

Mastermath Exam Set Theory 04-06-2013; 14:00-17:00.

This exam consists of multiple-choice questions, 1–12, and open questions, 13–17. Record your answers to the multiple-choice questions in a readable table on the exam paper.

- (2) 1. Given our definitions of ordered pairs $(\langle x,y\rangle = \{\{x\}, \{x,y\}\})$ and natural numbers $(n = \{0,\ldots,n-1\})$, which of the following is true:
 - A. $\langle 0, 1 \rangle \subseteq 2$
 - B. $2 \subseteq \langle 0, 1 \rangle$
 - C. $(0,1) = \{1,2\}$
 - D. $0 \in (0, 1)$
- (2) 2. Consider the structure $\langle \mathbb{N}, < \rangle$, for the language of set theory. Which of the following axioms of ZF holds in this structure.
 - A. Pairing
 - B. Separation
 - C. Union
 - D. Infinity
- (2) 3. Which of the following is not a filter on ω_1 :
 - A. $\{A \subseteq \omega_1 : \omega_1 \setminus A \text{ is finite}\}$
 - B. $\{A \subseteq \omega_1 : \omega_1 \setminus A \text{ is countable}\}$
 - C. $\{A \subseteq \omega_1 : \omega_1 \setminus A \text{ is not stationary}\}$
 - D. $\{A \subseteq \omega_1 : A \text{ is cub}\}$
- (2) 4. Assume ZFC. The set V_{ω_1} , viewed as a structure for the language of Set Theory, does *not* satisfy which axiom:
 - A. Choice
 - B. Replacement
 - C. Separation
 - D. Pairing
- (2) 5. Let κ be a regular and uncountable cardinal; which statement about subsets of κ is true:
 - A. Every unbounded set is stationary
 - B. Every stationary set is unbounded
 - C. Every stationary set is cub
 - D. Every bounded set is stationary
- (2) 6. Which of the following *ordinal* inequalities does not hold:
 - A. $2^{\omega} < 3^{\omega}$
 - B. $\omega^2 < \omega^3$
 - C. $\omega \cdot 2 < \omega \cdot 3$
 - D. $\omega + 2 < \omega + 3$

More problems on the next page.

- (2) 7. Which of the following *cardinal* inequalities does hold:
 - A. $2^{\aleph_0} < 3^{\aleph_0}$
 - B. $\aleph_0^2 < \aleph_0^3$
 - C. $\aleph_0 \cdot 2 < \aleph_0 \cdot 3$
 - D. $2^{\aleph_0} < 2^{2^{\aleph_0}}$
- (2) 8. Let M be a countable elementary substructure of $H(\aleph_{25})$, with respect to \in . Which of the following is not provable about M:
 - A. $\omega_{20} \in M$
 - B. $\varepsilon_0 \subseteq M$
 - C. $\mathcal{P}(\omega) \in M$
 - D. $\omega_1 \times \omega_1 \in M$
- (2) 9. Which of the following partition relations is provable in ZFC:
 - A. $\aleph_2 \to (\aleph_2, \aleph_1)^2$
 - B. $\aleph_2 \to (\aleph_1)_2^2$
 - C. $2^{\aleph_0} \to (\aleph_1, \aleph_0)^2$
 - D. $7 \to (4,3)^2$
- (2) 10. "The GCH holds below \aleph_{η} " means that $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for all $\alpha < \eta$. Which of the following implications is provable in ZFC:
 - A. If the GCH holds below \aleph_{ω} then $\aleph_{\omega}^{\aleph_0} = \aleph_{\omega+2}$
 - B. If the GCH holds below \aleph_{1000} then $\aleph_{1000}^{\aleph_{999}} = \aleph_{1000}$
 - C. If the GCH holds below \aleph_{ω_2} then $2^{\aleph_{\omega_3}} = \aleph_{\omega_4}$
 - D. If the GCH holds below \aleph_{ω_1} then $\aleph_{\omega_1}^{\aleph_0}=\aleph_{\omega_1+1}$
- (2) 11. The weakest assumption needed to prove the statement "If X is infinite then there is an injection from \mathbb{N} into X" is
 - A. ZF
 - B. ZF plus the Countable Axiom of Choice
 - C. ZF plus the Principle of Dependent Choices
 - D. ZFC
- (2) 12. Which of the following statements is not provable in ZFC (κ , λ and μ denote infinite cardinals):
 - A. $\aleph_{\alpha+1}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}$
 - B. If $\kappa \leqslant \lambda$ then $\kappa^{\lambda} = 3^{\lambda}$
 - C. If $\kappa \leqslant \lambda$ then $\kappa^{\mu} \leqslant \lambda^{\mu}$
 - D. If $\kappa < \lambda$ then $\mu^{\kappa} < \mu^{\lambda}$
 - 13. Recall that a set A is *finite* if there are $n \in \mathbb{N}$ and a bijection $f : n \to A$. Define A to be T-finite if every $X \subseteq \mathcal{P}(A)$ has a maximal element with respect to \subset . In this problem we do not assume the Axiom of Choice. Prove:
- (7) a. (by induction) Every $n \in \mathbb{N}$ set is T-finite (hence every finite set is T-finite).
- (4) b. \mathbb{N} is not T-finite.
- (7) c. Every T-finite set is finite.

- (8) 14. Let X be an infinite set and let \prec and \triangleleft be two well-orders of X. Prove that there is a subset A of X such that |A| = |X| and the well-orders agree on A, i.e., for all $x, y \in A$ we have $x \prec y$ if and only if $x \triangleleft y$.

 Hint: Try a suitable partition of $[X]^2$.
 - 15. For every countable ordinal $\alpha \geqslant \omega$ let $f_{\alpha} : \alpha \to \omega$ be a bijection. For α and n define

$$U(\alpha, n) = \{ \beta \in \omega_1 : \beta > \alpha \text{ and } f_{\beta}(\alpha) = n \}$$

Prove:

- (3) a. For every $n \in \omega$ the family $\{U(\alpha, n) : \alpha \geqslant \omega\}$ is pairwise disjoint.
- (3) b. For every $\alpha \geqslant \omega$ there is an n such that $U(\alpha, n)$ is stationary in ω_1 .
- (4) c. There is an n such that $\{\alpha \geqslant \omega : U(\alpha, n) \text{ is stationary} \}$ is uncountable.
- (4) d. Every stationary subset of ω_1 can be decomposed into \aleph_1 many pairwise disjoint stationary sets.
- (8) 16. a. Give a self-contained proof of $\kappa < \text{cf } 2^{\kappa}$ for infinite cardinal numbers κ , one that does not rely on Kőnig's inequality.
- (8) b. Give a direct proof of the statement "If κ is a strong limit cardinal then $2^{\kappa} = \kappa^{\text{cf }\kappa}$ " by constructing appropriate injections and invoking the Cantor-Bernstein theorem.
- (10) 17. Let $\langle A_{\alpha} : \alpha \in \omega_2 \rangle$ be a sequence of countable subsets of ω_2 such that $\alpha \notin A_{\alpha}$ for all α . Prove that there is a subset X of ω_2 of cardinality \aleph_2 and such that $\alpha \notin A_{\beta}$ whenever α and β are distinct elements of X.

 Hint: Think of the set $\{\alpha \in \omega_2 : \text{cf } \alpha = \aleph_1\}$ and, possibly, the pressing-down lemma.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$Grade = \frac{Total + 10}{10}$$

and rounded in the standard way.