A connected *F*-space Non impeditus ab ulla scientia

K. P. Hart

Faculty EEMCS TU Delft

Oxford, 10 August, 2006: 14:30-14:55

Outline

- 2 Why?
 - *d*-independent sets and *d*-bases
 - What does our space do then?

3 The construction

- Intuition
- Starting point
- Thin out S_u
- Create X

A space and a function

• There is a compact Hausdorff space, X, that is *connected* and an *F*-space.

A space and a function

- There is a compact Hausdorff space, X, that is *connected* and an *F*-space.
- It supports a continuous real-valued function, *f*, that is not *essentially constant*.

Contrasting behaviour of functions

For every continuous function g : X → ℝ and every t in the interior of the *interval* g[X] the interior of g[←](t) is nonempty. (Follows from connected plus F.)

Contrasting behaviour of functions

- For every continuous function g : X → R and every t in the interior of the *interval* g[X] the interior of g[←](t) is nonempty. (Follows from connected plus F.)
- Yet, for f we have: Ω_f = U_t int f[←](t) is not dense. (This is not essentially constant.)

d-independent sets and *d*-bases What does our space do then?

Outline

2 Why?

• *d*-independent sets and *d*-bases

• What does our space do then?

3 The construction

- Intuition
- Starting point
- Thin out S_u
- Create X

d-independent sets and *d*-bases What does our space do then?

d-independent sets

D, a subset of C(X), is *d*-independent if for every nonempty open set *O* the nonzero elements in $\{d \mid O : d \in D\}$ are linearly independent.

d-independent sets and *d*-bases What does our space do then?

d-bases

A *d*-independent set *D* is a *d*-basis if for every $g \in C(X)$ there is a disjoint family \mathcal{O} of open sets, with dense union, such that for every *O* the restriction $g \upharpoonright O$ is a linear combination of (finitely many members of) $\{d \upharpoonright O : d \in D\}$.

d-independent sets and *d*-bases What does our space do then?

Outline

2 Why?

- *d*-independent sets and *d*-bases
- What does our space do then?

3 The construction

- Intuition
- Starting point
- Thin out S_u
- Create X

/□ ▶ < 글 ▶ < 글

d-independent sets and *d*-bases What does our space do then?

Maximally independent does not mean base

The family {1} is maximally *d*-independent.
 (For every continuous function g : X → ℝ and every t in the interior of the *interval* g[X] the interior of g[←](t) is nonempty.)

d-independent sets and *d*-bases What does our space do then?

Maximally independent does not mean base

- The family {1} is maximally *d*-independent.
 (For every continuous function g : X → ℝ and every t in the interior of the *interval* g[X] the interior of g[←](t) is nonempty.)
- Yet, the family {1} is not a *d*-basis.
 (For *f* we have: Ω_f = ⋃_t int f[←](t) is not dense.)

d-independent sets and *d*-bases What does our space do then?

No (easy) projection

Using a *d*-basis that contains 1 one can project C(X) onto the subspace of essentially constant functions, in case X is extremally disconnected.

d-independent sets and *d*-bases What does our space do then?

No (easy) projection

Using a *d*-basis that contains 1 one can project C(X) onto the subspace of essentially constant functions, in case X is extremally disconnected.

Unknown (but wanted) for basically disconnected spaces.

d-independent sets and *d*-bases What does our space do then?

No (easy) projection

Using a *d*-basis that contains 1 one can project C(X) onto the subspace of essentially constant functions, in case X is extremally disconnected.

Unknown (but wanted) for basically disconnected spaces.

Apparently even more difficult for *F*-spaces.

Intuition Starting point Thin out S_u Create X

Outline

2 Why?

- *d*-independent sets and *d*-bases
- What does our space do then?

3 The construction

Intuition

- Starting point
- Thin out S_u
- Create X

The main result Why? Starting p The construction Sources Create X

A rough picture

Think of X as the following subspace of S:

 $\big([0,1]\times\{0\}\big)\cup\big({\it C}\times[0,1]\big)$

(*C* is *the* Cantor set)

The main result Why? Starting The construction Sources Create X

Think of X as the following subspace of S:

 $\big([0,1]\times\{0\}\big)\cup\big(\mathit{C}\times[0,1]\big)$

(*C* is *the* Cantor set)

Think of f as resulting from the map from C onto [0,1] and constant on complementary intervals in bottom line.

