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Covering dimension

Caveat: all spaces are (at least) normal

Definition

dim X 6 n if every finite open cover has a (finite) open refinement
of order at most n + 1
(i.e., every n + 2-element subfamily has an empty intersection).
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Large inductive dimension

Definition

Ind X 6 n if between every two disjoint closed sets A and B there
is a partition L that satisfies Ind L 6 n − 1.

The starting point: IndX 6 −1 iff X = ∅.

L is a partition between A and B means: there are closed sets F
and G that cover X and satisfy: F ∩ B = ∅, G ∩ A = ∅ and
F ∩ G = L.
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Definition

Dg X 6 n between every two disjoint closed sets A and B there is
a cut C that satisfies Dg L 6 n − 1.

The starting point: Dg X 6 −1 iff X = ∅.

C is a cut between A and B means: C ∩ K 6= ∅ whenever K is a
subcontinuum of X that meets both A and B.
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(In)equalities

For σ-compact metric X : dim X

= IndX = Dg X

The first equality is classical and holds for all metric X

the second is fairly recent (1999).

There is for each n a locally connected Polish Xn with
Dg X = 1 and dim Xn = n (Fedorchuk, van Mill)
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More inequalities

Dg X 6 Ind X (each partition is a cut)

dim X 6 Ind X (Vedenissof)

dim X 6 Dg X (Fedorchuk)

We will reprove the last two inequalities.
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Definition

A structure (group, field, lattice) A is an elementary substructure
of a similar structure B if

every equation with parameters from A
that has a solution in B already has a solution in A.

These are (apparently) very rich substructures
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Examples

the field Q is not an elementary substructure of the field R

;
consider x · x = 2

the ordered set Z is not an elementary substructure of the
ordered set Q; consider 0 < x < 1

the field A of real algebraic numbers is an elementary
substructure of the field R
the ordered set Q is an elementary substructure of the ordered
set R
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How to make them

There are plenty of elementary substructures.

Theorem (Löwenheim-Skolem)

Assume our language of discourse is countable. Let B be a
structure suitable for that language and let X ⊆ B then there is an
elementary substructure A of B such that X ⊆ A and
|A| 6 |X |+ ℵ0.
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Covering dimension

Here is Hemmingsen’s characterization of dim X 6 n

reformulated
in terms of closed sets and cast as a formula, δn, in the language
of lattices

(∀x1)(∀x2) · · · (∀xn+2)(∃y1)(∃y2) · · · (∃yn+2)[
(x1 ∩ x2 ∩ · · · ∩ xn+2 = 0) →(

(x1 6 y1) ∧ (x2 6 y2) ∧ · · · ∧ (xn+2 6 yn+2)

∧ (y1 ∩ y2 ∩ · · · ∩ yn+2 = 0)

∧ (y1 ∪ y2 ∪ · · · ∪ yn+2 = 1)
)]

.

K. P. Hart Elementarity and dimension



Dimensions
Elementarity

Proofs using elementarity
Sources

Formulas
Bases
To work

Covering dimension

Here is Hemmingsen’s characterization of dim X 6 n reformulated
in terms of closed sets

and cast as a formula, δn, in the language
of lattices

(∀x1)(∀x2) · · · (∀xn+2)(∃y1)(∃y2) · · · (∃yn+2)[
(x1 ∩ x2 ∩ · · · ∩ xn+2 = 0) →(

(x1 6 y1) ∧ (x2 6 y2) ∧ · · · ∧ (xn+2 6 yn+2)

∧ (y1 ∩ y2 ∩ · · · ∩ yn+2 = 0)

∧ (y1 ∪ y2 ∪ · · · ∪ yn+2 = 1)
)]

.

K. P. Hart Elementarity and dimension



Dimensions
Elementarity

Proofs using elementarity
Sources

Formulas
Bases
To work

Covering dimension

Here is Hemmingsen’s characterization of dim X 6 n reformulated
in terms of closed sets and cast as a formula, δn, in the language
of lattices

(∀x1)(∀x2) · · · (∀xn+2)(∃y1)(∃y2) · · · (∃yn+2)[
(x1 ∩ x2 ∩ · · · ∩ xn+2 = 0) →(

(x1 6 y1) ∧ (x2 6 y2) ∧ · · · ∧ (xn+2 6 yn+2)

∧ (y1 ∩ y2 ∩ · · · ∩ yn+2 = 0)

∧ (y1 ∪ y2 ∪ · · · ∪ yn+2 = 1)
)]

.

