This exam consists of multiple-choice questions, 1-12, and open questions, 13-16.
Record your answers to the multiple-choice questions in a readable table on the exam paper.
(2) 1. Given our definitions of ordered pairs $(\langle x, y\rangle=\{\{x\},\{x, y\}\})$ and natural numbers $(n=\{0, \ldots, n-1\})$, which of the following is true:
A. $\langle 1,2\rangle \subseteq 3$
\Rightarrow B. $\{1,2\} \subseteq 3 \quad\{1,2 \in 3\}$
C. $3 \subseteq\langle 1,2\rangle$
D. $3 \subseteq\{1,2\}$
(2) 2. Consider the structure $\langle\mathbb{N},\langle \rangle$, for the language of set theory. Which of the following axioms of ZF does not hold in this structure.
A. Power Set
\Rightarrow B. Pairing $\{$ there is no x in \mathbb{N} such that $(\forall y)(y<x \leftrightarrow(y=3 \vee y=4))\}$
C. Regularity
D. Extensionality
(2) 3. Which of the following is a filter on \mathbb{R} :
A. $\{A \subseteq \mathbb{R}: A$ is uncountable $\}$
B. $\{A \subseteq \mathbb{R}: A$ has cardinality $|\mathbb{R}|\}$
C. $\{A \subseteq \mathbb{R}: A$ is open $\}$
$\Rightarrow \mathbf{D} .\{A \subseteq \mathbb{R}:|\mathbb{R} \backslash A|<|\mathbb{R}|\} \quad\{$ easily verified, also: the other three families have disjoint members $\}$
(2) 4. Assume ZFC. The set $H\left(\aleph_{2}\right)$, viewed as a structure for the language of Set Theory, does not satisfy which axiom:
A. Choice
B. Replacement
\Rightarrow C. Power set $\left\{\mathcal{P}\left(\omega_{1}\right) \notin H\left(\aleph_{2}\right)\right\}$
D. Pairing
(2) 5 . Let κ be a regular and uncountable cardinal; which statement about subsets of κ is not true:
A. Every stationary set is unbounded
B. Every cub set is stationary
C. Every unbounded set has cardinality κ
\Rightarrow D. Every unbounded set is stationary $\{$ the set of successors is unbounded but not stationary $\}$
(2) 6. Which of the following ordinal inequalities does hold:
A. $2^{\omega}<3^{\omega}$
\Rightarrow B. $\omega^{2}<\omega^{3}\left\{\omega^{3}\right.$ is ω copies of $\left.\omega^{2}\right\}$
C. $2 \cdot \omega<3 \cdot \omega$
D. $2+\omega<3+\omega$
(2) 7. Which of the following cardinal inequalities does not hold:
\Rightarrow A. $2^{\aleph_{0}}<3^{\aleph_{0}}$ \{This is a standard result \}
B. $\aleph_{0}^{2013}<\aleph_{2013}$
C. $\aleph_{\omega}<\aleph_{\omega}^{\aleph_{0}}$
D. $2^{\aleph_{0}}<2^{2^{\aleph_{0}}}$
(2) 8. Let $\kappa>2^{\aleph_{1}}$ be regular. Which of the following is not provable about countable elementary substructures of $H(\kappa)$:
\Rightarrow A.if S is stationary in ω_{1} then for every M : if $S \in M$ then $M \cap \omega_{1} \in S \quad\{$ every M contains disjoint stationary sets\}
B. if S is stationary in ω_{1} then there is an M such that $S \in M$ and $M \cap \omega_{1} \in S$
C. if C is cub in ω_{1} then for every M : if $C \in M$ then $M \cap \omega_{1} \in C$
D. if C is cub in ω_{1} then there is an M such that $C \in M$ and $M \cap \omega_{1} \in C$
(2) 9. Which of the following partition relations is not provable in ZFC:
A. $\aleph_{2} \rightarrow\left(\aleph_{0}, \aleph_{1}\right)^{2}$
B. $\aleph_{2} \rightarrow\left(2013, \aleph_{2}\right)^{2}$
\Rightarrow C. $\aleph_{2} \rightarrow\left(\aleph_{2}, \aleph_{2}\right)^{2} \quad\{$ Lemma 9.4 in the book $\}$
