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A space and a function

There is a compact Hausdorff space, X , that is connected and
an F-space.

It supports a continuous real-valued function, f , that is not
essentially constant.
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Contrasting behaviour of functions

For every continuous function g : X → R and every t in the
interior of the interval g [X ] the interior of g←(t) is nonempty.
(Follows from connected plus F .)

Yet, for f we have: Ωf =
⋃

t int f←(t) is not dense.
(This is not essentially constant.)
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d -independent sets

D, a subset of C (X ), is d-independent if for every nonempty open
set O the nonzero elements in {d � O : d ∈ D} are linearly
independent.
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d -bases

A d-independent set D is a d-basis if for every g ∈ C (X ) there is a
disjoint family O of open sets, with dense union, such that for
every O the restriction g � O is a linear combination of (finitely
many members of) {d � O : d ∈ D}.
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Maximally independent does not mean base

The family {1} is maximally d-independent.
(For every continuous function g : X → R and every t in the
interior of the interval g [X ] the interior of g←(t) is
nonempty.)

Yet, the family {1} is not a d-basis.
(For f we have: Ωf =

⋃
t int f←(t) is not dense.)
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What does our space do then?

No (easy) projection

Using a d-basis that contains 1 one can project C (X ) onto the
subspace of essentially constant functions, in case X is extremally
disconnected.

Unknown (but wanted) for basically disconnected spaces.
Apparently even more difficult for F -spaces.
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A rough picture

Think of X as the following subspace of S :(
[0, 1]× {0}

)
∪

(
C × [0, 1]

)
(C is the Cantor set)

Think of f as resulting from the map from C onto [0, 1] and
constant on complementary intervals in bottom line.
This ‘X ’ is not an F -space . . .
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A particular β

Let S be the unit square [0, 1]2

Let S = ω × S

Define p : S → [0, 1] by p(n, x , y) = x

and extend to βp : βS → [0, 1].
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A component of βS and a function

βπ : βS → βω is the extension of π : 〈n, x , y〉 7→ n.

Pick one u ∈ βω \ ω.

Let Su = βπ←(u)

Su is a compact connected F -space

βp � Su is continuous

but Su and βp are not good enough . . .
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Get rid of interiors

Set Y0 = Su and q0 = βp � Y0 and recursively

Yα+1 = Yα \
⋃

t intα q←α (t) and qα+1 = qα � Yα+1

(intα: interior in Yα)

Yα =
⋂

β<α Yβ and qα = q0 � Yα if α is a limit

There is a first (limit) δ < c+ where Yδ = Yδ+1, meaning that
intδ q←δ (t) = ∅ for all t
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Tie everything together

Sadly, Yδ is not connected

However, take the bottom line of Su:

Bu = Su ∩ cl
(
ω × [0, 1]× {0}

)
.
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Here are X and f

Finally then

X = Bu ∪ Yδ

f = βp � X

X is connected and F
int f←(t) ⊆ Bu for all t
All components of Yδ meet the top line, so Ωf ⊆ Bu is not dense
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Website: fa.its.tudelft.nl/~hart

Y. A. Abramovich and A. K. Kitover.
d-Independence and d-bases, Positivity, 7 (2003), 95–97.

K. P. Hart.
A connected F -space, Positivity, 10 (2006), 607–611.

K. P. Hart A connected F -space


	The main result
	Why?
	d-independent sets and d-bases
	What does our space do then?

	The construction
	Intuition
	Starting point
	Thin out Su
	Create X

	Sources

