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What does ‘do
∫

e−x2

dx ’ mean?

To ‘do’ an (indefinite) integral
∫

f (x) dx , means to find a formula,
F (x), however nasty, such that F ′ = f .

What is a formula?

Can we formalize that?

How do we then prove that
∫

e−x2
dx cannot be done?
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What is a formula?

We recognise a formula when we see one.
E.g., Maple’s answer to

∫
e−x2

dx does not count, because

1

2

√
π erf(x)

is simply an abbreviation for ‘a primitive function of e−x2
’

(see Maple’s help facility).
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What is a formula?

A formula is an expression built up from elementary functions
using only

addition, multiplication, . . .

other algebra: roots ’n such

composition of functions

Elementary functions: ex , sin x , x , log x , . . .
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Can we formalize that?

Yes.

Start with C(z) the field of (complex) rational functions and
add, one at a time,

algebraic elements

logarithms

exponentials
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How do we then prove that
∫

e−x2

dx cannot be done?

We do not look at all functions that we get in this way and check
that their derivatives are not e−x2

.

We do establish an algebraic condition for a function to have a
primitive function that is expressible in terms of elementary
functions, as described above.

We then show that e−x2
does not satisfy this condition.
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Differential fields
Elementary extensions
The abstract formulation

Definition

A differential field is a field F with a derivation, that is, a map
D : F → F that satisfies

D(a + b) = D(a) + D(b)

D(ab) = D(a)b + aD(b)
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Differential fields
Elementary extensions
The abstract formulation

Main example(s)

The rational (meromorphic) functions on (some domain in) C,
with D(f ) = f ′ (of course).
We write a′ = D(a) in any differential field.
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Differential fields
Elementary extensions
The abstract formulation

Easy properties

Exercises

(an)′ = nan−1a′

(a/b)′ = (a′b− ab′)/b2 (Hint: f = a/b solve (bf )′ = a′ for f ′)

1′ = 0 (Hint: 1′ = (12)′)

The ‘constants’, i.e., the c ∈ F with c ′ = 0 form a subfield
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Exponentials and logarithms

a is an exponential of b if a′ = b′a

b is a logarithm of a if b′ = a′/a

so: a is an exponential of b iff b is a logarithm of a.

‘logarithmic derivative’:

(ambn)′

ambn
= m

a′

a
+ n

b′

b

Much of Calculus is actually Algebra . . .
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Differential fields
Elementary extensions
The abstract formulation

Definition

A simple elementary extension of a differential field F is a field
extension F (t) where t is

algebraic over F ,

an exponential of some b ∈ F , or

a logarithm of some a ∈ F

G is an elementary extension of F is G = F (t1, t2, . . . , tN), where
each time Fi (ti+1) is a simple elementary extension of
Fi = F (t1, . . . , ti ).
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Differential fields
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Elementary integrals

We say that a ∈ F has an elementary integral if there is an
elementary extension G of F with an element t such that t ′ = a.
The Question: characterize (of give necessary conditions for) this.
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A characterization

Theorem (Rosenlicht)

Let F be a differential field of characteristic zero and a ∈ F . If a
has an elementary integral in some extension with the same
field of constants then there are v ∈ F , constants c1, . . . , cn ∈ F
and elements u1, . . . un ∈ F such that

a = v ′ + c1
u′1
u1

+ · · ·+ cn
u′n
un

.

The converse is also true: a = (v + c1 log u1 + · · ·+ cn log un)
′.
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Comment on the constants

Consider 1
1+x2 ∈ R(x)

an elementary integral is

1

2i
ln

(
x − i

x + i

)
,

using a larger field of constants: C
there are no v , ui and ci in R(x) as in Rosenlicht’s theorem.
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Liouville’s criterionR
e−z2

dz at last
Further examples

When can we do
∫

f (z)eg(z) dz?