K. P. Hart Elementarity and dimension



Dimensions
Elementarity

Proofs using elementarity
Sources

Formulas
Bases
To work

Covering dimension

Here is Hemmingsen’s characterization of dim X 6 n reformulated
in terms of closed sets and cast as a formula, δn, in the language
of lattices

(∀x1)(∀x2) · · · (∀xn+2)(∃y1)(∃y2) · · · (∃yn+2)[
(x1 ∩ x2 ∩ · · · ∩ xn+2 = 0) →(

(x1 6 y1) ∧ (x2 6 y2) ∧ · · · ∧ (xn+2 6 yn+2)

∧ (y1 ∩ y2 ∩ · · · ∩ yn+2 = 0)

∧ (y1 ∪ y2 ∪ · · · ∪ yn+2 = 1)
)]

.

K. P. Hart Elementarity and dimension



Dimensions
Elementarity

Proofs using elementarity
Sources

Formulas
Bases
To work

Large inductive dimension

We can express IndX 6 n in a similar fashion, the formula In(a)
becomes (recursively)

(∀x)(∀y)(∃u)[
(
(
(x 6 a)∧(y 6 a)∧(x∩y = 0)

)
→

(
partn(u, x , y , a)∧In−1(u)

)]
where partn(u, x , y , a) says that u is a partition between x and y in
the (sub)space a:

(∃f )(∃g)
(
(x ∩ f = 0) ∧ (y ∩ g = 0) ∧ (f ∪ g = a) ∧ (f ∩ g = u)

)
.

We start with I−1(a), which denotes a = 0
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Here we have the recursive definition of a formula ∆n(a):

(∀x)(∀y)(∃u)[(
(x 6 a)∧(y 6 a)∧(x∩y = 0)

)
→

(
cut(u, x , y , a)∧∆n−1(u)

)]
,

and ∆−1(a) denotes a = 0.
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Dimensionsgrad (auxiliary formulas)

The formula cut(u, x , y , a) expresses that u is a cut between x and
y in a:

(∀v)
[(

(v 6 a)∧conn(v)∧(v∩x 6= 0)∧(v∩y 6= 0)
)
→ (v∩u 6= 0)

]
,

and conn(a) says that a is connected:

(∀x)(∀y)
[(

(x ∩ y = 0) ∧ (x ∪ y = a)
)
→

(
(x = 0) ∨ (x = a)

)]
,
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Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate)

:
O Formulas, Formulas! — Wherefore useth thou Formulas?

dim X 6 n iff 2X satisfies δn

Ind X 6 n iff 2X satisfies In(X )

Dg X 6 n iff 2X satisfies ∆n(X )
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Covering dimension

Theorem

Let X be compact. Then dim X 6 n iff some (every) lattice-base
for its closed sets satisfies δn.

Proof.

Both directions use swelling and shrinking to replace the finite
families by combinatorially equivalent subfamilies of the base.
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Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, B, for its closed
sets satisfies In(X ) then Ind X 6 n.

Proof.

Induction: given A and B expand them to A′,B ′ ∈ B. Then find
L ∈ B, between A′ and B ′, such that BL = {D ∈ B : D ⊆ L}
satisfies In−1(L). As BL is a base for the closed sets of L we know,
by inductive assumption, that Ind L 6 n − 1.

No equivalence, see later.
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Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, B, for its closed
sets satisfies ∆n(X ) then

we can’t say anything about Dg X.

Proof.

Let X = [0, 1] and let B be the lattice-base generated by the
family of sets of the form [0, q] ∪ {q + 2−n : n ∈ ω} (q rational)
and [p, 1] ∪ {p − 2−n : n ∈ ω} (p irrational).
B has no connected elements, hence it satisfies ∆0(X ) vacuously
but Dg[0, 1] = 1.
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Elementary images

Let X be a compact Hausdorff space and let L be an elementary
sublattice of the lattice 2X of all closed subsets of X .

Consider the Wallman space wL of L.

What can we say about dim wL, IndwL and Dg wL?
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Covering dimension

Theorem

dim wL = dim X

Proof.

