

Mastermath Exam Set Theory 25-06-2013; 16:00–19:00.

This exam consists of multiple-choice questions, 1–12, and open questions, 13–16. Record your answers to the multiple-choice questions in a readable table on the exam paper.

- (2) 1. Given our definitions of ordered pairs $(\langle x, y \rangle = \{\{x\}, \{x, y\}\})$ and natural numbers $(n = \{0, \dots, n-1\})$, which of the following is true:
 - A. $\langle 1, 2 \rangle \subseteq 3$

 $\Rightarrow \mathbf{B.} \{1,2\} \subseteq 3 \ \{1,2 \in 3\}$

- C. $3 \subseteq \langle 1,2 \rangle$
- D. $3 \subseteq \{1, 2\}$
- (2) 2. Consider the structure ⟨N, <⟩, for the language of set theory. Which of the following axioms of ZF does not hold in this structure.
 A. Power Set
 - \Rightarrow **B.** Pairing {there is no x in N such that $(\forall y)(y < x \leftrightarrow (y = 3 \lor y = 4))$ }

C. Regularity

D. Extensionality

- (2) 3. Which of the following is a filter on \mathbb{R} :
 - A. $\{A \subseteq \mathbb{R} : A \text{ is uncountable}\}$
 - B. $\{A \subseteq \mathbb{R} : A \text{ has cardinality } |\mathbb{R}|\}$
 - C. $\{A \subseteq \mathbb{R} : A \text{ is open}\}$

 $\Rightarrow \mathbf{D}. \{A \subseteq \mathbb{R} : |\mathbb{R} \setminus A| < |\mathbb{R}|\} \ \text{{easily verified, also: the other three families have disjoint members} \}$

- (2) 4. Assume ZFC. The set $H(\aleph_2)$, viewed as a structure for the language of Set Theory, does *not* satisfy which axiom:
 - A. Choice
 - B. Replacement
 - \Rightarrow **C.** Power set $\{\mathcal{P}(\omega_1) \notin H(\aleph_2)\}$
 - D. Pairing
- (2) 5. Let κ be a regular and uncountable cardinal; which statement about subsets of κ is not true:
 A. Every stationary set is unbounded
 - B. Every cub set is stationary
 - C. Every unbounded set has cardinality κ
 - \Rightarrow **D**. Every unbounded set is stationary {the set of successors is unbounded but not stationary}
- (2) 6. Which of the following ordinal inequalities does hold: A. $2^{\omega} < 3^{\omega}$
 - $\Rightarrow \mathbf{B}. \, \omega^2 < \omega^3 \quad \{\omega^3 \text{ is } \omega \text{ copies of } \omega^2\}$ C. $2 \cdot \omega < 3 \cdot \omega$ D. $2 + \omega < 3 + \omega$

More problems on the next page.

(2) 7. Which of the following *cardinal* inequalities *does not hold*: $\Rightarrow \mathbf{A} \cdot 2^{\aleph_0} < 3^{\aleph_0}$ {This is a standard result}

> B. $\aleph_0^{2013} < \aleph_{2013}$ C. $\aleph_\omega < \aleph_\omega^{\aleph_0}$ D. $2^{\aleph_0} < 2^{2^{\aleph_0}}$