D. $9 \rightarrow(4,3)^{2}$ \{See https://en.wikipedia.org/wiki/Ramsey's_theorem for a table\}
(2) 10. "The GCH holds below \aleph_{η} " means that $2^{\aleph_{\alpha}}=\aleph_{\alpha+1}$ for all $\alpha<\eta$. Which of the following implications is not provable in ZFC:
A. If the GCH holds below \aleph_{ω} then $\aleph_{\omega}^{\aleph_{0}}<\aleph_{\omega_{4}} \quad$ \{Theorem 24.33\}
\Rightarrow B. If the GCH holds below \aleph_{2013} then $\aleph_{2013}^{\aleph_{2013}}=\aleph_{2014}$
C. If the GCH holds below $\aleph_{\omega_{2}}$ then $2^{\aleph_{\omega_{2}}}=\aleph_{\omega_{2}+1} \quad$ \{Silver's theorem $\}$
D. If the GCH holds below $\aleph_{\omega_{1}}$ then $\aleph_{\omega_{1}}^{\aleph_{0}}=\aleph_{\omega_{1}} \quad$ \{Theorem 5.20\}
(2) 11. The weakest assumption needed to prove the statement " $|X| \leqslant|Y|$ if there is a surjection $f: Y \rightarrow X$ " is
A. ZF
B. ZF plus the Countable Axiom of Choice
C. ZF plus the Principle of Dependent Choices
\Rightarrow D. ZFC \{The 'obvious' proof requires the Axiom of Choice, the others have a strictly countable component $\}$
(2) 12. Which of the following statements is provable in ZFC (κ, λ and μ denote infinite cardinals):
A. $\aleph_{\alpha+1}^{\aleph_{\beta}}=\aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+2}$
\Rightarrow B. If $\mu<\kappa$ and $\mu^{\lambda}>\kappa$ then $\kappa^{\lambda}=\mu^{\lambda}$
C. If $\kappa<\lambda$ then $\kappa^{\mu}<\lambda^{\mu}$ \{Theorem 5.20 (ii) \}
D. If $\kappa<\lambda$ then $\mu^{\kappa}<\mu^{\lambda}$
13. Recall that a set A is finite if there are $n \in \mathbb{N}$ and a bijection $f: n \rightarrow A$. Define A to be D-finite if every injective map $f: A \rightarrow A$ is surjective. In this problem we do not assume the Axiom of Choice. Prove:
a. (by induction) Every $n \in \mathbb{N}$ set is D-finite (hence every finite set is D-finite).
b. \mathbb{N} is not D-finite.
c. For a set A the following are equivalent
(1) A is not D-finite
(2) $|A|+1=|A|$, i.e., there is a bijection $f: A \rightarrow A \cup\{p\}$, where $p \notin A$
(2) $|\mathbb{N}| \leqslant|A|$, i.e., there is an injection $f: \mathbb{N} \rightarrow A$
14. Prove the first non-trivial version of Ramsey's theorem:

$$
\aleph_{0} \rightarrow\left(\aleph_{0}\right)_{2}^{2}
$$

(8) 15. a. Prove the following version of the Δ-system lemma: assume $2^{\aleph_{0}}=\aleph_{1}$ and let $\left\langle A_{\alpha}: \alpha \in \omega_{2}\right\rangle$ be a sequence of countable sets. Then there are a countable set R and a subset T of ω_{2} such that $|T|=\aleph_{2}$ and $\left\{A_{\alpha}: \alpha \in T\right\}$ is a Δ-system with root R. Hint: Think of the set $\left\{\alpha \in \omega_{2}: \operatorname{cf} \alpha=\aleph_{1}\right\}$ and, possibly, the pressing-down lemma.
b. Let A be the set of functions from ω to 2 . Prove that if $B \subseteq A$ is a Δ-system then $|B| \leqslant 2$.

Hint: Functions are sets of ordered pairs.
16. For ordinal-valued functions f and g with domain ω_{1} we define $f \prec g$ to mean that $\{\alpha: f(\alpha) \geqslant g(\alpha)\}$ is not stationary.
a. Prove that \prec is a well-founded partial order.

