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This exam consists of multiple-choice questions, 1-12, and open questions, 13-16.
Record your answers to the multiple-choice questions in a readable table on the exam paper.

. Given our definitions of ordered pairs ((z,y) = {{z}, {z,y}}) and natural numbers (n = {0,...,n — 1}),

which of the following is true:
A.(1,2) C3

B.{1,2} C3 {1,2€3}
C.3C(1,2)
D.3C{1,2}

. Consider the structure (N, <), for the language of set theory. Which of the following axioms of ZF does

not hold in this structure.
A. Power Set

B. Pairing {there is no = in N such that (Vy)(y <z < (y=3Vvy=4))}
C. Regularity
D. Extensionality

. Which of the following is a filter on R:

A. {A CR: A is uncountable}

B. {A CR: A has cardinality |R|}

C. {ACR: Aisopen}

D.{ACR:|R\ A| < |R|} {easily verified, also: the other three families have disjoint members}

. Assume ZFC. The set H(Xy), viewed as a structure for the language of Set Theory, does not satisfy

which axiom:
A. Choice

B. Replacement
C. Power set {P(wy) ¢ HR2)}
D. Pairing

. Let k be a regular and uncountable cardinal; which statement about subsets of k is not true:

A. Every stationary set is unbounded
B. Every cub set is stationary
C. Every unbounded set has cardinality «

D. Every unbounded set is stationary {the set of successors is unbounded but not stationary}

. Which of the following ordinal inequalities does hold:

A 29 < 3v

B.w? < w?® {w?is w copies of w?}
C2w<3w

D24+w<3+w

More problems on the next page.
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(2) 7. Which of the following cardinal inequalities does not hold:
= A.2% < 3% [This is a standard result}

B. N%Olg < Na013
C. R, < R}
D. 2% < 22"
(2) 8. Let k > 2™ be regular. Which of the following is not provable about countable elementary substructures
of H(k):

= A.if S is stationary in w; then for every M: if S € M then M Nw; € S {every M contains disjoint
stationary sets}

B. if S is stationary in wy then there is an M such that S € M and M Nwy € S
C. if C'is cub in wy then for every M: if C € M then M Nwy, € C
D. if C is cub in wq then there is an M such that C € M and M Nw, € C
(2) 9. Which of the following partition relations is not provable in ZFC:
A Ny — (No,Nl)z
B. Ny — (2013, R,)?
= C.Ny — (Ng,82)? {Lemma 9.4 in the book}
D. 9 — (4,3)% {See https://en.wikipedia.org/wiki/Ramsey’s_theorem for a table}
(2) 10. “The GCH holds below X,” means that 2%e = R, for all & < . Which of the following implications is

not provable in ZFC:
A. If the GCH holds below X,, then X¥0 < R, {Theorem 24.33}

= B. If the GCH holds below N3 then NS@%‘”’ = Nop14
C. If the GCH holds below R, then 28«2 =X, ,; {Silver’s theorem}
D. If the GCH holds below X,,, then X}° =, {Theorem 5.20}

(2) 11. The weakest assumption needed to prove the statement “|X| < |Y| if there is a surjection f: Y — X" is

A.ZF
B. ZF plus the Countable Axiom of Choice
C. ZF plus the Principle of Dependent Choices

= D.ZFC {The ‘obvious’ proof requires the Axiom of Choice, the others have a strictly countable compo-

nent }

(2) 12. Which of the following statements is provable in ZFC (k, A and u denote infinite cardinals):
AR = Re® - Rouo
= B.If u < s and p* > k then £ = p?
C.If k < A then k" < M {Theorem 5.20 (i)}
D. If kK < A then p* < p?

More problems on the next page.
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Recall that a set A is finite if there are n € N and a bijection f : n — A. Define A to be D-finite if every
injective map f : A — A is surjective. In this problem we do not assume the Axiom of Choice. Prove:

a. (by induction) Every n € N set is D-finite (hence every finite set is D-finite).
b. N is not D-finite.

c. For a set A the following are equivalent
(1) A is not D-finite
(2) |A|+1 =]A4]|, i.e., there is a bijection f: A — AU {p}, where p ¢ A

(2) IN| < |A], i.e., there is an injection f: N — A

Prove the first non-trivial version of Ramsey’s theorem:
Ro = (Ro)3

a. Prove the following version of the A-system lemma: assume 2% = X; and let (Aq : @ € wy) be a
sequence of countable sets. Then there are a countable set R and a subset T of ws such that |T'| = Ny
and {A, : a € T} is a A-system with root R. Hint: Think of the set {a € wy : cf @ = Ny} and,
possibly, the pressing-down lemma.

b. Let A be the set of functions from w to 2. Prove that if B C A is a A-system then |B| < 2.
Hint: Functions are sets of ordered pairs.
For ordinal-valued functions f and g with domain w; we define f < g to mean that {a : f(a) > g(a)} is
not stationary.
a. Prove that < is a well-founded partial order.
We denote the associated rank function by ||¢]], so that |j¢] = sup{||¢¥| +1: ¢ < ¢}.

b. Prove ||| < wy if and only if there is § € wy such that {& € wy : p() = B} is stationary, and in that
case ||¢|| is equal to the smallest such 3.

c. Determine the rank of the identity function on w;.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following

formula

Total + 10
Grade = ——
rade 10

and rounded in the standard way.