The main result Why? Starting The construction Sources Create X

A rough picture

Think of X as the following subspace of S:

```
\big([0,1]\times\{0\}\big)\cup\big({\it C}\times[0,1]\big)
```

(*C* is *the* Cantor set) Think of *f* as resulting from *the* map from *C* onto [0, 1] and constant on complementary intervals in bottom line. This '*X*' is not an *F*-space ...

Intuition Starting point Thin out S_u Create X

Outline

2 Why?

- *d*-independent sets and *d*-bases
- What does our space do then?

3 The construction

- Intuition
- Starting point
- Thin out S_u
- Create X

The main result Untu Why? Star The construction This Sources Creater

Intuition Starting point Thin out S_u Create X

A particular β

• Let S be the unit square $[0,1]^2$

The main result Intu Why? Star The construction Thi Sources Cre

Intuition Starting point Thin out S_u Create X

A particular β

- Let S be the unit square $[0,1]^2$
- Let $\mathbb{S} = \omega \times S$

- 4 同 6 4 日 6 4 日 6

The main result Intui Why? Start The construction Thin Sources Creat

Intuition Starting point Thin out S_u Create X

A particular β

- Let S be the unit square $[0,1]^2$
- Let $\mathbb{S} = \omega \times S$
- Define $p: \mathbb{S} \to [0,1]$ by p(n,x,y) = x

(日)

The main result Intu Why? Star The construction Thi Sources Cre

Intuition Starting point Thin out S_u Create X

A particular β

- Let S be the unit square $[0,1]^2$
- Let $\mathbb{S} = \omega \times S$
- Define $p: \mathbb{S} \to [0,1]$ by p(n,x,y) = x
- and extend to $\beta p : \beta \mathbb{S} \rightarrow [0, 1].$

Intuition Starting point Thin out S_u Create X

A component of βS and a function

• $\beta \pi : \beta \mathbb{S} \to \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.

(日)

Intuition Starting point Thin out S_u Create X

A component of $\beta \mathbb{S}$ and a function

- $\beta \pi : \beta \mathbb{S} \to \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.
- Pick one $u \in \beta \omega \setminus \omega$.

Intuition Starting point Thin out S_u Create X

A component of $\beta \mathbb{S}$ and a function

- $\beta \pi : \beta \mathbb{S} \to \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.
- Pick one $u \in \beta \omega \setminus \omega$.
- Let $S_u = \beta \pi^{\leftarrow}(u)$

(4回) (4回) (4回)

The main result Int Why? St The construction Th Sources Cr

Intuition Starting point Thin out S_u Create X

A component of $\beta \mathbb{S}$ and a function

- $\beta \pi : \beta \mathbb{S} \to \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.
- Pick one $u \in \beta \omega \setminus \omega$.
- Let $S_u = \beta \pi^{\leftarrow}(u)$
- S_u is a compact connected F-space

The main result In Why? St The construction Th Sources Cr

Intuition Starting point Thin out S_u Create X

A component of $\beta \mathbb{S}$ and a function

- $\beta \pi : \beta \mathbb{S} \to \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.
- Pick one $u \in \beta \omega \setminus \omega$.
- Let $S_u = \beta \pi^{\leftarrow}(u)$
- S_u is a compact connected F-space
- $\beta p \upharpoonright S_u$ is continuous

The main result In Why? St The construction Th Sources Cr

Intuition Starting point Thin out S_u Create X

A component of $\beta \mathbb{S}$ and a function

- $\beta \pi : \beta \mathbb{S} \to \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.
- Pick one $u \in \beta \omega \setminus \omega$.
- Let $S_u = \beta \pi^{\leftarrow}(u)$
- S_u is a compact connected F-space
- $\beta p \upharpoonright S_u$ is continuous

but S_u and βp are not good enough ...

Intuition Starting poin Thin out S_u Create X

Outline

2 Why?

- *d*-independent sets and *d*-bases
- What does our space do then?

3 The construction

- Intuition
- Starting point
- Thin out S_u
- Create X

The main result Why? Starting poir The construction Sources Create X

Get rid of interiors

Set $Y_0 = S_u$ and $q_0 = \beta p \upharpoonright Y_0$ and recursively

(日) (同) (三) (三)

K. P. Hart A connected *F*-space

The main result Intuitio Why? Startin The construction Thin o Sources Create

Get rid of interiors

Set
$$Y_0 = S_u$$
 and $q_0 = \beta p \upharpoonright Y_0$ and recursively

•
$$Y_{\alpha+1} = Y_{\alpha} \setminus \bigcup_{t} \operatorname{int}_{\alpha} q_{\alpha}^{\leftarrow}(t)$$
 and $q_{\alpha+1} = q_{\alpha} \upharpoonright Y_{\alpha+1}$
(int _{α} : interior in Y_{α})

