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PARTIALLY ORDERED SETS.*I 

By BEN DUSHNIK and E. W. MILLER. 

1. Introduction. 

1. 1. By a system is meant a set S together with a binary relation 

R (x, y) which may hold for certain pairs of elements x and y of S. The 

relation R (x, y) is read " x precedes y " and is written " x < y." A system 

is called a partial order if the following conditions are satisfied. (1) If x < y, 

then y <C x; and (2) if x < y and y < z, then x < z. 
A partial order defined on a set S is called a linear order if every two 

distinct elements x and y of S are comparable, i. e., if x < y or y < x. If the 

partial order P and the linear order L are both defined on the same set of 

elements, and if every ordered pair in P occurs in L, then L will be called a 

linear extension of P. 

1. 2. If P and Q are two systems on the same set of elements S, then 

A = P + Q = Q + P will denote the system which contains those and only 

those ordered pairs which occur in either P or Q. Likewise P Q will denote 

the system which contains those and only those ordered pairs which occur in 

P but not in Q. The system which consists of all ordered pairs which occur 

in both P and Q, will be denoted by P Q. More generally, if P1, P2, ., Pa ... 

are systems on S, then IIP, will denote the system which consists of all 

ordered pairs common to all the systems Pa. It is easily seen that HtPa is a 

partial order if each system Pa is a partial order. On the other hand, it is 

clear that both P and Q can be partial orders without the same being true of 

either P + Q or P -Q. 

2. The dimension of a partial order. 

2. 1. Let S be any set, anid let SC be any collection of linear orders, 

each defined on all of S. We define a partial order P on S as follows. For 

any two elements xi and x2 of S we put xl < x2 (in P) if and only if xl < x2 

in every linear order of the collection AC; in other words, if AC {La}, we 

have P = IILa. A partial order so obtained will be said to be realized by the 

linear orders of AC. 

* Received December 8, 1940. 
1 Portions of this paper were presented to the American Mathematical Society on 

April 12 and November 22, 1940, under the titles " On partially ordered sets " and 

" On the dimension of a partial order." We are indebted to S. Eilenberg for suggestions 

which enabled us to simplify several proofs and improve the form of several definitions. 
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PARTIALLY ORDERED SETS. 601 

2. 2. By the dimension 2 of a partial order P defined on a set S is meant 
the smallest cardinal number m such that P is realized by m linear orders on S. 

2. 3. We shall make use of the following lemma in showing that every 
partial order has a dimension. 

LEMMA 2. 31.3 Every partial order P possesses a linear extension L. 
Moreover, if a and b are any two non-cornparable elements of P, there exists 
an extension L1 inT which a < b and an extension L2 in which b < a. 

We now prove the following theorem. 

THEOREM 2. 32. If P is any partial order on af set S, then there exists 
a collection AC of linear orders on S wvhich realize P. 

Proof. If every two elements of P are comparable, then P is a linear 
order L and is realized by the single linear order L. If P contains non- 
comparable elements, then, for every non-comparable pair a and b, let SC 
contain the corresponding linear extensions L1 and L2 mentioned in Lemma 
2. 31. It is clear that P is realized by the linear orders in ,C. 

In light of the proof of Theorem 2. 32, the following theorem is now 
obvious. 

THEOREM 2. 33. Let P be any partial order on a set S. If S is finite, 

then the dimension of P is finite. If S m, where m is a transfinite cardinal, 
then the dimension of P is ? m. 

2. 4. The procedure employed in 2. 1 for defining a partial order may 
be formulated in the following slightly different way. Let S be any set, and 

let L1, L2, , La, , (a < /8) be a series of linear orders. (We do not require 
that the elements of La be elements of S). Let fl, f2, 

. . . 
7 fa , * * (<X < 13), 

be a series of single-valued functions, each defined on S, each having a single- 
valued inverse, and such that fa (S) C La for every a < f3. We define a partial 
order P on S as follows. For any two elements xi and x2 of S we put xl < x2 
(in P) if and only if faa(Xi) < fa(Xs) for every a < /3. A partial order so 

obtained may be said to be realizecl by the functions fa, and the dimension of 

a given partial order P may be defined as the smallest cardinal number m 
such that P is realized by m functions. It is clear that the above is nothing 
more than a reformulation of what appears in 2. 1 and 2. 2. 

