϕ ∈ Σ and all ξ1 < . . . < ξn < α).

We shall show that every finite subset of ∆ has a model. Let D ⊂ ∆ be
finite. There exist ξ1 < . . . < ξk such that cξ1 , . . . , cξk

are the only constants
mentioned in D. Let σ(cξ1 , . . . , cξk

) be the sentence that is the conjunction
of all sentences in D.

Since I0 is infinite, there are i1, . . . , ik ∈ I0 such that i1 < . . . < ik. Let
us take the model A0 and expand it by interpreting the constant symbols
cξ1 , . . . , cξk

as i1, . . . , ik. Since Σ = Σ(A0, I0) and D ⊂ ∆, it is clear that
A0 � σ[i1, . . . , ik] and hence the expansion (A0, i1, . . . , ik) is a model of σ,
hence of D.

By the Compactness Theorem, the set ∆ has a model M = (M, E, cM
ξ )ξ<α.

Let I = {cM
ξ : ξ < α}. I is a set of ordinals of M and has order-type α.

It is clear that if ϕ(v1, . . . , vn) is an ∈-formula and ξ1 < . . . < ξn, then
(M, E) � ϕ[cM

ξ1
, . . . , cM

ξn
] if and only if ϕ ∈ Σ. Thus I is a set of indiscernibles

for (M, E). Now we let A be the Skolem hull of I in (M, E). Since A = (A, E)
is an elementary submodel of (M, E), it follows that I is a set of indiscernibles
for A, Σ(A, I) = Σ, and that HA(I) = H(M,E)(I) = A. Hence (A, I) satisfies
(i), (ii), and (iii). ��

For each E.M. set Σ and each ordinal α, let us call the (Σ, α)-model the
unique pair (A, I) given by Lemma 18.7. The uniqueness proof of Lemma 18.7
easily extends to give the following:

Lemma 18.8. Let Σ be an E.M. set, let α ≤ β, and let j : α → β be
order-preserving. Then j can be extended to an elementary embedding of the
(Σ, α)-model into the (Σ, β)-model.

Proof. Extend j as in (18.9). ��
We shall eventually show that the existence of Ramsey cardinal implies

the existence of an E.M. set Σ having a certain syntactical property (remark-
ability) and such that every (Σ, α)-model is well-founded. Let us investigate
well-foundedness first.
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Lemma 18.9. The following are equivalent, for an E.M. set Σ:

(i) For every ordinal α, the (Σ, α)-model is well-founded.
(ii) For some ordinal α ≥ ω1, the (Σ, α)-model is well-founded.
(iii) For every ordinal α < ω1, the (Σ, α)-model is well-founded.

Proof. (i) → (ii) is trivial.
(ii) → (iii): If (A, I) is the (Σ, α)-model and if β ≤ α, let J be the initial

segment of the first β elements of I; let B = HA(J). Clearly, (B, J) is the
(Σ, β)-model. Since a submodel of a well-founded model is well-founded, it
follows that if β ≤ α and the (Σ, α)-model is well-founded, then the (Σ, β)-
model is also well-founded, and thus (ii) implies (iii).

(iii) → (i): Let us assume that there is a limit ordinal α such that the
(Σ, α)-model is not well-founded; let (A, I) be the model. There is an infinite
sequence a0, a1, a2, . . . in A such that a1 E a2, a2 E a1, etc. Each an is
definable from I; that is, for each n there is a Skolem term tn such that an =
tAn [x1, . . . , xkn ] for some x1, . . . , xkn ∈ I. Therefore there is a countable subset
I0 of I such that an ∈ HA(I0) for all n ∈ ω. The order-type of I0 is a countable
ordinal β and (HA(I0), I0) is the (Σ, β)-model. This model is clearly non-
well-founded since it contains all the an. Hence for some countable β, the
(Σ, β)-model is not well-founded. ��

We shall now define remarkability. We consider only (Σ, α)-models where
α is an infinite limit ordinal.

Let us say that a (Σ, α)-model (A, I) is unbounded if the set I is un-
bounded in the ordinals of A, that is, if for every x ∈ OrdA there is y ∈ I
such that x < y.

Lemma 18.10. The following are equivalent, for any E.M. set Σ:

(i) For all α, (Σ, α) is unbounded.
(ii) For some α, (Σ, α) is unbounded.
(iii) For every Skolem term t(v1, . . . , vn) the set Σ contains the formula

(18.12) if t(v1, . . . , vn) is an ordinal, then t(v1, . . . , vn) < vn+1.

Proof. (i) → (ii) is trivial.
(ii) → (iii): Let (A, I) be a (Σ, α)-model, where α is a limit ordinal,

and assume that I is unbounded in OrdA. To prove (iii), it suffices to show
that for any term t, (18.12) is true in A for some increasing sequence x1 <
. . . < xn+1 in I. Let t be a Skolem term. Let us choose x1 < . . . < xn ∈ I
and let y = tA[x1, . . . , xn]. If y /∈ OrdA, then (18.12) is vacuously true; if
y ∈ OrdA, then there exists xn+1 ∈ I such that y < xn+1, and we have
A � t[x1, . . . , xn] < xn+1.

(iii) → (i): Let (A, I) be a (Σ, α)-model, where α is a limit ordinal, and
assume (iii). To prove that I is unbounded in OrdA, let y ∈ OrdA. There exist
a Skolem term t and x1 < . . . < xn ∈ I such that y = tA[x1, . . . , xn]. Now if
xn+1 is any element of I greater than xn, (iii) implies that y < xn+1. ��
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Thus we say that an E.M. set Σ is unbounded if it contains the formu-
las (18.12) for all Skolem terms t.

Let α be a limit ordinal, α > ω, and let (A, I) be the (Σ, α)-model.
For each ξ < α, let iξ denote the ξth element of I. We say that (A, I) is
remarkable if it is unbounded and if every ordinal x of A less than iω is in
HA({in : n ∈ ω}).

Lemma 18.11. The following are equivalent for any unbounded E.M. set Σ:

(i) For all α > ω, the (Σ, α)-model is remarkable.
(ii) For some α > ω, the (Σ, α)-model is remarkable.
(iii) For every Skolem term t(x1, . . . , xm, y1, . . . , yn), the set Σ contains the

formula

(18.13) if t(x1, . . . , xm, y1, . . . , yn) is an ordinal smaller than y1, then
t(x1, . . . , xm, y1, . . . , yn) = t(x1, . . . , xm, z1, . . . , zn).

Moreover, if (A, I) is a remarkable (Σ, α)-model and γ < α is a limit ordinal,
then every ordinal x of A less than iγ is in HA({iξ : ξ < γ}).

Proof. (i) → (ii) is trivial.
(ii) → (iii): Let α > ω be a limit ordinal and let (A, I) be a remarkable

(Σ, α)-model. To prove (iii), it suffices to show that for any t, (18.13) is
true in A for some increasing sequence x1 < . . . < xm < y1 < . . . < yn <
z1 < . . . < zn in I. Let t be a Skolem term. We let x1 < . . . < xm <
y1 < . . . < yn < z1 < . . . < zn ∈ I be such that x1, . . . , xm are the
first m members of I and that y1 is the ωth member of I, y1 = iω. Now if
a = tA(x1, . . . , xm, y1, . . . , yn) is an ordinal of A and less than y1, we have, by
remarkability of (A, I), a ∈ HA({in : n < ω}). Hence there is k < ω, k ≥ m,
and a term s such that

(18.14) A � t[x1, . . . , xm, y1, . . . , yn] = s[i0, . . . , ik].

In other words (18.14) says that A satisfies a certain formula ϕ[i0, . . . , ik,
y1, . . . , yn]. By indiscernibility, A also satisfies ϕ[i0, . . . , ik, z1, . . . , zn], i.e.,

A � t[x1, . . . , xm, z1, . . . , zn] = s[i0, . . . , ik].