- (2) 8. Let $\kappa > 2^{\aleph_1}$ be regular. Which of the following is *not* provable about countable elementary substructures of $H(\kappa)$:
 - $\Rightarrow \mathbf{A}. \text{ if } S \text{ is stationary in } \omega_1 \text{ then for every } M: \text{ if } S \in M \text{ then } M \cap \omega_1 \in S \text{ {every } } M \text{ contains disjoint stationary sets} \}$
 - B. if S is stationary in ω_1 then there is an M such that $S \in M$ and $M \cap \omega_1 \in S$
 - C. if C is cub in ω_1 then for every M: if $C \in M$ then $M \cap \omega_1 \in C$
 - D. if C is cub in ω_1 then there is an M such that $C \in M$ and $M \cap \omega_1 \in C$
- (2) 9. Which of the following partition relations is *not* provable in ZFC:
 - A. $\aleph_2 \to (\aleph_0, \aleph_1)^2$
 - B. $\aleph_2 \rightarrow (2013, \aleph_2)^2$
 - $\Rightarrow \mathbf{C} \cdot \aleph_2 \rightarrow (\aleph_2, \aleph_2)^2 \quad \{\text{Lemma 9.4 in the book}\}$ D. 9 $\rightarrow (4, 3)^2 \quad \{\text{See https://en.wikipedia.org/wiki/Ramsey's_theorem for a table}\}$
- (2) 10. "The GCH holds below \aleph_{η} " means that $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for all $\alpha < \eta$. Which of the following implications is *not* provable in ZFC:
 - A. If the GCH holds below \aleph_{ω} then $\aleph_{\omega}^{\aleph_0} < \aleph_{\omega_4}$ {Theorem 24.33}
 - \Rightarrow B. If the GCH holds below \aleph_{2013} then $\aleph_{2013}^{\aleph_{2013}} = \aleph_{2014}$
 - C. If the GCH holds below \aleph_{ω_2} then $2^{\aleph_{\omega_2}} = \aleph_{\omega_2+1}$ {Silver's theorem}
 - D. If the GCH holds below \aleph_{ω_1} then $\aleph_{\omega_1}^{\aleph_0} = \aleph_{\omega_1}$ {Theorem 5.20}
- (2) 11. The weakest assumption needed to prove the statement " $|X| \leq |Y|$ if there is a surjection $f: Y \to X$ " is A. ZF
 - B. ZF plus the Countable Axiom of Choice
 - C. ZF plus the Principle of Dependent Choices
 - \Rightarrow **D.ZFC** {The 'obvious' proof requires the Axiom of Choice, the others have a strictly countable component}
- (2) 12. Which of the following statements is provable in ZFC (κ , λ and μ denote *infinite* cardinals): A. $\aleph_{\alpha+1}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+2}$
 - \Rightarrow **B.** If $\mu < \kappa$ and $\mu^{\lambda} > \kappa$ then $\kappa^{\lambda} = \mu^{\lambda}$
 - C. If $\kappa < \lambda$ then $\kappa^{\mu} < \lambda^{\mu}$ {Theorem 5.20 (ii)}
 - D. If $\kappa < \lambda$ then $\mu^{\kappa} < \mu^{\lambda}$

More problems on the next page.

- 13. Recall that a set A is *finite* if there are $n \in \mathbb{N}$ and a bijection $f : n \to A$. Define A to be *D*-finite if every injective map $f : A \to A$ is surjective. In this problem we do not assume the Axiom of Choice. Prove:
- (7) a. (by induction) Every $n \in \mathbb{N}$ set is D-finite (hence every finite set is D-finite).
- (4) b. \mathbb{N} is not D-finite.
- (7) c. For a set A the following are equivalent
 - (1) A is not D-finite
 - (2) |A| + 1 = |A|, i.e., there is a bijection $f : A \to A \cup \{p\}$, where $p \notin A$
 - (2) $|\mathbb{N}| \leq |A|$, i.e., there is an injection $f: \mathbb{N} \to A$
- (8) 14. Prove the first non-trivial version of Ramsey's theorem:

$$\aleph_0 \to (\aleph_0)_2^2$$

- (8) 15. a. Prove the following version of the Δ -system lemma: assume $2^{\aleph_0} = \aleph_1$ and let $\langle A_\alpha : \alpha \in \omega_2 \rangle$ be a sequence of countable sets. Then there are a countable set R and a subset T of ω_2 such that $|T| = \aleph_2$ and $\{A_\alpha : \alpha \in T\}$ is a Δ -system with root R. *Hint*: Think of the set $\{\alpha \in \omega_2 : \text{cf } \alpha = \aleph_1\}$ and, possibly, the pressing-down lemma.
- (8) b. Let A be the set of functions from ω to 2. Prove that if $B \subseteq A$ is a Δ -system then $|B| \leq 2$. *Hint*: Functions are *sets* of ordered pairs.
 - 16. For ordinal-valued functions f and g with domain ω_1 we define $f \prec g$ to mean that $\{\alpha : f(\alpha) \ge g(\alpha)\}$ is not stationary.
- (8) a. Prove that \prec is a well-founded partial order.