2 It will be noticed that the term "dimension" is here used in a different sense 

from that employed by Garrett Birkhoff in his book, Lattice Theory, American Mathe- 

matical Society Colloquium Publications. 
3For a proof of this important result, see Edward Szpilrajn, " Sur l'extension de 

l'ordre partiel," Fundamenta Mathematicae, vol. 16 (1930), pp. 386-389. 
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602 BEN DUSHNIK AND E. W. MILLER. 

3. Reversible partial orders. 

3. 1. Let P and Q be two partial orders on the same set of elements S, 
and suppose that every pair of distinct elements of S is ordered in just one of 
these partial orders; in such a case we shall say that P and Q are conjugate 
partial orders. A partial order will be called reversible if and only if it has a 
conjugate. Examples of reversible and irreversible partial orders will be given 
later. 

3. 2. A familiar example of a partial order is furnished by any family 

5J of subsets S of a given set E, where we put S < S' if and only if S is a 
proper subset of S'. Conversely, if P is any partial order, then P is similar to 
a partial order P1 defined as above by means of some family of sets. To show 
this, let us define, for any a in P, the set S(a) as consisting of a and all x i 

P such that x < a. It is easily verified that 8 - {S (a) }, for all a in P, is 
the required family of sets. Any family ?I of sets which defines (in the sense 
of set inclusion) a partial order similar to a given partial order P will be 

called a representation of P. 

3. 3. A linear extension L of P will be called separating if and only if 

there exist three elements a, b and c in P such that a < c, b is not comparable 
with either a or c in P, while in L we have a < b < c. 

3. 4. If P is a partial order, then the partial order obtained from P by 
inverting the sense of all ordered pairs will be denoted by P.* 

3. 5. We shall ineed the following lemma in proving the main theorem 

of this section. 

LEMMA 3. 51. If the partial order P has a conjugate partial order Q, 
then A, - P + Q and A2 =- P + Q' are both linear extensions of P. 

The proof of this is easy, and will therefore be omitted. 

3. 6. We shall now prove the following theorem. 

THEOREM 3. 61. The following four properties of a partial order P are 

equivalent. 

(1) P is reversible. 

(2) There exists a linear extension of P which is non-separating. 

(3) The dimension of P is ? 2. 

(4) There exists a representa-tion of P by means of a family of intervals 

on some linearly ordered set. 
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PARTIALLY ORDERED SETS. 603 

Proof. We shall show first that (1) implies (2). Suppose that the 
partial order P defined on the set S is reversible, and let Q be a partial order 
on S conjugate to P. By Lemma 3. 51, A = P + Q is a linear extension of P. 
Let a, b and c be any three elements of S which appear in the order a < b < c 
in A. If b is not comparable in P with either a or c, then a < b and b < c 
both appear in Q. Since Q is a partial order, a < c must also appear in Q, 
and thus a and c are not comparable in P. Hence A is a non-separating linear 
extension of P. 

We show now that (2) implies (3). Suppose that A is a non-separating 
linear extension of P, and let Q = A - P. If a < b and b < c are both in Q, 
then b is not comparable with either a or a in P. Then a < c, which is in A, 
cannot appear in P, for otherwise a < b < c would be an instance of a sepa- 
ration in A. Hence a < c must also appear in Q, and therefore Q is a 
partial order. Since Q is conjugate to P, it follows from Lemma 3. 51 that 
B =- P + Q* is a linear extension of P, and it is obvious that P is realized 
by the linear orders A and B. Therefore the dimension of P is ? 2. 