Therefore tA[x1, . . . , xm, y1, . . . , yn] = tA[x1, . . . , xm, z1, . . . , zn].
(iii) → (i) and “moreover:” Let (A, I) be a (Σ, α)-model, where α > ω is

a limit ordinal, and assume (iii). Let γ ≥ ω be a limit ordinal and let x ∈ OrdA

be less than iγ , the γth element of I. We shall show that x ∈ HA({iξ : ξ < γ}).
Since A = HA(I), there is a Skolem term t and x1 < . . . < xm < y1 . . . <
yn ∈ I such that y1 = iγ and x = tA[x1, . . . , xm, y1, . . . , yn]. Let us choose
w1, . . . , wn and z1, . . . , zn in I such that

x1 < . . . < xm < w1 < . . . < wn < y1 < . . . < yn < z1 . . . < zn.
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Now since x < y1, it follows from (18.13) that

A � t[x1, . . . , xm, y1, . . . , yn] = t[x1, . . . , xm, z1, . . . , zn].

However, by indiscernibility, this implies that

A � t[x1, . . . , xm, w1, . . . , wn] = t[x1, . . . , xm, z1, . . . , zn],

and hence x = tA[x1, . . . , xm, w1, . . . , wn]. Therefore x ∈ HA({iξ : ξ < γ}).
��

Thus we say that an E.M. set Σ is remarkable if it is unbounded and
contains the formulas (18.13) for all Skolem terms t.

An important consequence of remarkability is the following: Let (A, I) be
a remarkable (Σ, α)-model and let γ < α be a limit ordinal. Let J = {iξ :
ξ < γ} and let B = HA(J). Then (B, J) is the (Σ, γ)-model, and the ordinals
of B form an initial segment of the ordinals of A.

Another consequence of remarkability is that the indiscernibles form
a closed unbounded subset of ordinals. Let (A, I) be the (Σ, α)-model. We
say that the set I is closed in OrdA if for every limit γ < α, iγ is the least
upper bound (in the linearly ordered set OrdA) of the set {iξ : ξ < γ}.

Lemma 18.12. If (A, I) is remarkable, then I is closed in OrdA.

Proof. Let γ < α be a limit ordinal. If x is an ordinal of A less than iγ , then
by remarkability, x is in the (Σ, γ)-model B = HA({iξ : ξ < γ}). However,
since Σ is unbounded, B is an unbounded (Σ, γ)-model and hence x < iξ for
some ξ < γ. Hence iγ is the least upper bound of {iξ : ξ < γ}. ��

Proof of Silver’s Theorem and 0�

Let us call an E.M. set Σ well-founded if every (Σ, α)-model is well-founded,
and let us consider the statement:

(18.15) There exists a well-founded remarkable E.M. set.

We shall prove Theorem 18.1 in two steps: First we shall show that both (i)
and (ii) are consequences of the assumption that there exists a well-founded
remarkable E.M. set, and then we shall show that if there exists a Ramsey
cardinal, then (18.15) holds. (Note that by Lemma 18.9 it suffices to find
a well-founded remarkable model with uncountably many indiscernibles.)

Thus let us assume that there exists a well-founded remarkable E.M. set
and let Σ be such a set.

For every limit ordinal α, the (Σ, α)-model is a well-founded model el-
ementarily equivalent to some Lγ , and so by (13.13) is (isomorphic to)
some Lβ .



18. Large Cardinals and L 319

Lemma 18.13. If κ is an uncountable cardinal, then the universe of the
(Σ, κ)-model is Lκ.

Proof. The (Σ, κ)-model is (Lβ, I) for some β; since |I| = κ, we clearly have
β ≥ κ. To prove that β = κ, assume that β > κ. Since I is unbounded in β and
has order-type κ, there is a limit ordinal γ < κ such that κ < iγ . By remark-
ability, all ordinals less than iγ are in the (Σ, γ)-model A = H({iξ : ξ < γ}).
This is a contradiction since on the one hand we have κ ⊂ A, and on the
other hand |A| = |γ| < κ. ��

For each uncountable cardinal κ, let Iκ be the unique subset of κ such that
(Lκ, Iκ) is the (Σ, κ)-model. By Lemma 18.12, Iκ is closed and unbounded
in κ.

Lemma 18.14. If κ < λ are uncountable cardinals, then Iλ ∩ κ = Iκ, and
HLλ(Iκ) = Lκ.

Proof. Let J be the set consisting of the first κ members of Iλ and let A =
HLλ(J). Then (A, J) is a (Σ, κ)-model and the ordinals of A are an initial
segment of λ, say OrdA = β. Since (A, J) is isomorphic to (Lκ, Iκ), it is clear
that β = κ and J = Iκ. Hence Iλ ∩ κ = Iκ.

Now since A ≺ Lλ, A is closed under the definable function F (α) =
the αth set in the well-ordering <L, and since OrdA = κ, we have A =
{F (α) : α < κ} = Lκ. ��

Using this lemma, we can now prove both (i) and (ii) of Theorem 18.1
except for the uniqueness of Silver indiscernibles. We let

(18.16) I =
⋃
{Iκ : κ is an uncountable cardinal}.

For each uncountable cardinal κ, I∩κ = Iκ is a closed unbounded set of order-
type κ, and is a set of indiscernibles for (Lκ,∈); moreover, by Lemma 18.7(iii),
every a ∈ Lκ is definable in Lκ from Iκ. Let κ < λ be uncountable cardinals.
Since Iλ is closed in Lλ and Iλ∩κ = Iκ, it follows that κ ∈ Iλ; hence I contains
all uncountable cardinals. Also, since Lκ = HLλ(Iκ), we have Lκ ≺ Lλ.

The next two lemmas prove the uniqueness of Silver indiscernibles and of
the corresponding E.M. set.

Lemma 18.15. There is at most one well-founded remarkable E.M. set.

Proof. Assuming that there is one such Σ, we define the class I in (18.16).
Now since Lℵω is the (Σ,ℵω)-model and ℵn ∈ I for each n ≥ 1, we have

(18.17) ϕ(v1, . . . , vn) ∈ Σ if and only if Lℵω � ϕ[ℵ1, . . . ,ℵn]

which proves that Σ is unique. ��
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We therefore define 0� (zero-sharp):

(18.18) 0� is the unique well-founded remarkable E.M. set if it exists.

The uniqueness of Silver indiscernibles now follows from:

Lemma 18.16. For every regular uncountable cardinal κ there is at most one
closed unbounded set of indiscernibles X for Lκ such that Lκ = HLκ(X).

Proof. Let Σ = Σ(Lκ, X). Since X is closed unbounded, it follows that X ∩I
is infinite, and Σ(Lκ, X) = Σ(Lκ, X ∩ I) = Σ(Lκ, I ∩ κ). Hence Σ = 0� and
since (Lκ, X) is the (Σ, κ)-model, we have X = I ∩ κ. ��

Thus we have proved (i) and (ii) of Theorem 18.1 under the assump-
tion that 0� exists. On the other hand, if (ii) holds, then 0� exists because,
e.g., (Lω1 , I ∩ ω1) is a remarkable well-founded model with ℵ1 indiscernibles.
To complete the proof of Theorem 18.1, it remains to show that if there is
a Ramsey cardinal, then 0� exists. That will follow from:

Lemma 18.17. Let κ be an uncountable cardinal. If there exists a limit ordi-
nal λ such that (Lλ,∈) has a set of indiscernibles of order-type κ, then there
exist a limit ordinal γ and a set I ⊂ γ of order-type κ such that (Lγ , I) is
remarkable.

It follows that if κ is Ramsey, then by Corollary 17.26 (Lκ,∈) has a set
of indiscernibles of order-type κ. By Lemma 18.17, there exists a remarkable
model (Lγ , I) where I has order-type κ. By Lemma 18.9, Σ(Lγ , I) is well-
founded and remarkable and hence 0� exists.

Proof. Let λ be the least limit ordinal such that (Lλ,∈) has a set of indis-
cernibles I ⊂ λ of order-type κ. We shall show first that there is a set of
indiscernibles I ⊂ λ for Lλ, of order-type κ, such that HLλ(I) = Lλ. Let
J be any set of indiscernibles for Lλ, of order-type κ, and let A = HLλ(J).
Then A ≺ Lλ and hence A is isomorphic to some Lβ, β ≤ λ, by the collapsing
map π. Now I = π(J) is a set of indiscernibles for Lβ, and HLβ(I) = Lβ. By
the minimality of λ, we have β = λ and hence I is as claimed.

