

Delft University of Technology Faculty EEMCS Mekelweg 4, 2628 CD Delft

> Exam Complex Analysis (wi4243AP) Thursday 30 October 2014; 09:00 - 12:00.

Lecturer: K. P. Hart.

Second reader: H. A. W. M. Kneppers This exam consists of six questions. Marks per question: see margin. Resources allowed: calculator

1. Let  $\alpha$  be a complex number such that Im  $\alpha \neq 0$  and consider the bilinear transformation given by

$$w = \frac{z - \alpha}{z - \overline{\alpha}}$$
.

- (2) a. Show that this transformation maps the real line onto the unit circle.
- (2) b. What is the image of the upper half plane under this transformation?
- (2) c. How does w traverse the unit circle as z traverses the real line in the positive direction?
- (3) d. Now let  $\alpha = \frac{1}{2}i$ . Determine and sketch the image of the (solid) rectangle with corners at -1, 1, 1 + i and -1 + i under the transformation.
- (3) 2. a. Is there an analytic function f whose real part is given by  $u(x,y) = \exp(\frac{y}{x})$ ? Justify your answer.
- (3) b. Determine all analytic functions on the half plane  $\{z : \operatorname{Re} z > 0\}$  that have  $\nu(x,y) = \ln(x^2 + y^2) x^2 + y^2$  as their imaginary part and write these as functions of z.
  - 3. Let f be an analytic function from the unit disc  $D = \{z : |z| \le 1\}$  to itself and let  $\alpha$  be such that  $|\alpha| < 1$ . We consider the Taylor series of f at  $\alpha$ , given by  $\sum_{n} a_n (z \alpha)^n$ .
- (6) a. Use Cauchy's estimate to show that  $|a_n| \leq \frac{1}{(1-|\alpha|)^n}$  for all n.
- (5) b. Improve the estimate in part a by integrating over the unit circle.
- (8) 4. Let a be a real number such that a > 1; evaluate the following integral

$$\int_0^{2\pi} \frac{1}{(\alpha^2 - 2\alpha\cos\theta + 1)^2} d\theta$$

Give all details.

(8) 5. Let a and b be positive real numbers. Evaluate the following integral

$$\int_0^\infty \frac{\sin \alpha x}{x(x^2+b^2)} \, dx$$

Give all details. Hint: A principal value will be involved.

- 6. We consider the many-valued function  $w = (z^2 1)^{-\frac{1}{2}}$ .
- (3) a. Suppose we use the branch of  $z \mapsto z^{\frac{1}{2}}$  that has the positive real axis as a branch cut and that satisfies  $(-1)^{\frac{1}{2}} = i$ . Determine the image of the upper half plane,  $\{z : \text{Im } z > 0\}$ , under this mapping

This problem continues on the next page.

From now on we use the principal branch of  $z\mapsto z^{\frac{1}{2}}$  with the negative real axis as a branch cut.

(3) b. Show that

$$f(z) = \frac{1}{z-1} \left(\frac{z-1}{z+1}\right)^{\frac{1}{2}}$$

defines a branch of our function with branch cut [-1, 1]. What is the value of f(2)?

- (3) c. Determine the first four terms of the Laurent series of this branch in the annulus  $\{z:|z|>1\}$ . Hint:  $\frac{1}{\sqrt{1+x}}=1-\frac{1}{2}x+\frac{3}{8}x^2-\frac{5}{16}x^3+\frac{35}{128}x^4-\frac{65}{256}x^5+\cdots$  if x is real and |x|<1.
- (3) d. Calculate

$$\oint_{S} f(z) dz$$

where S is the square with vertices at  $\pm 5 \pm 5i$ .

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

$$Grade = \frac{Total + 6}{6}$$

and rounded in the standard way.