We denote the associated rank function by $\|\varphi\|$, so that $\|\varphi\|=\sup \{\|\psi\|+1: \psi \prec \varphi\}$.
b. Prove $\|\varphi\|<\omega_{1}$ if and only if there is $\beta \in \omega_{1}$ such that $\left\{\alpha \in \omega_{1}: \varphi(\alpha)=\beta\right\}$ is stationary, and in that case $\|\varphi\|$ is equal to the smallest such β.
c. Determine the rank of the identity function on ω_{1}.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$
\text { Grade }=\frac{\text { Total }+10}{10}
$$

and rounded in the standard way.
13. a. If $n \leqslant 1$ then there is only one function from n to n (the empty function if $n=0$, and $0 \mapsto 0$ if $n=1$).

For the inductive step let $f: n+1 \rightarrow n+1$ be injective. If $f(n)=n$ then $f \upharpoonright n$ is an injection from n to n and hence surjective, but then f is surjective as well. If $f(n) \neq n$ then there is an $i<n$ such that $f(i)=n$, for otherwise $f \upharpoonright n$ would be an injection from n to n that was not surjective, as $f(i) \neq f(n)$ for all $i<n$. Define $g: n+1 \rightarrow n+1$ by $g(n)=n, g(i)=f(n)$ and $g(j)=f(j)$ if $j<n$ and $j \neq i$. Then g is surjective by the argument above, and hence so is f.
b. The map $n \mapsto n+1$ is injective but not surjective.
c. (1) implies (2): let $f: A \rightarrow A$ be injective and not surjective and take $a_{0} \in A \backslash f[A]$. Define $g: A \cup\{p\} \rightarrow A$ by $g(a)=f(a)$ if $a \in A$ and $g(p)=a_{0}$; then g is injective, hence $|A \cup\{p\}| \leqslant|A|$; since $|A| \leqslant|A \cup\{p\}|$ is clear we are done by the Cantor-Bernstein theorem.
(2) implies (3): let $f: A \cup\{p\} \rightarrow A$ be a bijection. Apply the recursion principle to obtain a map $h: \mathbb{N} \rightarrow A$ such that $h(0)=f(p)$ and $h(n+1)=f(h(n))$ for all n. Now prove by induction that h is injective.
(3) implies (1): let $h: \mathbb{N} \rightarrow A$ be an injection and define $f: A \rightarrow A$ by $f(a)=a$ if $a \in A \backslash h[\mathbb{N}]$ and $f(h(n))=h(n+1)$ for all n.
14. Here is one proof: let $f:[\omega]^{2} \rightarrow 2$ be given. Fix a free ultrafilter \mathcal{U} on ω. For each $i \in \omega$ the set $\{j: j>i\}$ is split by f into $A(i, 0)$ and $A(i, 1)$, where $A(i, \epsilon)=\{j>i: f(\{i, j\})=\epsilon\}$; let ϵ_{i} be such that $A\left(i, \epsilon_{i}\right) \in \mathcal{U}$. Now take ϵ such that $A=\left\{i: \epsilon_{i}=\epsilon\right\} \in \mathcal{U}$. Recursively define a sequence $\left\langle i_{n}: n \in \omega\right\rangle$ by $i_{0}=\min A$, and $i_{n}=\min \left(A \cap \bigcap_{m<n} A\left(i_{m}, \epsilon\right)\right)$ when $n>0$. Then $f\left(\left\{i_{m}, i_{n}\right\}\right)=\epsilon$ for all m and n. For other proofs: see the book and the notes.
15. a. We may assume that $A_{\alpha} \subseteq \omega_{2}$ for all α, because $\bigcup_{\alpha \in \omega_{2}} A_{\alpha}$ has cardinality at most \aleph_{2}. Apply the hint to the function f, defined by $f(\alpha)=\sup A_{\alpha} \cap \alpha$. Then f is regressive on the stationary set $\left\{\alpha: \operatorname{cf} \alpha=\aleph_{1}\right\}$, hence constant on a stationary set S, say with value γ. By the Continuum Hypothesis the set $[\gamma]{ }^{\leqslant \aleph_{0}}$ has cardinality at most \aleph_{1}, hence there is a stationary subset T of S such that $\alpha \mapsto A_{\alpha} \cap \alpha$ is constant, say with value R. Finally, the set $C=\left\{\alpha:(\forall \beta<\alpha)\left(\sup A_{\beta}<\alpha\right)\right\}$ is cub in ω_{2}; then $\left\{A_{\alpha}: \alpha \in T \cap C\right\}$ is the Δ-system that we seek.