Next we show that any such set I is unbounded in λ. If not, there is a limit
ordinal α < λ such that I ⊂ α. There is a Skolem term t and γ1 < . . . < γn ∈ I
such that α = tLλ [γ1, . . . , γn]. We claim that the set J = {i ∈ I : i > γn}
is a set of indiscernibles for (Lα,∈). If ϕ(v1, . . . , vn) is a formula, then for
any i1 < . . . < ik ∈ J , Lα satisfies ϕ[i1, . . . , ik] if and only if Lλ satisfies the
formula

(18.19) Lα � ϕ[i1, . . . , ik].

The formula (18.19) is a formula about α, i1, . . . , ik, and since α =
tLλ [γ1, . . . , γn] there is a formula ψ(u1, . . . , un, v1, . . . , vk) such that Lλ sat-
isfies (18.19) if and only if

(18.20) Lλ � ψ[γ1, . . . , γn, i1, . . . , ik].
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By the indiscernibility of I, the truth of (18.20) is independent of the
choice of i1 < . . . < ik in I provided γn < i1. Hence the truth of (18.19)
is independent of the choice of i1 < . . . < ik in J . Hence J is a set of
indiscernibles for Lα, and this contradicts the minimality of λ since α < λ
and the order-type of J is κ.

Finally, let I be a set of indiscernibles for Lλ of order-type κ such that
HLλ(I) = Lλ, and that iω, the ωth element of I, is least possible. We will
show that (Lλ, I) is remarkable.

Let us assume that (Lλ, I) is not remarkable. Then there is a Skolem
term t(x1, . . . , xm, y1, . . . , yn) such that the following holds in Lλ for any
x1 < . . . < xm < y1 < . . . < yn < z1 < . . . < zn:

(18.21) t(x1, . . . , xm, y1, . . . , yn) < y1

and

(18.22) t(x1, . . . , xm, y1, . . . , yn) �= t(x1, . . . , xm, z1, . . . , zn).

Let x1, . . . , xm be the first m elements of I. We now consider the following
increasing n-termed sequences in I: Let u0 be the sequence of first n indis-
cernibles after xm, let u1 be the first n indiscernibles after u0, etc.; for each
α < κ, let

γα = t(x1, . . . , xm, uα).

By indiscernibility, applied to the formula (18.22), we have γα �= γβ whenever
α �= β. In fact, in (18.22) we have either < or > (in place of �=); but > is
impossible since that would mean that γα > γβ whenever α < β. Thus
〈γα : α < κ〉 is an increasing sequence of ordinals.

We claim that J = {γα : α < κ} is a set of indiscernibles for Lλ. This is
so because for any formula ϕ, the truth value of ϕ(γα1 , . . . , γαk

) in Lλ does
not depend on the choice of γα1 < . . . < γαk

in J because by the definition
of the uα, the truth value of ϕ(t(x1 . . . , xm, uα1), . . . , t(x1 . . . , xm, uαk

)) does
not depend on the choice of α1 < . . . < αk.

Hence {γα : α < κ} is a set of indiscernibles for Lλ. Since iω is the first
member of uω, it follows by (18.21) that γω < iω. Now if A = H(J) and
π is the transitive collapse of A, then, as we proved in the first paragraph,
π(A) = Lλ, and K = π(J) is a set of indiscernibles for Lλ of order-type κ such
that HLλ(K) = Lλ. However, π(γω) ≤ γω < iω, and so the ωth member of K
is smaller than iω, contrary to our assumption. Hence (Lλ, I) is remarkable.

��

This completes the proof of Theorem 18.1. Lemma 18.17 also gives the
following equivalence:

Corollary 18.18. 0� exists if and only if for some limit ordinal λ, the model
(Lλ,∈) has an uncountable set of indiscernibles. ��
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The set 0� is, strictly speaking, a set of formulas. But as formulas can
be coded by natural numbers, we can regard 0� as a subset of ω. This con-
vention has become standard. Moreover, in Chapter 25 we show that 0� is
a Π1

2 singleton, and so {0�} is a ∆1
3 set. At this point we outline the proof of

absoluteness of 0�:

Lemma 18.19. The property “Σ is a well-founded remarkable E.M. set” is
absolute for every inner model of ZF. Hence M � 0� exists if and only if
0� ∈ M in which case (0�)M = 0�.

Proof. We first replace the property “Σ is an E.M. set” by a syntactical
condition.

Let L̂ be the language {∈, c1, c2, . . . , cn, . . .} where cn, n < ω, are constant
symbols. For every ∈-formula ϕ(v1, . . . , vn) let ϕ̂ be the sentence ϕ(c1, . . . , cn)
of L̂. For each set of formulas Σ, let Σ̂ be the set containing (i) all ϕ̂ for
ϕ ∈ Σ, (ii) the sentence “c1 is an ordinal and c1 < c2,” and (iii) the sentence
“ϕ(ci1 , . . . , cin) ↔ ϕ(cj1 , . . . , cjn)” for every ϕ ∈ Σ and any i1 < . . . < in,
j1 < . . . < jn, (iv) all axioms of ZFC + V = L. Let us consider the condition

(18.23) Σ̂ is consistent.

Clearly, if Σ is an E.M. set, then Σ̂ is consistent, for we simply interpret
the constants cn, n < ω, as some Silver indiscernibles. Conversely, if Σ̂ is
consistent, then Σ̂ has a model and that model provides us with a (Σ, ω)-
model (with indiscernibles cn, n < ω) and the proof of Lemma 18.7 goes
through. Therefore (18.23) holds if and only if Σ is an E.M. set.

As remarkability can also be expressed as a syntactical property, it follows
that “Σ is a remarkable E.M. set” can be written as a ∆0 property (with
parameters Vω and Form). As such it is absolute for transitive models.

If Σ is a remarkable E.M. set, then for every limit ordinal α there is
a unique (up to isomorphism) (Σ, α)-model and we can find one ((A, E), I)
such that I = α and that <A (i.e., E) agrees with < on α. If ((A, E), α)
is such, we say that “((A, E), α) is a (Σ, α)-model.” This last property is
a ∆1 property of Σ, (A, E), α, Vω and Form. Then Σ = 0� if and only if

(18.24) ∀α ∀(A, E) (if ((A, E), α) is a (Σ, α)-model, then (A, E) is well-
founded).

As well-foundedness is absolute for transitive models of ZF, it follows that
(18.24) is absolute for inner models of ZF (which contain all ordinals), and
therefore “Σ = 0�” is absolute. ��

Elementary Embeddings of L

In Chapter 17 we proved that a well-founded ultrapower of the universe
induces an elementary embedding jU : V → Ult, and conversely, if j : V → M
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is a nontrivial elementary embedding, then (17.2) defines a normal measure
on the least ordinal moved by j.

Let j be a nontrivial elementary embedding of the universe, and let M
be a transitive model of ZFC, containing all ordinals. Let N = j(M) =⋃

α∈Ord j(M ∩ Vα). Then N is a transitive model of ZF and j : M → N is
elementary:

(18.25) M � ϕ(a1, . . . , an) if and only if N � ϕ(j(a1), . . . , j(an)).

((18.25) is proved by induction on the complexity of ϕ). In particular, if
M = L, then j(V ) � (N is the constructible universe), and so N = L, and
j�L is an elementary embedding of L in L. Note that by Scott’s Theorem, the
function j�L is not a class in L; thus if there exists an elementary embedding
of L (into L), then V �= L.

If 0� exists, then there are nontrivial elementary embeddings of L. In
fact, let j be any order-preserving function from the class I of all Silver
indiscernibles into itself. Then j can be extended to an elementary embedding
of L; we simply let

(18.26) j(tL[γ1, . . . , γn]) = tL[j(γ1), . . . , j(γn)]

for every Skolem term t and any Silver indiscernibles γ1 < . . . < γn. We
shall prove that the converse is true, that if there is a nontrivial elementary
embedding of L, then 0� exists:

Theorem 18.20 (Kunen). The following are equivalent :

(i) 0� exists.
(ii) There is a nontrivial elementary embedding j : L → L.

Toward the proof of Kunen’s Theorem, let us investigate elementary em-
beddings j : M → N where M is a transitive model of ZFC.

Definition 18.21. Let M be a transitive model of ZFC, and let κ be a car-
dinal in M . An M -ultrafilter on κ is a collection D ⊂ PM (κ) that is an
ultrafilter on the algebra of sets PM (κ). Explicitly,

(i) κ ∈ D and ∅ /∈ D;
(ii) if X ∈ D and Y ∈ D, then X ∩ Y ∈ D;
(iii) if X ∈ D and Y ∈ M is such that X ⊂ Y , then Y ∈ D;
(iv) for every X ⊂ κ such that X ∈ M , either X or κ − X is in D.