We prove next that (3) implies (4). Suppose the dimension of P is ? 2, 
and let A and B be any two linear orders on S which together realize P. 
(If the dimension of P is =- 1, then P is a linear order L and we may put 
A = B L). Let B' be a linear order similar to B*, where the set of ele- 
ments in B' is disjoint fromn S. Put C = B' + A, so that C is the linear 
order comprising B' and A, with the additional stipulation that each element 
of B' precedes each element of A. For each x in P denote by x the image of x 
in the given similarity transformation of B* into B', and denote by Ix the 
closed interval [x, x] of C. We will show that the family {1$} of all such 
intervals is a representation of P. Suppose first that x < y in P. Then 
x<yinAandj<xinuB',sothatinCwehave i< <x<y. Butthis 
means that I$ is a proper subset of Iv. In the same way it can be shown that 
if x and y are non-comparable elements of P, then neither of the intervals 

Ix and Iv, contains the other. 
To show that (4) implies (1) we shall suppose that P is a partial order 

(on a set S) which is represented by a family {I} of intervals taken from 
some linear order L. For each x in S, denote by I the interval of the family 
{I} which corresponds to x. We notice first that if x and y are distinct ele- 
ments of S which are not comparable in P, then Ix and Iv cannot have the 
same left-hand end-point. We define a system Q on S as follows. We put 
x < y (in Q) if and only if (a) x and y are not comparable in P, and (b) the 
left-hand end-point of Ix precedes the left-hand end-point of Iv. It is easy to 
see that Q is a partial order and that Q is conjugate to P. Hence, P is 
reversible. 
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604 BEN DUSHNIK AND E. W. MILLER. 

3. 7. We conclude this section with the following theorem on the ques- 
tion of representation. 

THEOREM 3. 71. Let P be a partial order such that if a < b and a < c, 

then b and c are comparable. Then P has a representation in which any two 

sets are either disjoint or comparable. 

Proof. Let a {S (x)} be the representation of P defined in 3. 2. 

Suppose that x and y are comparable,-say x < y. Then clearly S (x) is a 

proper subset of S(y). If x and y are not comparable, then S(x) S(y) 0. 

For suppose the contrary, and let zE S(x) S(y). Then z < x and z < y. 

Therefore x and y are comparable, contrary to our supposition. 

4. The existence of a partial order having a given dimension. 

We first prove the following theorem. 

THEOREM 4. 1. For every cardinal number n (finite or transfinite), 
there exists a partial order whose dimension is rt. 

Proof. Let X be any set of elements such that X-= ii. For any x in X, 

denote by ax the subset of X whose only element is x, and by cx the com- 

plement of ax in X. Let a denote the family of all sets ax and cx, for all x 

in X, and let P be the partial order represented (see 3. 2) by S. It is clear 

that, for any two elements a and b of P, we have a < b if and only if there 

exist x and y ilil X such that x # y, a = ax and b, c,. We shall prove that 

the dimension of P is -= i by showing that (1) if x # y, then no single 
linear extension of P can contain both cx < ax and cy < av; and (2) there 

exist 11 linear extensions of P which realize P. 
As to (1), suppose the contrary, and let L be a linear extension of P in 

which we have both cx < ax and cy < ay. Since ax < cy and ay < cx in P, 

we obtain in L: cx < ax < cv < ac, < cx, or cx < cx, which is impossible. 

As to (2), we define Lx, for any x in X, to be any specific linear exten- 

sion of P in which cx < ax, and in which ay < cx and ax < cy, for all y 7 x. 

Let I - {Lx}, for all x in X. We have K = . Moreover, the set of linear 

extensions -C realizes P. Thus, for the non-comparable elements cx and cy, 
x ;7 y, we have cx < ax < cy, in Lx, and cv < ay < cx in Ly, and similarly 
for the pair ax and av. For the non-comparable elements ax and cx we have 

cx < ax in Lx, and ax < cv < ay < cx in any extension Ly, y = x. Finally 
for the comparable elements ax and cy, we clearly have ax < cy in every 

extension Lq of SK. 