Notice that δn and its negation state that certain systems of
equations have solutions. By elementarity we see that 2X satisfies
δn iff L satisfies δn. Previous theorem: L satisfies δn iff 2wL does.
It follows that dim X 6 n iff dim wL 6 n for all n.
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Large inductive dimension

Theorem

Ind wL 6 Ind X

Proof.

Notice that In(a) and its negation state that certain systems of
equations have solutions. By elementarity we see that 2X satisfies
In(X ) iff L does. By previous theorem we know Ind wL 6 n,
whenever L satisfies In(wL).
Thus: IndX 6 n implies Ind wL 6 n.

K. P. Hart Elementarity and dimension



Dimensions
Elementarity

Proofs using elementarity
Sources

Formulas
Bases
To work

Large inductive dimension

Theorem

Ind wL 6 Ind X

Proof.

Notice that In(a) and its negation state that certain systems of
equations have solutions.

By elementarity we see that 2X satisfies
In(X ) iff L does. By previous theorem we know Ind wL 6 n,
whenever L satisfies In(wL).
Thus: IndX 6 n implies Ind wL 6 n.

K. P. Hart Elementarity and dimension



Dimensions
Elementarity

Proofs using elementarity
Sources

Formulas
Bases
To work

Large inductive dimension

Theorem

Ind wL 6 Ind X

Proof.

Notice that In(a) and its negation state that certain systems of
equations have solutions. By elementarity we see that 2X satisfies
In(X ) iff L does.

By previous theorem we know Ind wL 6 n,
whenever L satisfies In(wL).
Thus: IndX 6 n implies Ind wL 6 n.

K. P. Hart Elementarity and dimension



Dimensions
Elementarity

Proofs using elementarity
Sources

Formulas
Bases
To work

Large inductive dimension

Theorem

Ind wL 6 Ind X

Proof.

Notice that In(a) and its negation state that certain systems of
equations have solutions. By elementarity we see that 2X satisfies
In(X ) iff L does. By previous theorem we know Ind wL 6 n,
whenever L satisfies In(wL).

Thus: IndX 6 n implies Ind wL 6 n.

K. P. Hart Elementarity and dimension



Dimensions
Elementarity

Proofs using elementarity
Sources

Formulas
Bases
To work

Large inductive dimension

Theorem

Ind wL 6 Ind X

Proof.

Notice that In(a) and its negation state that certain systems of
equations have solutions. By elementarity we see that 2X satisfies
In(X ) iff L does. By previous theorem we know Ind wL 6 n,
whenever L satisfies In(wL).
Thus: IndX 6 n implies Ind wL 6 n.
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Theorem

Dg wL 6 Dg X

Nonroof

Notice that ∆n(a) and its negation state that certain systems of
equations have solutions. By elementarity we see that 2X satisfies
∆n(X ) iff L does.
By previous theorem we know nothing yet about Dg wL.
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Theorem

Dg wL 6 Dg X

Proof.

Let A and B be closed and disjoint in wL. Wlog: A,B ∈ L.
There C ∈ L that is a cut between A and B in X and that satisfies
∆n−1(C ) 6 n − 1.
Inductive assumption: Dg C 6 n − 1 in wL, because
M = {D ∈ L : D ⊆ C} is an elementary sublattice of
{D ∈ 2X : D ⊆ C} and C -in-wL is wM.
Still to show: C -in-wL is a cut between A and B in wL.
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Proof (continued)

Let F be a closed set in wL that meets A and B but not C .

We show F is not connected.
Find H in L around F , disjoint from C .
Back in X no component of H meets C , hence it does not meet
both A and B.
By well-known topology and elementarity there are disjoint
elements HA and HB of L such that H = HA ∪ HB , A ∩ H ⊆ HA

and B ∩ H ⊆ HB .
Down in wL we have exactly the same relations, so HA and HB

show F is not connected.
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Finishing up

Let X be compact Hausdorff and let L be a countable elementary
sublattice of 2X . Then

Vedenissof: dim X = dim wL = IndwL 6 Ind X

Fedorchuk: dim X = dim wL = Dg wL 6 Dg X

There are X with dim X < Dg X , so Dg wL < Dg X and
Ind wL < Ind X are possible.
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