(18.27)

D is κ-complete if whenever α < κ and {Xξ : ξ < α} ∈ M is such that
Xξ ∈ D for all ξ < α, then

⋂
ξ<α Xα ∈ D; D is normal if whenever f ∈ M is

a regressive function on X ∈ D, then f is constant on some Y ∈ D.
If j : M → N is an elementary embedding, then the least ordinal moved

by j is called the critical point of j.
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Lemma 18.22. If j : M → N is an elementary embedding and κ is the
critical point of j then κ is a regular uncountable cardinal in M , and D =
{X ∈ PM (κ) : κ ∈ j(X)} is a nonprincipal normal κ-complete M -ultrafilter
on κ.

Proof. Exactly as the proof of Lemma 17.2. Note that κ-completeness of D
implies that κ is regular in M . ��

If D is an M -ultrafilter on κ, one can construct the ultrapower of M
by D as follows: Consider, in M , the class of all functions f with domain κ.
Using D, define an equivalence relation =∗ and the relation ∈∗ as usual;

f =∗ g ↔ {α < κ : f(α) = g(α)} ∈ D,

f ∈∗ g ↔ {α < κ : f(α) ∈ g(α)} ∈ D.

Then define equivalence classes mod =∗, and the model Ult = UltD(M). An
analog of Theorem 12.3 is easily verified:

Ult � ϕ([f1], . . . , [fn]) if and only if {α < γ : M � ϕ(f1(α), . . . , fn(α))} ∈ D.

If for each a ∈ M , ca denotes the constant function with value a, then

jD(a) = [ca]

defines an elementary embedding of M in Ult.
The ultrapower of M by an M -ultrafilter D is not necessarily well-

founded, even if D is countably complete.
If j : M → N is an elementary embedding with M and N being transitive

models, and if D is the M -ultrafilter {X : κ ∈ j(X)}, then, as in Lemma 17.4,
we have the commutative diagram

(18.28)

Ult

M N
j

k
jD

�

�

�
�

�
�

�
���

and it follows that UltD(M) is well-founded. (If [f0] �∗ [f1] �∗ . . . were a de-
scending sequence in Ult, then k([f0]) � k([f1]) � . . . would be a descending
sequence in N .)

We proceed with the proof of Kunen’s Theorem.
Let j : L → L be an elementary embedding. We shall first replace j by

a more manageable embedding. We let D be the L-ultrafilter {X ∈ PL(γ) :
γ ∈ j(X)} where γ is the critical point of j. The ultrapower UltD(L) is well-
founded and so we identify Ult with its transitive collapse L; let jD be the
canonical embedding, jD : L → L. The critical point of jD is γ because D is
γ-complete.
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Lemma 18.23. If κ is a limit cardinal such that cf κ > γ, then jD(κ) = κ.

Proof. Every constructible function f : γ → κ is bounded by some α <
κ and hence [f ] < [cα] (where cα is the constant function with value α).
Thus jD(κ) = limα→κ jD(α). Now if α < κ, then |jD(α)| ≤ |(αγ)L|, hence
jD(α) < κ. It follows that jD(κ) = κ. ��

Let us drop the subscript D and simply assume that j : L → L is an
elementary embedding, that γ is its critical point and that j(κ) = κ for every
limit cardinal κ such that cf κ > γ.

Let U0 be the class of all limit cardinals κ with cf κ > γ; by transfinite
induction we define a sequence of classes U0 ⊃ U1 ⊃ . . . ⊃ Uα ⊃ . . . as
follows:

(18.29) Uα+1 = {κ ∈ Uα : |Uα ∩ κ| = κ},
Uλ =

⋂
α<λ

Uα (λ limit).

(That is, Uα+1 consists of fixed points of the increasing enumeration of Uα.)
Each Uα is nonempty, and in fact a proper class. To see this, verify, by
induction on α, that each Uα is a proper class and is δ-closed, for each δ
with cf δ > γ; that is, whenever 〈κξ : ξ < δ〉 is an increasing sequence in Uα,
then limξ→δ κξ ∈ Uα. Hence each Uα is nonempty, and we choose a cardinal
κ ∈ Uω1 .

Thus κ is such that cf κ > γ and κ is the κth element of each Uα, α < ω1.
We shall find a set of ℵ1 indiscernibles for (Lκ,∈).

Since j : L → L is an elementary and j(κ) = κ, it is clear that the
mapping i = j�Lκ is an elementary embedding of (Lκ,∈) into (Lκ,∈). We
shall use i and the sets Uα ∩κ, α < ω1, to produce indiscernibles γα, α < ω1,
for Lκ. Let Xα = Uα ∩ κ for each α < ω1, and recall that γ is the critical
point of i.

For each α < ω1, we let

(18.30) Mα = HLα(γ ∪ Xα).

Mα is an elementary submodel of Lκ.
If πα is the transitive collapse of Mα, then because |Xα| = κ, we have

πα(Mα) = Lκ. Thus if we denote iα = π−1
α , then iα is an elementary embed-

ding of Lκ in Lκ. Let γα = iα(γ).

Lemma 18.24.

(i) The ordinal γα is the least ordinal greater than γ in Mα.
(ii) If α < β and x ∈ Mβ , then iα(x) = x. In particular, iα(γβ) = γβ.
(iii) If α < β, then γα < γβ.
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Proof. (i) Since γ ⊂ Mα, iα(γ) is the least ordinal in Mα greater than or
equal to γ; thus it suffices to show that γ /∈ Mα. If x ∈ Mα, then x =
t[η1, . . . , ηn] where t is a Skolem term and the η’s are either smaller than γ or
elements of Xα. For all such η, i(η) = η and hence i(x) = i(t(η1, . . . , ηn)) =
t(i(η1), . . . , i(ηn)) = x. However, i(γ) �= γ and so γ /∈ Mα.

(ii) Each x ∈ Mβ is of the form t[η1, . . . , ηn] where the η’s are either < γ
or in Xβ . If η < γ, then clearly iα(η) = η. If η ∈ Xβ , then because α < β, we
have |Xα ∩ η| = η and hence πα(η) = η; in other words, iα(η) = η. Therefore
iα(x) = x.

(iii) If α < β, then Mα ⊃ Mβ and hence γα ≤ γβ . To see that γα �= γβ ,
note that because γα > γ, we have iα(γα) > iα(γ) = γα, while iα(γβ) = γβ .

��

Lemma 18.25. If α < β, then there is an elementary embedding iα,β : Lκ →
Lκ such that for every ξ that is either smaller than α or greater than β we
have iα,β(γξ) = γξ, and iα,β(γα) = γβ.

Proof. Let Mα,β = HLκ(γα ∪ Xβ), and let iα,β = π−1
α,β where πα,β is the

transitive collapse of Mα,β. The mapping iα,β is an elementary embedding
of Lκ in Lκ.

If η < γα, then clearly iα,β(η) = η; in particular iα,β(γξ) = γξ if ξ < α. If
x ∈ Mβ+1, then x = t(η1, . . . , ηn) where the η’s are either smaller than γ or
elements of Xβ+1. If η ∈ Xβ+1, then |Xβ ∩ η| = η and therefore iα,β(η) = η.
Hence iα,β(x) = x for every x ∈ Mβ+1, and in particular iα,β(γξ) = γξ if
ξ > β.

Now we shall show that iα,β(γα) = γβ . Since Mα,β ⊃ Mβ, we have γβ ∈
Mα,β ; and since γα ⊂ Mα,β, iα,β(γα) is the least ordinal in Mα,β greater than
or equal to γα; hence we have γα ≤ iα,β(γα) ≤ γβ.

Thus it suffices to show that there is no ordinal δ ∈ Mα,β such that
γα ≤ δ < γβ . Otherwise there is some δ = t(ξ1, . . . , ξn, η1, . . . , ηk) such that
the ξ’s are < γα and the η’s are in Xβ (and t is a Skolem term) and that
γα ≤ δ < γβ . Thus we have:

(18.31) (Lκ,∈) � ∃ξ < γα such that γα ≤ t(ξ, η) < γβ .

