Why can't we do $\int e^{-x^2} dx$? Non impeditus ab ulla scientia

K. P. Hart

Faculty EEMCS TU Delft

Delft, 10 November, 2006: 16:00-17:00

Outline

- 2 Formalizing the question
 - Differential fields
 - Elementary extensions
 - The abstract formulation

3 Applications

- Liouville's criterion
- $\int e^{-z^2} dz$ at last
- Further examples

4 Sources

What does 'do $\int e^{-x^2} dx$ ' mean?

To 'do' an (indefinite) integral $\int f(x) dx$, means to find a formula, F(x), however nasty, such that F' = f.

- What is a formula?
- Can we formalize that?
- How do we then prove that $\int e^{-x^2} dx$ cannot be done?

What is a formula?

We recognise a formula when we see one. E.g., Maple's answer to $\int e^{-x^2} dx$ does not count, because

$$\frac{1}{2}\sqrt{\pi}\operatorname{erf}(x)$$

is simply an abbreviation for 'a primitive function of e^{-x^2} , (see Maple's help facility).

What is a formula?

A formula is an expression built up from elementary functions using only

- addition, multiplication, ...
- other algebra: roots 'n such
- composition of functions

Elementary functions: e^x , $\sin x$, x, $\log x$, ...

Can we formalize that?

Yes.

- Start with $\mathbb{C}(z)$ the *field* of (complex) rational functions and add, one at a time,
- algebraic elements
- logarithms
- exponentials

How do we then prove that $\int e^{-x^2} dx$ cannot be done?

We do not look at all functions that we get in this way and check that their derivatives are not e^{-x^2} .

We do establish an *algebraic* condition for a function to have a primitive function that is expressible in terms of elementary functions, as described above.

We then show that e^{-x^2} does not satisfy this condition.

Differential fields Elementary extensions The abstract formulation

Definition

A differential field is a field F with a *derivation*, that is, a map $D:F\to F$ that satisfies

- D(a+b) = D(a) + D(b)
- D(ab) = D(a)b + aD(b)

Differential fields Elementary extensions The abstract formulation

Main example(s)

The rational (meromorphic) functions on (some domain in) \mathbb{C} , with D(f) = f' (of course). We write a' = D(a) in any differential field.

Differential fields Elementary extensions The abstract formulation

Easy properties

Exercises

• The 'constants', i.e., the $c \in F$ with c' = 0 form a subfield

Differential fields Elementary extensions The abstract formulation

Exponentials and logarithms

- a is an exponential of b if a' = b'a
- b is a logarithm of a if b' = a'/a
- so: a is an exponential of b iff b is a logarithm of a.
- 'logarithmic derivative':

$$\frac{(a^m b^n)'}{a^m b^n} = m\frac{a'}{a} + n\frac{b'}{b}$$

Much of Calculus is actually Algebra ...

Differential fields Elementary extensions The abstract formulation

Definition

A simple elementary extension of a differential field F is a field extension F(t) where t is

- algebraic over F,
- an exponential of some $b \in F$, or
- a logarithm of some $a \in F$

G is an elementary extension of *F* is $G = F(t_1, t_2, ..., t_N)$, where each time $F_i(t_{i+1})$ is a simple elementary extension of $F_i = F(t_1, ..., t_i)$.

Differential fields Elementary extensions The abstract formulation

Elementary integrals

We say that $a \in F$ has an *elementary integral* if there is an elementary extension G of F with an element t such that t' = a. The Question: characterize (of give necessary conditions for) this.

Differential fields Elementary extensions The abstract formulation

A characterization

Theorem (Rosenlicht)

Let F be a differential field of characteristic zero and $a \in F$. If a has an elementary integral in some extension with the same field of constants then there are $v \in F$, constants $c_1, \ldots, c_n \in F$ and elements $u_1, \ldots, u_n \in F$ such that

$$a = v' + c_1 \frac{u'_1}{u_1} + \cdots + c_n \frac{u'_n}{u_n}.$$

The converse is also true: $a = (v + c_1 \log u_1 + \cdots + c_n \log u_n)'$.

Delft University of Technology

Differential fields Elementary extensions The abstract formulation

Comment on the constants

Consider $\frac{1}{1+x^2} \in \mathbb{R}(x)$ • an elementary integral is

$$\frac{1}{2i}\ln\left(\frac{x-i}{x+i}\right),\,$$

using a *larger* field of constants: \mathbb{C}

• there are *no* v, u_i and c_i in $\mathbb{R}(x)$ as in Rosenlicht's theorem.

Liouville's criterion $\int e^{-z^2} dz$ at last Further examples

When can we do $\int f(z)e^{g(z)} dz$?

Let f and g be rational functions over \mathbb{C} , with f nonzero and g non-constant.

fe^g belongs to the field F = C(z, t), where $t = e^g$ (and t' = gt). F is a transcendental extension of $\mathbb{C}(z)$.