THE END
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. If n <1 then there is only one function from n to n (the empty function if n =0, and 0 +— 0 if n = 1).

For the inductive step let f: n+ 1 — n+ 1 be injective. If f(n) = n then f | n is an injection from n to n
and hence surjective, but then f is surjective as well. If f(n) # n then there is an ¢ < n such that f(i) = n,
for otherwise f | n would be an injection from n to n that was not surjective, as f(i) # f(n) for all i« < n.
Define g:n+1—mn+1byg(n) =n, g(i) = f(n) and g(3) = f(j) if j < n and j # i. Then g is surjective by
the argument above, and hence so is f.

. The map n — n 4+ 1 is injective but not surjective.

(1) implies (2): let f : A — A be injective and not surjective and take ag € A\ f[A]. Define g: AU{p} = A
by g(a) = f(a) if a € A and g(p) = ao; then g is injective, hence |AU {p}| < |AJ; since |A| < |[AU {p}] is clear
we are done by the Cantor-Bernstein theorem.

(2) implies (3): let f: AU {p} — A be a bijection. Apply the recursion principle to obtain a map h: N — A
such that h(0) = f(p) and h(n+ 1) = f(h(n)) for all n. Now prove by induction that h is injective.

(3) implies (1): let h : N — A be an injection and define f : A — A by f(a) = a if a € A\ h[N] and
f(h(n)) = h(n+ 1) for all n.

Here is one proof: let f : [w]®> — 2 be given. Fix a free ultrafilter & on w. For each i € w the set {j : j > i}
is split by f into A(:,0) and A(4,1), where A(i,e) = {j > i : f({i,5}) = €}; let e be such that A(i,e;) € U.
Now take € such that A = {i : ¢, = €} € U. Recursively define a sequence (i, : n € w) by ip = min A, and
iy = min(A N ﬂm<n A(im, e)) when n > 0. Then f({im,in}) = € for all m and n. For other proofs: see the book
and the notes.

aCwn A, has cardinality at most Na. Apply the hint to the
function f, defined by f(«) = sup Aa N«. Then f is regressive on the stationary set {o : cf & = Ny}, hence
constant on a stationary set S, say with value v. By the Continuum Hypothesis the set [y]S" has cardinality
at most Ni, hence there is a stationary subset T' of S such that a — A, N « is constant, say with value R.
Finally, the set C = {a: (V8 < «a)(sup Ag < @)} is cub in wy; then {A, : @« € TNC} is the A-system that we
seek.

. Suppose B is a non-empty A-system, with root R. This means that R is a function and that dom R C w.

In case dom R = w we have f = R for all f € B, so |B| = 1. In case there is n € w \ dom R we must have
f(n) # g(n) whenever f # g in B (as f N g = R), but there are only two possibilities for f(n), so |B| = 2.

16. This was mostly done in class and in the homework.

a. To see transitivity assume ¢ < ¢ and ¢ < p. This means that {a : p(a) < ¥(a)} and {a : ¥(a) < p(a)} both

contain a cub; hence so does the intersection of this set, but ¢(a) < () < p(a) for all « in this intersection.
If < were not well-founded then we could find a sequence (p, : n € w) such that p,11 < @, for all n, with
witnessing cub sets Cp. The set C' =, ., Cn is cub and if o € C then (pn(a) : n € w) would be a strictly
decreasing sequence of ordinal numbers.

. Step 1: if 8 € wy and {a : p(a) < B} is stationary then ||¢|| < 8. The proof is by induction on 5. If 8 =10

then the assumption implies {9 : 1) < ¢} = 0 and hence ||¢]| = 0. If 8 > 0 and ¢ < ¢ then {a : Y(a) < B}
contains a cub and hence there is v <  such that {« : ¢¥(a) < 7} is stationary, by induction |[¢]] < ~. This
shows that ||¢|| < sup{y+1:v€ B} =8.

Step 2: if B € w1 and {« : ¢(a) > S} contains a cub then |¢|| > 8. The proof is by induction on 8. If 3 =0
then the zero-function, which has rank 0, is below ¢ and so ||¢|| > 0+ 1. If 8 > 0 then p < ¢, where p is
the constant function with value 8. By our inductive assumption |[p|| > 7, whenever v < 3; it follows that
lpll > 8 and hence g > 6+ 1.

The two steps together establish that ||¢|| < S if and only {« : p(a) < B} is stationary and hence that
llo|l = B if and only if 8 is the smallest ordinal such that {a : p(a) < B} is stationary.

Let ¢ denote the identity function. Note that ¢ < ¢ if and only if {o : p(a) < a} contains a cub. So, if ¢ < ¢
then ¢ is regressive on a cub and hence constant on a stationary set, say with value 4. But then ||¢|| < 7.
We see that ||¢]] < sup{a+1: @ € w1} = wi. Also, there is no 8 € w1 such that {« : () < B} is stationary,
so that ||¢]| = w1. We conclude that ||¢]| = w1.

THE END