The formula in (18.31) is a formula ϕ about γα, η, and γβ . At this point, we
apply the elementary embedding iα : Lκ → Lκ backward. That is, γα, the η’s
and γβ are all in the range of iα: γα = iα(γ), η = iα(η), and γβ = iα(γβ); and
since Lκ � ϕ[iα(γ), iα(η), iα(γβ)], we conclude that Lκ � ϕ[γ, η, γβ ], namely

(Lκ,∈) � ∃ξ < γ such that γ ≤ t(ξ, η) < γβ.

Thus pick some ξ’s less than γ such that γ ≤ t(ξ, η) < γβ . Since ξ ∈ γ and
η ∈ Xβ , we have t(ξ, η) ∈ Mβ , which means that t(ξ, η) is an ordinal in Mβ

between γ and γβ, and that contradicts Lemma 18.24(i). ��

The proof of Kunen’s Theorem will be complete when we show:
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Lemma 18.26. The set {γα : α < ω1} is a set of indiscernibles for (Lκ,∈).

Proof. Let ϕ be a formula and let α1 < . . . < αn and β1 < . . . < βn be two
sequences of countable ordinals. We wish to show that

(18.32) Lκ � ϕ[γα1 , . . . , γαn ] if and only if Lκ � ϕ[γβ1 , . . . , γβn ].

Let us pick δ1 < . . . < δn such that αn < δ1 and βn < δ1. First we apply the
elementary embedding iαn,δn and get

Lκ � ϕ[γα1 , . . . , γαn−1 , γαn ] if and only if Lκ � ϕ[γα1 , . . . , γαn−1 , γδn ]

because iαn,δn(γαn) = γδn , and preserves the other γ’s. The we apply
iαn−1,δn−1 with a similar effect, and by a successive application of iαn−2,δn−2 ,
. . . , iα1,δ1 we get

Lκ � ϕ[γα1 , . . . , γαn ] if and only if Lκ � ϕ[γδ1 , . . . , γδn ].

Then we do the same for the β’s and δ’s as we did for the α’s and δ’s, and
(18.32) follows. ��

This completes the proof of Theorem 18.20.
The following result is related to Kunen’s Theorem:

Theorem 18.27. Let j : Lα → Lβ be an elementary embedding and let γ be
the critical point of j. If γ < |α|, then 0� exists.

Proof. Let γ be the critical point of j. Since γ < |α|, every X ⊂ γ is in Lα,
and so D = {X ⊂ γ : γ ∈ j(X)} is an L-ultrafilter.

Let us consider the ultrapower UltD(L). If the ultrapower is well-founded,
then we are done because then the canonical embedding jD : L → UltD(L)
is a nontrivial elementary embedding of L in L. Thus we shall prove that
UltD(L) is well-founded.

Let us assume that f0, f1, . . . , fn, . . . is a counterexample to well-
foundedness of the ultrapower. Each fn is a constructible function on γ and
{ξ < γ : fn+1(ξ) ∈ fn(ξ)} ∈ D for all n < ω. Let θ be a limit ordinal such
that fn ∈ Lθ for all n and let M be an elementary submodel of (Lθ,∈) such
that |M | = |γ|, γ ⊂ M , and fn ∈ M for all n. Let π be the transitive collapse
of M , π(M) = Lη, and let gn = π(fn), for all n.

Since π(ξ) = ξ for all ξ < γ, we see that for each ξ < γ and all n,
gn+1(ξ) ∈ gn(ξ) if and only if fn+1(ξ) ∈ fn(ξ), and hence g0, g1, . . . , gn, . . .
is also a counterexample to well-foundedness of the ultrapower. However,
since each gn is in L and |η| = |γ| < |α|, we have gn ∈ Lα for all n. Thus
j(gn) is defined for all n, and we have,

{ξ < γ : gn+1(ξ) ∈ gn(ξ)} ∈ D if and only if (j(gn+1))(γ) ∈ (j(gn))(γ).

Now we reached a contradiction because (j(g0))(γ) � (j(g1))(γ) � . . . would
be a descending sequence. ��
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Corollary 18.28. If there is a Jónsson cardinal, then 0� exists.

Proof. Let κ be a Jónsson cardinal and let us consider the model (Lκ,∈).
Let A be an elementary submodel, of size κ, such that A �= Lκ. Let π be
the transitive collapse of A; clearly, π(A) = Lκ. Thus j = π−1 is a nontrivial
elementary embedding of Lκ in Lκ. Since κ is a cardinal, 0� exists by Theo-
rem 18.27. ��

Chang’s Conjecture is the statement that every model of type (ℵ2,ℵ1)
has an elementary submodel of type (ℵ1,ℵ0).

Corollary 18.29. Chang’s Conjecture implies that 0� exists.

Proof. Consider the model (Lω2 , ω1,∈), and let A = (A, ω1 ∩ A,∈) be its
elementary submodel such that |A| = ℵ1 and |ω1 ∩ A| = ℵ0. Let π be the
transitive collapse of A; we have π(A) = Lα for some α such that ω1 ≤
α < ω2. Also, π(ω1 ∩ A) is a countable ordinal, and hence π(ω1) < ω1. Then
j = π−1 is an elementary embedding of Lα in Lω2 , and its critical point is
a countable ordinal. Hence 0� exists. ��

All results about 0� and Silver indiscernibles for L proved in the present
section can be relativized to obtain similar results for the models L[x], where
x ⊂ ω.

In particular, if there exists a Ramsey cardinal there is for every x ⊂ ω
a unique class Ix containing all uncountable cardinals such that for each un-
countable cardinal κ, Ix∩κ is a set of indiscernibles for the model (Lκ[x],∈, x)
and all elements of Lκ[x] are definable in the model from Ix ∩ κ. Here x is con-
sidered a one-place predicate. Also, for every regular uncountable cardinal κ,
Ix ∩ κ is closed unbounded in κ.

The proof of the relativization of Silver’s Theorem uses models with in-
discernibles (A, I) where A is elementarily equivalent to some (Lλ[x],∈, x)
where λ > ω is a limit ordinal. If κ is a Ramsey cardinal, then (Lκ[x],∈, x)
has a set of indiscernibles of size κ, and the theorem follows.

We define x� as the unique set Σ = Σ((Lλ[x],∈, x), I) that is well-founded
and remarkable. If x� exists, then we have

x� = {ϕ : (Lℵω [x],∈, x) � ϕ[ℵ1, . . . ,ℵn]}.

Here ϕ is a formula of the language {∈, P} where P is a one-place predicate
(interpreted as x). Note that x is definable in the model (Lλ[x],∈, x) (by the
formula P (v)).

The real x� is absolute for all transitive models M of ZF containing all
ordinals such that x� ∈ M .

Also, “x� exists” is equivalent to the existence of a nontrivial elementary
embedding j : L[x] → L[x].
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Jensen’s Covering Theorem

The theorem presented in this section shows that in the absence of 0� the
universe does not differ drastically from the constructible model. In partic-
ular, the cofinality function is closely related to the cofinality function in L,
and every singular cardinal is a singular cardinal in L. Moreover, the Singular
Cardinal Hypothesis holds and cardinal exponentiation is determined by the
continuum function on regular cardinals.

Theorem 18.30 (Jensen’s Covering Theorem). If 0� does not exist,
then for every uncountable set X of ordinals there exists a constructible set
Y ⊃ X such that |Y | = |X |.

The Covering Theorem expresses the closeness between V and L: Every
uncountable set of ordinals can be covered by a constructible set of the same
cardinality. In other words, every set X of ordinals can be covered by some
Y ∈ L such that |Y | ≤ |X | · ℵ1. (This is best possible: In Chapter 28 we give
an example of a forcing extension of L in which there is a countable set of
ordinals that cannot be covered by a countable (in V ) constructible set.)

The converse of the Covering Theorem is also true: If 0� exists then every
uncountable cardinal is regular in L, and in particular, since ℵω is regular
in L, the countable set {ℵn : n < ω} cannot be covered by a constructible
set of cardinality less than ℵω. This shows:

0� exists if and only if ℵω is regular in L.

Corollary 18.31. If 0� does not exist then for every λ ≥ ℵ2, if λ is a reg-
ular cardinal in L then cf λ = |λ|. Consequently, every singular cardinal is
a singular cardinal in L.

The assumption λ ≥ ℵ2 is necessary: The forcing mentioned above yields
a model where λ = ℵL

2 is such that |λ| = ℵ1 and cf λ = ω.