The main result Why? Starting poi The construction Sources Create X

Get rid of interiors

Set $Y_0 = S_u$ and $q_0 = \beta p \upharpoonright Y_0$ and recursively

• $Y_{\alpha+1} = Y_{\alpha} \setminus \bigcup_t \operatorname{int}_{\alpha} q_{\alpha}^{\leftarrow}(t)$ and $q_{\alpha+1} = q_{\alpha} \upharpoonright Y_{\alpha+1}$ (int_{α}: interior in Y_{α})

•
$$Y_{lpha}=igcap_{eta and $q_{lpha}=q_{0}\restriction Y_{lpha}$ if $lpha$ is a limit$$

The main result Intui Why? Star The construction Thir Sources Crea

Starting poin Thin out S_u Create X

Get rid of interiors

Set
$$Y_0 = S_u$$
 and $q_0 = \beta p \upharpoonright Y_0$ and recursively

•
$$Y_{\alpha+1} = Y_{\alpha} \setminus \bigcup_{t} \operatorname{int}_{\alpha} q_{\alpha}^{\leftarrow}(t)$$
 and $q_{\alpha+1} = q_{\alpha} \upharpoonright Y_{\alpha+1}$
(int _{α} : interior in Y_{α})

•
$$Y_{\alpha} = \bigcap_{\beta < \alpha} Y_{\beta}$$
 and $q_{\alpha} = q_0 \upharpoonright Y_{\alpha}$ if α is a limit

There is a first (limit) $\delta < \mathfrak{c}^+$ where $Y_{\delta} = Y_{\delta+1}$, meaning that $\operatorname{int}_{\delta} q_{\delta}^{\leftarrow}(t) = \emptyset$ for all t

The main result Why? Starting The construction Sources Create X

Outline

2 Why?

- *d*-independent sets and *d*-bases
- What does our space do then?

3 The construction

- Intuition
- Starting point
- Thin out S_u
- Create X

(目) ・ (ヨ) ・ (ヨ)

Intuition Starting point Thin out S_u Create X

Tie everything together

Sadly, Y_{δ} is not connected

< ロ > < 同 > < 回 > < 回 >

Intuition Starting point Thin out S_u Create X

Tie everything together

Sadly, Y_{δ} is not connected However, take the *bottom line* of S_u :

Intuition Starting point Thin out S_u Create X

Tie everything together

Sadly, Y_{δ} is not connected However, take the *bottom line* of S_u :

$$B_u = S_u \cap \mathsf{cl}(\omega \times [0,1] \times \{0\}).$$

The main result Why? Starting p The construction Sources Create X

Here are X and f

Finally then

- 4 回 > - 4 回 > - 4 回 >

The main result Intuition Why? Starting poin The construction Thin out Su Sources Create X

Here are X and f

Finally then

• $X = B_u \cup Y_\delta$

- 4 回 > - 4 回 > - 4 回 >

The main result Why? Starting point The construction Sources Create X

Here are X and f

Finally then

•
$$X = B_u \cup Y_\delta$$

•
$$f = \beta p \upharpoonright X$$

- 4 回 > - 4 回 > - 4 回 >

The main result Intuition Why? Starting point The construction Thin out Su Sources Create X

Here are X and f

Finally then

- $X = B_u \cup Y_\delta$
- $f = \beta p \upharpoonright X$
- X is connected and F

The main result Intuition Why? Starting point The construction Thin out S_u Sources Create X

Here are X and f

Finally then

- $X = B_u \cup Y_\delta$
- $f = \beta p \upharpoonright X$
- X is connected and F int $f^{\leftarrow}(t) \subseteq B_u$ for all t

- 4 同 6 4 三 6 4 三 6

 The main result
 Intuition

 Why?
 Starting point

 The construction
 Thin out Su

 Sources
 Create X

Here are X and f

Finally then

- $X = B_u \cup Y_\delta$
- $f = \beta p \upharpoonright X$
- X is connected and F int $f^{\leftarrow}(t) \subseteq B_u$ for all t All components of Y_{δ} meet the top line, so $\Omega_f \subseteq B_u$ is not dense

Light reading

Website: fa.its.tudelft.nl/~hart

Y. A. Abramovich and A. K. Kitover. *d-Independence and d-bases*, Positivity, **7** (2003), 95–97.

K. P. Hart.

A connected F-space, Positivity, 10 (2006), 607-611.