4. 2. We proceed to give another example of a partial order of dimen- 
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PARTIALLY ORDERED SETS. 605 

sion n, for the case in which n is a finite cardinal. We shall need the 
following lemma. 

LEMMA 4. 21.4 For any peirmutation 6., of n distinct natural num- 
bers, there exist k of these n,tmbers which appear in 0, either in increasing 
or in decreasing order, where kZ is the unique natural number such that 

(Dc- 1)2 < n c 2. 

Now let n be any natural number and let p 22n + 1. Let S be the set 
whose elements are the first p, natural numbers and all pairs (i, j), i < j, of 
these numbers. We define a partial order P on S as follows. If x and y are 
any two elements, of S, let x < y if and only if y is of the form (i, j) and x 
is either i or j. We now prove the following theorem. 

THEOREM 4. 22. The partial order P just defined is of dintension > n. 

Proof. Let us assume that the dimension of P is ?< n. There will exist 
n linear extensions El, E2, * , En of P which realize P. The first p natural 
numbers, as elements of S, appear in a certain permutation in each of these 
linear extensions. By Lemma 4. 21, we can select 22n-l + 1 of these numbers 
which appear monotonically (that is, in numerically increasing or decreasing 
order) in El; from these numbers we can select 22n-2 + 1 which appear 
monotonically in E2, etc.; so that we finally obtain 22[ + 1 = 3 numbers 
which appear monotonically in every one of these linear extensions. Without 
loss of generality, we may suppose these numbers to be 1, 2 and 3, and that 

(1) 1 < 2 < 3 in E,, (i1,2, *, s); 
and 
(2) 3<2<1 in E,, (i=s1, s2 ,n). 

Consider now the element (1, 3), which follows both 1 and 3 in P. In each 
of the first s extensions we will have 2 < 3 < (1, 3), and in each of the 
remaining extensions we will have 2 < 1 < (1, 3). Hence in all of the 
extensions we will have 2 < (1, 3), so that 2 < (1, 3') in P. But this con- 
tradicts the definition of P. It follows, by Theorem 2. 33, that there is an 
integer q > ru such that the dimension of P is q. 

We can now use P to obtain a partial order whose dimension is n. For 
let L1, L2, . *, Lq be linear extensions of P which realize P. It is not hard 
to show that the partial order P, which is realized by L,, L2, , Ln, is of 
dimension n. 

4This result appears (in slightly different form) in a paper by P. Erd6s anid G. 

Szekeres, entitled "A combinatorial problem in geometry," Compositio Mathematica, 

vol. 2 (1935), pp. 463-470. 
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606 BEN DUSHNIK AND E. W. MILLER. 

5. Linear orders in a partial order. 

5. 1. By a graph is meant a set of elements G, together with a binary, 
symmetric relation R (x, y) which may hold for certain elements x and y of G. 
If R(x, y) holds, we shall say that x and y are connected. A graph is said to 
be complete, if R (x, y) holds for every pair of distinct elements x and y of 
the graph. It is clear that any partial order gives rise to a graph if we use 
for R (x, y) the relation " x and y are comparable." 

5. 2. The theorems on partial orders in this section will be obtained as 
consequences of certain theorems about graphs. We will prove first the 
following lemma. 

LEMMA 5. 21. If G is a graph of power m, where m is a regular 5 car- 
dinal, and if every subset of G of power m contains two connected elements, 
then there exists an, element x of G which is connected with m elements of G. 

Proof. Assume there is no such element x. Let xl be any element of G, 
and denote by G1 the set of all elements with which xl is connected. We 

have G1 < m. Let It denote the initial ordinal such that a =m, and suppose 

that xa and Ga have been defined and Ga < m, for all ca < /, where ,8 < Me 

Since m is regular, G -i (xa + G,) , 0. Let xs be any eleiment of 
a<P3 

G - (xa + Ga). Denote by G6 the set of all elements in G with which x:3 
a < 3 

is connected. Then G,l < m. Consider finally the set X = xa. No two 
a <Iu 

elements of X are connected, and yet X = m. From this contradiction the 
result follows. 