Proof. Let λ be a limit ordinal such that λ ≥ ω2 and that λ is a regular
cardinal in L. Let X be an unbounded subset of λ such that |X | = cf λ. By the
Covering Theorem, there exists a constructible set Y such that X ⊂ Y ⊂ λ
and that |Y | = |X | ·ℵ1. Since Y is unbounded in λ and λ is a regular cardinal
in L, we have |Y | = |λ|. This gives |λ| = ℵ1 · cf λ and since λ ≥ ℵ2, we have
|λ| = cf λ. ��

Corollary 18.32. If 0� does not exist then for every singular cardinal κ,
(κ+)L = κ+.

Proof. Let κ be a singular cardinal and let λ be the successor cardinal of κ
in L; we want to show that λ = κ+. If not, then |λ| = κ, and since κ is singular,
we have cf λ < κ. However, this means that cf λ < |λ| which contradicts
Corollary 18.31. ��
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Corollary 18.33. If 0� does not exist then the Singular Cardinal Hypothesis
holds.

Proof. Let κ be such that 2cf κ < κ, and let A = [κ]cf κ be the set of all subsets
of κ of size cf κ. We shall show that |A| ≤ κ+. By the Covering Theorem,
for every X ∈ A there exists a constructible Y ⊂ κ such that X ⊂ Y and
|Y | = λ where λ = ℵ1 · cf κ. Thus

(18.33) A ⊂
⋃
{[Y ]cf κ : Y ∈ C}

where C = {Y ⊂ κ : |Y | = λ and Y ∈ L}. If Y ∈ C, then |[Y ]cf κ| = λcf κ =
(ℵ1 · cf κ)cf κ = 2cf κ < κ. Since |C| ≤ |PL(κ)| = |(κ+)L| ≤ κ+ it follows
from (18.33) that |A| ≤ κ+. ��

Corollary 18.34. If 0� does not exist then if κ is a singular cardinal and if
there exists a nonconstructible subset of κ, then some α < κ has a noncon-
structible subset.

Proof. Let κ be a singular cardinal and assume that each α < κ has only
constructible subsets; we shall show that every subset of κ is constructible.
It suffices to show that each subset of κ of size cf κ is constructible: If A ⊂ κ,
let {αν : ν < cf κ} be such that limν αν = κ; then A = {A ∩ αν : ν < cf κ}
is a subset of Lκ of size ≤ cf κ and hence constructible. It follows that A is
constructible.

Let X ⊂ κ be such that |X | ≤ cf(κ). By the Covering Theorem, there
exists a constructible set of ordinals Y ⊃ X such that |Y | < κ. Let π be the
isomorphism between Y and its order-type α; the function π is constructible
and one-to-one. Since |α| = |Y | < κ, we have α < κ.

Let Z = π(X). Then Z ⊂ α is constructible by the assumption, and hence
X = π−1(Z) is also constructible. ��

The rest of this chapter is devoted to the proof of the Covering Theorem.
Jensen’s proof of the Covering Theorem used a detailed analysis of construc-
tion of sets in L, the fine structure theory, see [1972]. The proof appeared in
Devlin and Jensen [1975]. Subsequently, Silver and Magidor gave proofs that
did not use the fine structure. The outline below is based on Magidor [1990]
(and on Kanamori’s presentation in [∞]).

Let us assume that there exists an uncountable set X of ordinals that can-
not be covered by a constructible set of the same size. The goal is to produce
a nontrivial elementary embedding from L into L. In fact, by Theorem 18.27
it suffices to find some j : Lα → Lβ with critical point below |α|.

Let τ be the least ordinal such that there exists a set X ⊂ τ that cannot
be covered, and let X ⊂ τ be such a set with |X | least possible. Let ν = |X |.



18. Large Cardinals and L 331

Lemma 18.35.

(i) τ is a cardinal in L.
(ii) If Y ∈ L covers X then |Y |L ≥ τ .
(iii) ν is a regular cardinal, ν < τ , and ν = ℵ1 · cf τ .

Proof. (i) and (ii) follow from the minimality of τ .
(iii) |X | < τ , because otherwise, Y = τ would cover X . Clearly, |X | ≥

ℵ1 · cf τ ; thus assume that ν > ℵ1 · cf τ . Let τ = limξ→cf τ τξ. For each ξ, let
Yξ ∈ L cover X ∩ τξ. Let {Eα : α < τ} be a constructible enumeration of
all bounded constructible subsets of τ , and let Z = {α < τ : Eα = Yξ for
some ξ}. By the minimality of ν, Z can be covered by some W ∈ L of size
ℵ1 · cf τ . Then the set Y =

⋃
α∈Z Eα covers X , a contradiction. ��

Now let M be an elementary submodel of (Lτ ,∈) such that X ⊂ M and
|M | = ν. Let Lη be the transitive collapse of M , and let j = π−1 where π is
the collapsing isomorphism. Hence j : Lη → Lτ is an elementary embedding.
As X is cofinal in τ , and |η| = ν < τ , j is nontrivial.

The goal is to extend j : Lη → Lτ to an elementary embedding
J : Lδ → Lε where |δ| is greater than the critical point of j. This can be
achieved by finding M ≺ Lτ that satisfies certain closure conditions. These
closure conditions guarantee that if Lη is the transitive collapse of M then
η is a cardinal in L, and furthermore, that for any δ > τ , j extends to an
elementary embedding J with domain Lδ.

The precise nature of the closure conditions will be spelled out in (18.41).
For the remainder of this chapter, we use the phrase “M is sufficiently closed”
to indicate that M satisfies (18.41).

We defer the issue of η being a cardinal in L, as its proof requires a finer
analysis of the constructible hierarchy. We start with the proof of extendibility
of j.

Lemma 18.36. Let M be sufficiently closed, X ⊂ M ≺ Lτ such that |X | =
ν = |M |, let π : M � Lη be the transitive collapse, let j = π−1, and assume
that η is a cardinal in L. Then for every limit ordinal δ ≥ η there exists an
elementary embedding J : Lδ → Lε such that J�Lη = j.

Proof. Let δ ≥ η be a limit ordinal. We consider the following directed system
of models: Let D be the set of all pairs i = (α, p) where α < η and p is
a finite subset of Lδ, ordered by (α, p) ≤ (β, q) if and only if α ≤ β and
p ⊂ q. (D, <) is a directed set. Let i = (α, p), and let Mi = Hδ(α ∪ p) be
the Skolem hull of α ∪ p in (Lδ,∈). Let Lηi be the transitive collapse of Mi

and let ei : Lηi → Lδ be the inverse of the collapsing map πi : M � Lηi . For
i ≤ k, let ei,k = πk ◦ ei.

Let us consider the directed system of models

(18.34) {Lηi , ei,k : i, k ∈ D}.
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Clearly, every x ∈ Lδ is in some Mi, and so Lδ is the direct limit of
{Lηi , ei,k}i,k∈D. For every i ∈ D, |Mi|L < η, and since η is a cardinal in L,
we have ηi < η. We claim that for all i, k ∈ D, ei,k ∈ Lη. This is because
Lηi = Hηi(α ∪ πi(p)), Lηk

= Hηk(β ∪ πk(q)), and for every Skolem term t,
ei,k(tLηi (ξ, x)) = tLηk (ξ, ei,k(x)), so ei,k is definable in Lη from ηi, ηk, πi(p),
and πk(q).

Now we consider the directed system

(18.35) {j(Lηi), j(ei,k) : i, k ∈ D}.

The closure properties (18.41) of M guarantee that the direct limit of the
system (18.35) is well-founded. Let N be the direct limit, and for each i ∈ D,
ẽi : Lj(ηi) → N be an elementary embedding such that ẽi = ẽk ◦ j(ẽi,k)
whenever i < k. As N is well-founded, we may assume that N is transitive,
and then (by (13.13)), N = Lε for some limit ordinal ε.

We can extend j : Lη → Lτ to J : Lδ → Lε as follows:

(18.36) J(x) = ẽi(j(e−1
i (x)))

where i is some (any) i ∈ D such that x ∈ Mi.
It remains to show that J(x) = j(x) for all x ∈ Lη. So let x ∈ Lη, and let

α < η be such that x ∈ Lα. Let i = (α, {x}). Since Lα ⊂ Mi = Hδ(α ∪ {x}),
it follows that ei�Lα is the identity, as is ek,l�Lα whenever i ≤ k ≤ l. Thus
j(ek,l)�j(Lα) is the identity, for all l ≥ k ≥ i, and therefore ẽi�j(Lα) is the
identity. Hence ei(x) = x and ẽi(jx) = jx, and therefore J(x) = j(x). ��

The crucial step in the proof of the Covering Theorem is the following.