We denote the associated rank function by $\|\varphi\|$, so that $\|\varphi\| = \sup\{\|\psi\| + 1 : \psi \prec \varphi\}$.

- (8) b. Prove $\|\varphi\| < \omega_1$ if and only if there is $\beta \in \omega_1$ such that $\{\alpha \in \omega_1 : \varphi(\alpha) = \beta\}$ is stationary, and in that case $\|\varphi\|$ is equal to the smallest such β .
- (8) c. Determine the rank of the identity function on ω_1 .

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula T + b + 10

$$\text{Grade} = \frac{\text{Total} + 10}{10}$$

and rounded in the standard way.

THE END

- 13. a. If n ≤ 1 then there is only one function from n to n (the empty function if n = 0, and 0 → 0 if n = 1). For the inductive step let f : n + 1 → n + 1 be injective. If f(n) = n then f ↾ n is an injection from n to n and hence surjective, but then f is surjective as well. If f(n) ≠ n then there is an i < n such that f(i) = n, for otherwise f ↾ n would be an injection from n to n that was not surjective, as f(i) ≠ f(n) for all i < n. Define g : n + 1 → n + 1 by g(n) = n, g(i) = f(n) and g(j) = f(j) if j < n and j ≠ i. Then g is surjective by the argument above, and hence so is f.</p>
 - b. The map $n \mapsto n+1$ is injective but not surjective.
 - c. (1) implies (2): let f : A → A be injective and not surjective and take a₀ ∈ A \ f[A]. Define g : A ∪ {p} → A by g(a) = f(a) if a ∈ A and g(p) = a₀; then g is injective, hence |A ∪ {p}| ≤ |A|; since |A| ≤ |A ∪ {p}| is clear we are done by the Cantor-Bernstein theorem.
 (2) implies (3): let f : A ∪ {p} → A be a bijection. Apply the recursion principle to obtain a map h : N → A such that h(0) = f(p) and h(n + 1) = f(h(n)) for all n. Now prove by induction that h is injective.
 (3) implies (1): let h : N → A be an injection and define f : A → A by f(a) = a if a ∈ A \ h[N] and f(h(n)) = h(n + 1) for all n.
- 14. Here is one proof: let $f : [\omega]^2 \to 2$ be given. Fix a free ultrafilter \mathcal{U} on ω . For each $i \in \omega$ the set $\{j : j > i\}$ is split by f into A(i, 0) and A(i, 1), where $A(i, \epsilon) = \{j > i : f(\{i, j\}) = \epsilon\}$; let ϵ_i be such that $A(i, \epsilon_i) \in \mathcal{U}$. Now take ϵ such that $A = \{i : \epsilon_i = \epsilon\} \in \mathcal{U}$. Recursively define a sequence $\langle i_n : n \in \omega \rangle$ by $i_0 = \min A$, and $i_n = \min(A \cap \bigcap_{m < n} A(i_m, \epsilon))$ when n > 0. Then $f(\{i_m, i_n\}) = \epsilon$ for all m and n. For other proofs: see the book and the notes.
- 15. a. We may assume that $A_{\alpha} \subseteq \omega_2$ for all α , because $\bigcup_{\alpha \in \omega_2} A_{\alpha}$ has cardinality at most \aleph_2 . Apply the hint to the function f, defined by $f(\alpha) = \sup A_{\alpha} \cap \alpha$. Then f is regressive on the stationary set $\{\alpha : \text{cf } \alpha = \aleph_1\}$, hence constant on a stationary set S, say with value γ . By the Continuum Hypothesis the set $[\gamma]^{\leq \aleph_0}$ has cardinality at most \aleph_1 , hence there is a stationary subset T of S such that $\alpha \mapsto A_{\alpha} \cap \alpha$ is constant, say with value R. Finally, the set $C = \{\alpha : (\forall \beta < \alpha) (\sup A_{\beta} < \alpha)\}$ is cub in ω_2 ; then $\{A_{\alpha} : \alpha \in T \cap C\}$ is the Δ -system that we seek.