THEOREM 5. 22.6 If G is a graph of power m, where m is a transfinite 
cardinal, and if every subset of G of power m conttains two connected elements, 
then G contains a complete graph of power 8o. 

Proof. We consider first the case where m is regular. In virtue of 

Lemma 5. 21, there exists an element xl of G which is connected with m 

elements of G. Denote the set of these elemenits by G1. We have G1 , . 

5 For the meaning of the terms regular and singular, in connection with transfinite 

numbers, one may refer to Sierpifnski's book, Lecons sur les Nombres Transfinis. A 

simple type of example shows that Lemma 5. 21 is not true in case m is any singular 

cardinal. 
6We are indebted to P. Erdos for suggestions in connection with Theorems 5. 22 

and 5. 23. In particular, Erdos suggested the proof of 5. 22 for the case in which m 
is a singular cardinal. 

This content downloaded from 130.161.208.37 on Sat, 23 Mar 2013 17:43:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


PARTIALLY ORDERED SETS. 607 

Suppose now that xn-, and G, 1 have been defined and G, l m. In virtue 
of Lemma 5. 21, there exists an element x. of G,,-, such that (1) X x #k 

for kc < n, and (2) xn is connected with m elements of G.-1. Denote this set 
00 

of elements by Gn. Consider finally the set X = x c. It is clear that X SO 
n=l 

and that any two elements of X are connected. 
We now consider the case where m is a singular cardinal. Let b denote 

the smallest cardinal such that m is the sum of b cardinals each less than m. 
Since m is singular, we have b < m. Let , denote the initial ordinal such 
that + 1b. There will exist regular cardinals r1, r', , ran , z < + 

such that b < ra <m and m - ra. 

In the first place, if every subset H of G of power m contains an element 
connected with m elements of H, then we can proceed, as in the previous case, 
to obtain a complete graph of power No. We shall accordingly assume that 

there exists a subset H of G such that H = m and such that no element of H 
is connected with m elements of Hl. 

We shall show that there exists an c'< K and a subset Q of H such 

that r = Va and such that every subset of Q of power ta contains two con- 
nected elements. Then, bv Case 1, there exists in Q, and therefore in G, 
a complete graph of power No. 

Let us assume the contrary, namely, that there exists no such subset Q 
of H corresponding to any a < 4). We shall show that this assumption leads 
to a contradiction. 

First, if A is any subset of II, denote by C(A) the set of all elements of 
II which are connected with the various elements of A. Let K be any subset 

of H such that K m. Let ca be any ordinal <4). We shall show that K 
contains a subset W,, of power ta, with these two properties: (1) no two ele- 

ments of W are connected, and (2) C (TV) < m. To prove this, we notice 
first that by the assumption made in the previous paragraph, there is a subset 

L of K such that L ra and such that no two elements of L are connected. 
Let L6 denote the set of all x in L such that x is connected with at most r, 
elements of H. We have L Lp. It follows that rtXa = L=. Since ra is 

3<9 5<0 

regular, and b < b <ir, we must have L- r, for some ft < 4. We now 

take W as this set Lp. Clearly (1) no two elements of W are connected, since 

I'VCL, and (2) C(W) ==C(Lp) :!tra -3<fm. 
To obtain the contradiction we proceed as follows. Denote by W1 a subset 

of H such that W11 r, no two elements of WI are connected, and C (W1) <in. 

Suppose we have defined TV,, for every a: < A < 4, so that Wa - ra, no two 

This content downloaded from 130.161.208.37 on Sat, 23 Mar 2013 17:43:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


608 BEN DUSHNIK AND E. W. MILLER. 

elements of WVa are connected, and C (Wa) < m. Then H E { Wa + C (Wa) } 
has power m. (This is the case since 4 is the initial ordinal such that + = 1). 