If fe^g has an elementary integral then in F we must have

$$ft = v' + c_1 \frac{u'_1}{u_1} + \dots + c_n \frac{u'_n}{u_n}$$

with $c_1, \ldots, c_n \in \mathbb{C}$ and $v, u_1, \ldots, u_n \in \mathbb{C}(z, t)$.

Liouville's criterion $\int e^{-z^2} dz$ at last Further examples

The criterion

Using *algebraic* considerations one can then get the following criterion.

Theorem (Liouville)

The function fe^g has an elementary integral iff there is a rational function $q \in \mathbb{C}(z)$ such that

$$f = q' + qg'$$

the integral then is qe^g (of course).

Liouville's criterion $\int e^{-z} dz$ at last Further examples

In this case f(z) = 1 and $g(z) = -z^2$. Is there a q such that 1 = q'(z) - 2zq(z)? Assume q has a pole β and look at principal part of Laurent series

$$\sum_{i=1}^m \frac{\alpha_i}{(z-\beta)^i}$$

Its contribution to the right-hand side should be zero.

Liouville's criterion ∫ e^{−z°} dz at last Further examples

We get, at the pole β :

$$0 = \sum_{i=1}^{m} \left(-\frac{i\alpha_i}{(z-\beta)^{i+1}} - \frac{2z\alpha_i}{(z-\beta)^i} \right)$$

Successively: $\alpha_1 = 0, \ldots, \alpha_m = 0$. So, q is a polynomial, but 1 = q'(z) - 2zq(z) will give a mismatch of degrees.

Liouville's criterion $\int e^{-z^2} dz$ at last Further examples

Here
$$f(z) = 1/z$$
 and $g(z) = z$, so we need $q(z)$ such that

$$\frac{1}{z} = q'(z) + q(z)$$

Again, via partial fractions: no such q exists. $\int e^{e^{z}} dz = \int \frac{e^{u}}{u} du = \int \frac{1}{\ln v} dv$ (substitutions: $u = e^{z}$ and $u = \ln v$)

Liouville's criterion $\int e^{-z^2} dz$ at last Further examples

In the complex case this is just $\int \frac{e^z - e^{-z}}{z} dz$. Let $t = e^z$ and work in $\mathbb{C}(z, t)$; adapt the proof of the main theorem to reduce this to $\frac{1}{z} = q'(z) + q(z)$ with $q \in \mathbb{C}(z)$, still impossible.

Light reading

These slides at: fa.its.tudelft.nl/~hart

J. Liouville.

Mémoire sur les transcendents elliptiques considérées comme functions de leur amplitudes, Journal d'École Royale Polytechnique (1834)

M. Rosenlicht,

Integration in finite terms, American Mathematical Monthly, **79** (1972), 963–972.

A useful lemma, I

Lemma

Let F be a differential field, F(t) a differential extension with the same constants, with t transcendental over F and such that $t' \in F$. Let $f(t) \in F[t]$ be a polynomial of positive degree. Then f(t)' is a polynomial in F[t] of the same degree as f(t) or one less, depending on whether the leading coefficient of f(t) is not, or is, a constant.

A useful lemma, II

Lemma

Let F be a differential field, F(t) a differential extension with the same constants, with t transcendental over F and such that $t'/t \in F$. Let $f(t) \in F[t]$ be a polynomial of positive degree.

- for nonzero a ∈ F and nonzero n ∈ Z we have (atⁿ)' = htⁿ for some nonzero h ∈ F;
- if f(t) ∈ F[t] then f(t)' is of the same degree as f(t) and f(t)' is a multiple of f(t) iff f(t) is a monomial (atⁿ).

Write
$$F = \mathbb{C}(z)$$
 and $t = e^{z}$.
If $\int \frac{\sin z}{z} dz$ were elementary then

$$\frac{t^2 - 1}{tz} = v' + c_1 \frac{u'_1}{u_1} + \dots + c_n \frac{u'_n}{u_n}$$

with $c_1, \ldots, c_n \in \mathbb{C}$ and $v, u_1, \ldots, u_n \in F(t)$. By logarithmic differentiation: the u_i 's not in F are monic and irreducible in F[t].

If
$$\int \frac{\sin z}{z} dz$$
 were elementary then

$$\frac{t^2 - 1}{tz} = v' + c_1 \frac{u'_1}{u_1} + \dots + c_n \frac{u'_n}{u_n}$$

with $c_1, \ldots, c_n \in \mathbb{C}$ and $v, u_1, \ldots, u_n \in F(t)$. By the lemma just one u_i is not in F and this u_i is t. So $c_1 \frac{u'_1}{u_1} + \cdots + c_n \frac{u'_n}{u_n}$ is in F.

Finally, in

$$\frac{t^2 - 1}{tz} = v' + c_1 \frac{u'_1}{u_1} + \dots + c_n \frac{u'_n}{u_n}$$

we must have $v = \sum b_j t^j$ and from this: $\frac{1}{z} = b'_1 + b_1$.