Lemma 18.37. Let M be sufficiently closed, X ⊂ M ≺ Lτ , such that |X | =
ν = |M |, and let Lη be the transitive collapse of M . Then η is a cardinal
in L.

The proof is by contradiction. Assuming that η is not a cardinal in L, we
shall produce a constructible set of size ν that covers X . It is in this proof
that we need a finer analysis of constructibility. We start by refining Gödel’s
Condensation Lemma:

Lemma 18.38. For every infinite ordinal ρ, if M ≺Σ1 (Lρ,∈) then the tran-
sitive collapse of M is Lγ for some γ. Moreover, there is a Π2 sentence σ
such that for every transitive set M , (M,∈) � σ if and only if M = Lρ for
some infinite ordinal ρ. ��

We omit the proof of Lemma 18.38. It can be found in Magidor [1990] or
in Kanamori [∞]. A related fact is the following lemma that is not difficult
to deduce from Lemma 18.38:

Lemma 18.39. Let {(Lηi ,∈), ei,k : i, k ∈ D} be a directed system of models,
ei,k being Σ0-elementary embeddings. If the direct limit of this system is well-
founded, then it is isomorphic to some Lγ. ��
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We also need the concept of Σn Skolem terms and Σn Skolem hull :

Definition 18.40. Let n ≥ 1.

(i) A Σn Skolem term is a composition of canonical Skolem functions
(18.5) for Σn formulas.

(ii) If Z ⊂ Lρ, the Σn Skolem hull of Z is the set Hρ
n(Z) = {tLρ[z1, . . . , zk] :

t is a Σn Skolem term and z1, . . . , zn ∈ Z}.

While a Σn Skolem function is not necessarily a Σn function, we have the
following:

Lemma 18.41.

(i) Hρ
n(Z) is a Σn-elementary submodel of Lρ.

(ii) If j : Lα → Lβ is Σn-elementary, then for every Σn Skolem term t
and all x1, . . . , xk ∈ Lα, j(tLα [x1, . . . , xk]) = tLβ [j(x1), . . . , j(xk)]. ��

Proof of Lemma 18.37. Let us assume that η is not a cardinal in L. Then
there exists a constructible function that maps some α < η onto η. Conse-
quently, there exists an ordinal ρ ≥ η, such that for some α < η and some
finite set p ⊂ Lρ,

(18.37) Hρ(α ∪ p) ⊃ η.

We say that η is not a cardinal at ρ. Let ρ be the least ordinal such that η is
not a cardinal at ρ.

There are three possible cases.

Case I. There exists some n > 1 such that Hρ
n(α ∪ p) ⊃ η for some α < η

and some finite p ⊂ Lρ, but Hρ
n−1(β ∪ q) �⊃ η, for all β < η and all finite

q ⊂ Lρ.

Case II. Hρ
1 (α ∪ p) ⊃ η for some α < η and some finite p ⊂ Lρ.

Case III. Hρ
n(α ∪ p) �⊃ η, for all α < η and all finite p ⊂ Lρ.

We start with Case I.

Case I. We consider the following directed system of models. Let D be the
set of all pairs i = (α, p) where i < η and p ⊂ Lρ is finite, ordered by (α, p) ≤
(β, q) if and only if α ≤ β and p ⊂ q. For each i ∈ D, let Mi = Hρ

n−1(α ∪ p).
Let Lηi be the transitive collapse of Mi and let ei : Lηi → Lρ be the inverse
of the collapsing map. For i ≤ k, let ei,k = e−1

k ◦ ei. Clearly, Lρ is the direct
limit of the directed system

(18.38) {Lηi , ei,k : i, k ∈ D},

with ei,k being Σn−1-elementary embeddings.
For each i ∈ D, ηi < η because otherwise η ⊂ Hρ

n−1(α ∪ e−1(p)), con-
tradicting the assumption about n. Also, ei,k ∈ Lη for all i, k ∈ D, because
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ei,k is defined in Lη by its action on Σn−1 Skolem terms: ei,k(tLηi (ξ, x)) =
tLηk (ξ, ei,k(x)).

Now we consider the directed system

(18.39) {j(Lηi), j(ei,k) : i, k ∈ D}.

The closure properties (18.41) of M guarantee that the direct limit of (18.39)
is well-founded, and by Lemma 18.39, it is equal to Lγ for some γ. Let
ẽi be the embedding of j(Lηi) into Lγ ; ẽi is Σn−1-elementary. We extend
j : Lη → Lτ to J : Lρ → Lγ as follows:

(18.40) J(x) = ẽi(j(e−1
i (x)))

where i ∈ D is such that x ∈ Mi. As in the proof of Lemma 18.36, J extends j,
and it is easily verified that J is Σn−1-elementary.

The key observation is that J is even Σn-elementary. To prove that, it is
enough to show that for every Σn−1 formula ϕ, if Lγ � ∃xϕ(x, J(y)) then
Lρ � ∃xϕ(x, y). Thus let y ∈ Lρ and x ∈ Lγ be such that Lγ � ϕ(x, J(y)).
Let i ∈ D be such that x ∈ ran(ẽi) and y ∈ ran(ei). If u ∈ Lj(ηi) and
v ∈ Lηi are such that x = ẽi(u) y = ei(v) then J(y) = ẽi(j(v)), and Lγ �
ϕ(ẽi(u), ẽi(j(v))). Since ẽi is Σn−1-elementary, we have Lj(ηi) � ϕ(u, j(v)).
The statement Lj(ηi) � ∃z ϕ(z, j(v)) is Σ0 (with parameters j(Lηi) and j(v))
and true in Lτ ; hence in Lη, Lηi � ∃z ϕ(z, v). Let z ∈ Lηi be such that
Lηi � ϕ(z, v); since ei is Σn−1-elementary, we get Lρ � ϕ(ei(z), ei(v)), and so
Lρ � ∃xϕ(x, y).

Now we reach a contradiction. Let α < η and a finite p ⊂ Lρ be such that
η ⊂ Hρ

n(α ∪ p). First we have

X ⊂ M ∩ τ = j“η = J“η,

and since J is Σn-elementary, Lemma 18.41 gives

J“η ⊂ J“Hρ
n(α ∪ p) = Hγ(J“α ∪ J“p).

By the minimality of τ , the set J“α ⊂ j(α) < τ can be covered by a con-
structible set Y of size |Y | ≤ ν. Hence X can be covered by the constructible
set Hγ

n(Y ∪ J“p), which has cardinality ≤ ν, contrary to Lemma 18.35.
This completes the proof of Case I.

Case II. We use the fact that in this case, ρ must be a limit ordinal. This is
an immediate consequence of this:

Lemma 18.42. If γ is infinite, α < γ and p ⊂ Lγ+1 is finite, then there
exists a finite set q ⊂ Lγ such that

Hγ+1
1 (α ∪ q) ∩ Lγ ⊂ Hγ(α ∪ p).
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Proof. This is quite routine when p = ∅. When p is nonempty, the idea is to
replace members of p by the parameters used in their definitions over Lγ . We
omit the proof. ��

Continuing Case II, we consider the directed system of models (18.38)
with ηi < η where all embeddings are Σ0-elementary embeddings. The index
set D is the set of all i = (α, p, ξ) where α < η, p ⊂ Lρ is finite and ξ < ρ
such that p ∈ Lξ. Each model Lηi is the transitive collapse of Hξ(α ∪ p).

The closure properties (18.41) of M guarantee that the direct limit of the
system (18.39) is well-founded, say Lγ . We extend j to J : Lρ → Lγ as before,
and as in Case I prove that J is not just Σ0-elementary, but Σ1-elementary.
As in Case I, we reach a contradiction by covering X by a constructible set
of size ≤ ν.

Case III. In this case, we consider the directed system (18.38) indexed by
triples i = (α, p, n) where α and p are as before and n ≥ 1; (α, p, n) ≤ (β, q, m)
means α ≤ β, p ⊂ q and n ≤ m. For each i = (α, p, n), Mi = Hρ

n(α ∪ p); by
the assumption on ρ, the transitive collapse of Mi is some Lηi with ηi < η,
and if for each k ≥ i, ei,k is Σn-elementary (and ei,k ∈ Lη).