Let Wx be a subset of H - E {I'Vca + C(Wa) } such that Wx = rx, no two 
a<X 

elements of WVx are connected and C (WN) < m. Now consider E Wx. 
X <0 

Clearly, this set has power m and yet no two elements of it are connected. 
But this contradicts our hypothesis. 

On the basis of the theorem just proved we can now prove the following 
related theorem. 

THEOREM 5. 23. If G is a graph of power m, where m is a transfinite 
cardinal, and every subset of G of power No conqtains two connected elements, 
then G contains a complete graph of power mi. 

Proof. Let R' (x, y) mean " x and y are not connected." Let G' denote 
the graph determined by the elements of the set G in connection with the 
relation R'(x, y). The application of Theorem 5. 22 to the graph G' leads 
easily to the desired conclusion. 

As previously mentioned, a partial order P gives rise to a graph if we let 
R (x, y) mean " x and y are comparable in P." Hence the two theorems just 
proved give us the following theorems as corollaries. 

THEOREM 5. 24. If P is a partial order of power m, where m is a trans- 
finite cardinal, and if every subset of P of power m contains two comparable 
elements, then P contains a linear order of power No. 

THEOREM 5. 25. If P is a partial order of power m, where m is a trains- 
finite cardinal, and if every subset of P of power 8o conitains two comparable 
elements, then P contains a linear orderi of power m. 

5. 3. The question arises as to whether stronger conclusions can be 
drawn in Theorems 5. 22, 5. 23, 5. 24 and 5. 25. We shall consider only a 
very special case of this problem; namely, the case in which m i 8, 

Consider first the following example. Let N be any set of power 81. 
Let C denote the linear continuum, and W the well-ordered series consisting 
of all the ordinals of the first and second class. Let fi and g denote functions 
(single-valued and having a single-valued inverse) defined on N and such 
that f (N) C C and g (N) C W, respectively. We denote by P' the (reversible) 
partial order on N which is realized by the two functions f and g. Now if M 

is any non-denumerable subset of N, there exists an element x of M1 such that 
f (x) is a condensation point of f (M) from both the left and the right. 
There accordingly exist elements y and z of M such that f(z) < f(x) < f(y), 
g(x) < g(y), and g(x) < g(z). Hence, x and y are comparable in P, while 
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PARTIALLY ORDERED SETS. 609 

x and z are not comparable in P.7 In other words, the partial order P has 
the following property: Every subset of P of power 8, contains two comparable 
elements, and yet P contains no linear order of power 81. 

Since P is reversible,, it can (by virtue of Theorem 3. 61) be represented 
as a family of intervals on some linear order. Hence, the result just obtained 
can be given the following form. 

THEOREM 5. 31. There exists a non-denumerable family SJ of intervals 
(on a certain linear order A of power 81) which hast the following property. 
Every non-denumerable sub-family $' of SJ contains two comparable intervals, 
and yet SJ contains no non-denurmerable monotonic sub-family. 

A stronger result than tllat of Theorem 5. 31 will be presently obtained. 
This result will depend upon the following theorem. 

THEOREM 5. 32. If the 7hypothesis of the continuum is true, there exists 
a non,-denumerable set N of real nrumbers which has the following property. 
If N1 and N2 are any two disjoint non-denumerable subsets of N, then 

0 (N1) 7 N2, where p is any increasing or decreasing function, defined on N1. 

Proof. Let us arrange in a well-ordered series of type 0 all real-valued 
functions f (x) which (a) are monotonic (non-increasing and non-decreasing) 
on the linear continuum C, and (b) are such that E [f (x) = x] is nowhere 
dense on C: 

fl f2,* . . ,fa,*. . .n (<u 

For a given ax < Q there mav exist an interval on which f,a (x) is constant. 
The set of all values assumed on such intervals (for a given a,) is at most 
denumerably infinite. Denote this set of values by D,a. 