Let f and g be rational functions over C, with f nonzero and g
non-constant.
feg belongs to the field F = C (z , t), where t = eg (and t ′ = gt).
F is a transcendental extension of C(z).
If feg has an elementary integral then in F we must have

ft = v ′ + c1
u′1
u1

+ · · ·+ cn
u′n
un

with c1, . . . , cn ∈ C and v , u1, . . . , un ∈ C(z , t).
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Liouville’s criterionR
e−z2

dz at last
Further examples

The criterion

Using algebraic considerations one can then get the following
criterion.

Theorem (Liouville)

The function feg has an elementary integral iff there is a rational
function q ∈ C(z) such that

f = q′ + qg ′

the integral then is qeg (of course).
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Liouville’s criterionR
e−z2

dz at last
Further examples∫

e−z2

dz

In this case f (z) = 1 and g(z) = −z2.
Is there a q such that 1 = q′(z)− 2zq(z)?
Assume q has a pole β and look at principal part of Laurent series

m∑
i=1

αi

(z − β)i

Its contribution to the right-hand side should be zero.
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Liouville’s criterionR
e−z2

dz at last
Further examples∫

e−z2

dz

We get, at the pole β:

0 =
m∑

i=1

(
− iαi

(z − β)i+1
− 2zαi

(z − β)i

)
Successively: α1 = 0, . . . , αm = 0.
So, q is a polynomial, but 1 = q′(z)− 2zq(z) will give a mismatch
of degrees.
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Liouville’s criterionR
e−z2

dz at last
Further examples∫

ez

z dz

Here f (z) = 1/z and g(z) = z , so we need q(z) such that

1

z
= q′(z) + q(z)

Again, via partial fractions: no such q exists.∫
eez

dz =
∫

eu

u du =
∫

1
ln v dv

(substitutions: u = ez and u = ln v)
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Liouville’s criterionR
e−z2

dz at last
Further examples∫

sin z
z dz

In the complex case this is just
∫

ez−e−z

z dz .
Let t = ez and work in C(z , t); adapt the proof of the main
theorem to reduce this to 1

z = q′(z) + q(z) with q ∈ C(z), still
impossible.
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Light reading

These slides at: fa.its.tudelft.nl/~hart

J. Liouville.
Mémoire sur les transcendents elliptiques considérées comme
functions de leur amplitudes, Journal d’École Royale
Polytechnique (1834)

M. Rosenlicht,
Integration in finite terms, American Mathematical Monthly,
79 (1972), 963–972.
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A useful lemma, I

Lemma

Let F be a differential field, F (t) a differential extension with the
same constants, with t transcendental over F and such that t ′ ∈ F .
Let f (t) ∈ F [t] be a polynomial of positive degree.
Then f (t)′ is a polynomial in F [t] of the same degree as f (t) or
one less, depending on whether the leading coefficient of f (t) is
not, or is, a constant.
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A useful lemma, II

Lemma

Let F be a differential field, F (t) a differential extension with the
same constants, with t transcendental over F and such that
t ′/t ∈ F . Let f (t) ∈ F [t] be a polynomial of positive degree.

for nonzero a ∈ F and nonzero n ∈ Z we have (atn)′ = htn

for some nonzero h ∈ F ;

if f (t) ∈ F [t] then f (t)′ is of the same degree as f (t) and
f (t)′ is a multiple of f (t) iff f (t) is a monomial (atn).
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Write F = C(z) and t = ez .
If

∫
sin z
z dz were elementary then

t2 − 1

tz
= v ′ + c1

u′1
u1

+ · · ·+ cn
u′n
un

with c1, . . . , cn ∈ C and v , u1, . . . , un ∈ F (t).
By logarithmic differentiation: the ui ’s not in F are monic and
irreducible in F [t].
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If
∫

sin z
z dz were elementary then

t2 − 1

tz
= v ′ + c1

u′1
u1

+ · · ·+ cn
u′n
un

with c1, . . . , cn ∈ C and v , u1, . . . , un ∈ F (t).
By the lemma just one ui is not in F and this ui is t.

So c1
u′1
u1

+ · · ·+ cn
u′n
un

is in F .
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Finally, in
t2 − 1

tz
= v ′ + c1

u′1
u1

+ · · ·+ cn
u′n
un

we must have v =
∑

bj t
j and from this: 1

z = b′1 + b1.
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