 - b. Suppose B is a non-empty Δ -system, with root R. This means that R is a function and that dom $R \subseteq \omega$. In case dom $R = \omega$ we have f = R for all $f \in B$, so |B| = 1. In case there is $n \in \omega \setminus \text{dom } R$ we must have $f(n) \neq g(n)$ whenever $f \neq g$ in B (as $f \cap g = R$), but there are only two possibilities for f(n), so |B| = 2.
- 16. This was mostly done in class and in the homework.
 - a. To see transitivity assume $\varphi \prec \psi$ and $\psi \prec \rho$. This means that $\{\alpha : \varphi(\alpha) < \psi(\alpha)\}$ and $\{\alpha : \psi(\alpha) < \rho(\alpha)\}$ both contain a cub; hence so does the intersection of this set, but $\varphi(\alpha) < \psi(\alpha) < \rho(\alpha)$ for all α in this intersection. If \prec were not well-founded then we could find a sequence $\langle \varphi_n : n \in \omega \rangle$ such that $\varphi_{n+1} \prec \varphi_n$ for all n, with witnessing cub sets C_n . The set $C = \bigcap_{n \in \omega} C_n$ is cub and if $\alpha \in C$ then $\langle \varphi_n(\alpha) : n \in \omega \rangle$ would be a strictly decreasing sequence of ordinal numbers.
 - b. Step 1: if $\beta \in \omega_1$ and $\{\alpha : \varphi(\alpha) \leq \beta\}$ is stationary then $\|\varphi\| \leq \beta$. The proof is by induction on β . If $\beta = 0$ then the assumption implies $\{\psi : \psi \prec \varphi\} = \emptyset$ and hence $\|\varphi\| = 0$. If $\beta > 0$ and $\psi \prec \varphi$ then $\{\alpha : \psi(\alpha) < \beta\}$ contains a cub and hence there is $\gamma < \beta$ such that $\{\alpha : \psi(\alpha) \leq \gamma\}$ is stationary, by induction $\|\psi\| \leq \gamma$. This shows that $\|\varphi\| \leq \sup\{\gamma + 1 : \gamma \in \beta\} = \beta$. Step 2: if $\beta \in \omega_1$ and $\{\alpha : \varphi(\alpha) > \beta\}$ contains a cub then $\|\varphi\| > \beta$. The proof is by induction on β . If $\beta = 0$ then the zero-function, which has rank 0, is below φ and so $\|\varphi\| \ge 0 + 1$. If $\beta > 0$ then $\rho \prec \varphi$, where ρ is the constant function with value β . By our inductive assumption $\|\rho\| > \gamma$, whenever $\gamma < \beta$; it follows that $\|\rho\| \ge \beta$ and hence $\|\varphi\| \ge \beta + 1$.

The two steps together establish that $\|\varphi\| \leq \beta$ if and only $\{\alpha : \varphi(\alpha) \leq \beta\}$ is stationary and hence that $\|\varphi\| = \beta$ if and only if β is the smallest ordinal such that $\{\alpha : \varphi(\alpha) \leq \beta\}$ is stationary.

c. Let ι denote the identity function. Note that $\varphi \prec \iota$ if and only if $\{\alpha : \varphi(\alpha) < \alpha\}$ contains a cub. So, if $\varphi \prec \iota$ then φ is regressive on a cub and hence constant on a stationary set, say with value γ . But then $\|\varphi\| \leq \gamma$. We see that $\|\iota\| \leq \sup\{\alpha + 1 : \alpha \in \omega_1\} = \omega_1$. Also, there is no $\beta \in \omega_1$ such that $\{\alpha : \iota(\alpha) \leq \beta\}$ is stationary, so that $\|\iota\| \geq \omega_1$. We conclude that $\|\iota\| = \omega_1$.