b. Suppose B is a non-empty Δ-system, with root R. This means that R is a function and that $\operatorname{dom} R \subseteq \omega$. In case dom $R=\omega$ we have $f=R$ for all $f \in B$, so $|B|=1$. In case there is $n \in \omega \backslash$ dom R we must have $f(n) \neq g(n)$ whenever $f \neq g$ in B (as $f \cap g=R$), but there are only two possibilities for $f(n)$, so $|B|=2$.
16. This was mostly done in class and in the homework.
a. To see transitivity assume $\varphi \prec \psi$ and $\psi \prec \rho$. This means that $\{\alpha: \varphi(\alpha)<\psi(\alpha)\}$ and $\{\alpha: \psi(\alpha)<\rho(\alpha)\}$ both contain a cub; hence so does the intersection of this set, but $\varphi(\alpha)<\psi(\alpha)<\rho(\alpha)$ for all α in this intersection. If \prec were not well-founded then we could find a sequence $\left\langle\varphi_{n}: n \in \omega\right\rangle$ such that $\varphi_{n+1} \prec \varphi_{n}$ for all n, with witnessing cub sets C_{n}. The set $C=\bigcap_{n \in \omega} C_{n}$ is cub and if $\alpha \in C$ then $\left\langle\varphi_{n}(\alpha): n \in \omega\right\rangle$ would be a strictly decreasing sequence of ordinal numbers.
b. Step 1: if $\beta \in \omega_{1}$ and $\{\alpha: \varphi(\alpha) \leqslant \beta\}$ is stationary then $\|\varphi\| \leqslant \beta$. The proof is by induction on β. If $\beta=0$ then the assumption implies $\{\psi: \psi \prec \varphi\}=\emptyset$ and hence $\|\varphi\|=0$. If $\beta>0$ and $\psi \prec \varphi$ then $\{\alpha: \psi(\alpha)<\beta\}$ contains a cub and hence there is $\gamma<\beta$ such that $\{\alpha: \psi(\alpha) \leqslant \gamma\}$ is stationary, by induction $\|\psi\| \leqslant \gamma$. This shows that $\|\varphi\| \leqslant \sup \{\gamma+1: \gamma \in \beta\}=\beta$.
Step 2: if $\beta \in \omega_{1}$ and $\{\alpha: \varphi(\alpha)>\beta\}$ contains a cub then $\|\varphi\|>\beta$. The proof is by induction on β. If $\beta=0$ then the zero-function, which has rank 0 , is below φ and so $\|\varphi\| \geqslant 0+1$. If $\beta>0$ then $\rho \prec \varphi$, where ρ is the constant function with value β. By our inductive assumption $\|\rho\|>\gamma$, whenever $\gamma<\beta$; it follows that $\|\rho\| \geqslant \beta$ and hence $\|\varphi\| \geqslant \beta+1$.
The two steps together establish that $\|\varphi\| \leqslant \beta$ if and only $\{\alpha: \varphi(\alpha) \leqslant \beta\}$ is stationary and hence that $\|\varphi\|=\beta$ if and only if β is the smallest ordinal such that $\{\alpha: \varphi(\alpha) \leqslant \beta\}$ is stationary.
c. Let ι denote the identity function. Note that $\varphi \prec \iota$ if and only if $\{\alpha: \varphi(\alpha)<\alpha\}$ contains a cub. So, if $\varphi \prec \iota$ then φ is regressive on a cub and hence constant on a stationary set, say with value γ. But then $\|\varphi\| \leqslant \gamma$. We see that $\|\iota\| \leqslant \sup \left\{\alpha+1: \alpha \in \omega_{1}\right\}=\omega_{1}$. Also, there is no $\beta \in \omega_{1}$ such that $\{\alpha: \iota(\alpha) \leqslant \beta\}$ is stationary, so that $\|\iota\| \geqslant \omega_{1}$. We conclude that $\|\iota\|=\omega_{1}$.