Let xl be any real number, and assume that x,g has been defined for all 
J8 < a, < Q. We shall show that it is possible to choose Xa so that (1) Xa:x X 

for P < a,, (2) x :& fy(xp) for y < a and I < a, (3) fp,(x) == xa for 

it < a,, and (4) fy (xa) '#7 x: or f,L (xa) eD[L for ,u < a and jf < a. That xa 
can be so defined may be seen as follows. Conditions (1) and (2) can be 
realized by avoiding a denumerable set. By virtue of (b), we can realize (3) 
by avoiding a set of the first category. Finally consider any pt < a, and any 
,B < a. There is at most one x in C - D[t for which fl,(x) =x:f. It follows 

that, except for a countable set of points, we have f, (x) E D[t or f (x) : xg 
for all p, < a, and all B < a,. Altogether, then, the set of points whieh has to 

7In a similar wvay it cani be shown that if AT, and N2 are any two disjoint non- 
denumerable subsets of N, then there exist elements a1 and b1 of N1, and elements a2 
and b2 of N2, such that a1 and a2 are comparable in P, while b1 and b2 are not comparable 
in P. 

9 
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610 BEN DUSHNIK AND E. W. MILLER. 

be avoided is of the first category. As such a set cannot exhaust C, it is clear 
that (1), (2), (3) and (4) can be realized. 

We now put N = Exf. From (1) it follows that N is non-denumerable. 
a<Q 

Consider now any fixed , < Q2, and any A such that p, < A < Q. From (2), 
(3) and (4) it can be seen that if fl,(xx) EN, then fp.(xx) EDp. It follows 
that N* f, (N) is denumerable. Hence, for no p, < ? can we have fL(N) -N2, 
where N1 and N2 are disjoint non-denumerable subsets of N. Finally, assume 
that p (N1) = N2, where q is an increasing or decreasing function defined on 
N1. For each x in N1, we have + (x) 6 x, and it can be easily shown (by 
suitably extending the definition of 4) that there exists a 11 < Q such that fy 
agrees with 4) on N1. Our result follows from this contradiction. 

The result of the preceding theorem can be expressed by saying that if 
N1 and N2 are disjoint non-denumerable subsets of N, then N1 cannot be 
mapped onto N2 by any order-preserving or order-reversing transformation. 
It follows of course that if N1 and N2 are non-denumerable subsets of N such 
that N1 - N2 is non-denumerable, then N1 cannot be mapped onto N2, for 
such a mapping would imply that N1 - N2 could be mapped onto a non- 
denumerable subset of N2. In a previous paper8 the authors have shown that 
there exists a non-denumerable subset of the linear continuum which is not 
similar to any proper subset of itself. We note here that the set N just con- 
structed has the following property: If Mll is any non-denumerable subset of 

N. then M is not similar to any proper subset of itself which differs from 1 
in more than a denumerable infinity of points. 

We now return to our main purpose, and prove the following theorem. 

THEOREM 5. 33. The set N of Theorem S. 32 has the following property. 
Let J be any non-denumerable family of intervals on the linearly ordered 

set N such that no two intervals of $ have an end-point in common. Then $ 
contains two comparable intervals and two non-comparable intervals. 

Proof. Assume that every two intervals of J are comparable. Let N, 
denote the set of left-hand end-points and A2 the set of right-hand end-points 
of the intervals of $. If n1' < n1", then n21' < n2', and we obtain an order- 
reversing transformation of N1 into N2. Similarly, if we assume that no two 
intervals of $ are comparable, we obtain an order-preserving transformation 
of N1 into N2. 

UNIVERSITY OF MICHIGAN. 

8 " Concerning similarity transformations of linearly ordered sets," Butletin of the 
American Mathematicat Society, vol. 46 (1940), pp. 322-326. 
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