Again, by (18.41) the direct limit of (18.39) is some Lγ , and for each
i = (α, p, n), ẽi is Σn-elementary. Extending j to J : Lρ → Lγ as before,
we get J elementary, and reach a contradiction in much the same way as
before. ��

It remains to find a model M ⊃ X with the right closure conditions. This
is provided by the following technical lemma:

Lemma 18.43. There exists a model M ≺ Lτ such that X ⊂ M , |M | = ν =
|X |, and if j−1 is the transitive collapse of M onto Lη, then

(18.41) for every directed system {Lηi, ei,k : i, k ∈ D} with Lηi , ei,k ∈ Lη,
with limit Lρ for some ρ ≥ η, and D as in the proof of Lem-
mas 18.36 and 18.37, the direct limit of {j(Lηi), j(ei,k) : i, k ∈ D}
is well-founded. ��

The construction of M proceeds in ν steps. At each step ξ < ν let
(η(ξ), ρ(ξ)) be the least (η, ρ) such that for some increasing {in}∞n=0 ⊂ D,
there are ordinals βn ∈ Lηin

such that βn+1 < ein,in+1(βn) for n = 0, 1,
2, . . . . We add the ordinals βn to M at this stage ξ. Using the fact that ν is
a regular uncountable cardinal, one can verify that the resulting model M
satisfies (18.41). As the proof is rather long and tedious, we omit it and refer
the reader to either Magidor [1990] or Chapter 32 in Kanamori’s book.
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Exercises

18.1. If there exists a cardinal κ such that κ→ (ω1)
<ω then 0� exists.

18.2. Let M be a transitive model of ZFC, let B be a complete Boolean algebra
in M and let G be an M -generic ultrafilter on B. If M � 0� does not exist, then
M [G] � 0� does not exist.

[All cardinals ≥ |B+| remain cardinals in M [G]. Let γ1 < γ2 < . . . < γn < . . . <
γω be an increasing sequence of cardinals in M such that γ1 ≥ |B+|. If 0� exists
in M [G], then 0� = {ϕ : Lγω � ϕ[γ1, . . . , γn]} and hence 0� ∈M .]

18.3. Assume that 0� exists. If A ⊂ ω1 is such that A ∩ α ∈ L for every α < ω1,
then A ∈ L.

[For every α ∈ I ∩ ω1 there is tα such that A ∩ α = tα(γα
1 , . . . , γα

n(α), α,
δα
1 , . . . , δα

k(α)). Clearly A∩α = tα(γα
1 , . . . , γα

n(α), α,ℵ2, . . . ,ℵk(α)+1). Since there are
only countably many Skolem terms, and by Fodor’s Theorem, there is a stationary
subset X of I ∩ ω1 and t, γ1, . . . , γn such that for all α ∈ X, A ∩ α = t(γ1, . . . , γn,
α,ℵ2, . . . ,ℵk+1). Show that A = t(γ1, . . . , γn,ℵ1,ℵ2, . . . ,ℵk+1).]

18.4. Let κ be an uncountable regular cardinal. If 0� exists, then for every con-
structible set X ⊂ κ, either X or κ−X contains a closed unbounded subset.

[Let X = t(α1, . . . , αn, β1, . . . , βm) where α1 < . . . < αn < β1 < . . . < βm

are Silver indiscernibles such that αn < κ ≤ β1. Show that either X or κ−X
contains all Silver indiscernibles γ such that αn < γ < κ: The truth value of
γ ∈ t(α1, . . . , αn, β1, . . . , βm) is the same for all such γ.]

18.5. Let us assume that for some uncountable regular cardinal κ, every con-
structible X ⊂ κ either contains or is disjoint from a closed unbounded set. Then
0� exists.

[Let D be the collection of all constructible subsets of κ containing a closed
unbounded subset. D is an L-ultrafilter and every intersection of less than κ ele-
ments of D is nonempty; hence the ultrapower UltD(L) is well-founded and gives
an elementary embedding of L in L.]

18.6. If κ is weakly compact and if |(κ+)L| = κ, then 0� exists.
[Let B be the least nontrivial κ-complete algebra of subsets of κ closed under in-

verses of constructible functions f : κ→ κ; we have |B| = κ. Let U be a κ-complete
ultrafilter on B containing all final segments {α : ℵ0 ≤ α < κ}. U ∩ L is a non-
principal L-ultrafilter, and UltU∩L(L) is well-founded. Thus there is a nontrivial
elementary embedding of L in L.]

18.7. Let in (n ≤ ω) be the nth Silver indiscernible, and let j : I → I be order-
preserving such that j(in) = in for n < ω and j(iω) > iω. Then j extends to an
elementary embedding j : L→ L with iω its critical point.

18.8. Every Silver indiscernible is ineffable (hence weakly compact) in L.
[Show that iω is ineffable in L, by Lemma 17.32.]

18.9. If 0� exists then L � ∃κ κ→ (ω)<ω.
[Let κ = iω. If f : [κ]<ω → {0, 1} is in L, there is some n < ω such that the set

{ik : k ≤ n < ω} is homogeneous for f .]

18.10. If 0� exists then the Erdős cardinal ηω in L is smaller than the least Silver
indiscernible.

[(ηω)L is definable in L.]



18. Large Cardinals and L 337

18.11. If j : L → L is elementary, then the critical point of j is a Silver indis-
cernible.

[Let κ be the critical point, let D = {X : κ ∈ j(X)}, and let jD : L→ UltD(L) =
L be the canonical embedding. κ is the critical point of jD, and jD(λ) = λ for all
regular λ ≥ κ+. If κ /∈ I then κ = t(α1, . . . , αk, λ1, . . . , λn) where αi < κ < λj and
jD(αi) = αi, jD(λj) = λj . Hence jD(κ) = κ, a contradiction.]

18.12. If both ω1 and ω2 are singular, then 0� exists.
[Let κ = ω1 and let λ be the successor cardinal of κ in L. Since cf κ = cf λ = ω,

there are sets X ⊂ κ and Y ⊂ λ, both of order-type ω such that sup X = κ and
sup Y = λ. Let M = L[X, Y ]; M is a model of ZFC and in M , κ is a singular
cardinal, and λ is not a cardinal. Hence 0� exists in M .]

18.13. For every x ⊂ ω, either 0� ∈ L[x] or x� ∈ L[0�, x].
[If 0� /∈ L[x], then the Covering Theorem for L holds in L[x] but fails in L[0�, x],

and hence the Covering Theorem for L[x] fails in L[0�, x]. Therefore x� ∈ L[0�, x].]

Historical Notes

Theorem 18.1 was discovered by Gaifman (assuming the existence of a measurable
cardinal). Gaifman’s results were announced in [1964] and the proof was published
in [1974], Gaifman’s proof used iterated ultrapowers (see also Gaifman [1967]).
Silver in his thesis (1966, published in [1971b]) developed the present method of
proof, using infinitary combinatorics, and proved the theorem under the weaker
assumption of existence of κ with the property κ → (ℵ1)

<ω. Gaifman proved that
if there is a measurable cardinal, then there exists A ⊂ ω such that the conclusion
of Theorem 18.1 holds in L[A]. Solovay formulated 0� and proved that it is a ∆1

3 set
of integers; Silver deduced the existence of 0� under weaker assumptions.

Construction of models with indiscernibles was introduced by Ehrenfeucht and
Mostowski in [1956].

The equivalence of the existence of 0� with the existence of a nontrivial elemen-
tary embedding of L (Theorem 18.20) is due to Kunen; the present proof is due
to Silver. Kunen also derived 0� from the existence of Jónsson cardinals and from
Chang’s Conjecture.

Theorem 18.30 (and its corollaries) is due to Jensen. A proof of the theorem
appeared in Devlin and Jensen [1975]. Jensen’s proof makes use of his fine structure
theory, see Jensen [1972]. The present proof is due to Magidor [1990]. Lemma 18.38
appears in Magidor [1990] and in Kanamori’s book [∞]; Magidor attributes the
proof to Boolos [1970].

Exercise 18.3: Solovay.
Exercise 18.6: Kunen.
Exercise 18.12: Magidor.


