Elementarity and dimension Non impeditus ab ulla scientia

K. P. Hart

Faculty EEMCS TU Delft

Milwaukee, 14 March, 2008: 10:15 - 10:35

Outline

2 Elementarity

- Proofs using elementarity
 - Formulas
 - Bases
 - To work

Covering dimension

Caveat: all spaces are (at least) normal

K. P. Hart Elementarity and dimension

Covering dimension

Caveat: all spaces are (at least) normal

Definition

dim $X \leq n$ if every finite open cover has a (finite) open refinement of order at most n + 1

Covering dimension

Caveat: all spaces are (at least) normal

Definition

dim $X \leq n$ if every finite open cover has a (finite) open refinement of order at most n + 1(i.e., every n + 2-element subfamily has an empty intersection).

Covering dimension

There is a convenient characterization.

Covering dimension

There is a convenient characterization.

Theorem (Hemmingsen)

dim $X \leq n$ iff every n + 2-element open cover has a shrinking with an empty intersection.

Large inductive dimension

Definition

Ind $X \leq n$ if between every two disjoint closed sets A and B there is a partition L that satisfies Ind $L \leq n - 1$.

Large inductive dimension

Definition

Ind $X \leq n$ if between every two disjoint closed sets A and B there is a partition L that satisfies $\text{Ind } L \leq n-1$. The starting point: $\text{Ind } X \leq -1$ iff $X = \emptyset$.

Large inductive dimension

Definition

Ind $X \leq n$ if between every two disjoint closed sets A and B there is a partition L that satisfies $\text{Ind } L \leq n - 1$. The starting point: $\text{Ind } X \leq -1$ iff $X = \emptyset$.

L is a partition between A and B means:

Large inductive dimension

Definition

Ind $X \leq n$ if between every two disjoint closed sets A and B there is a partition L that satisfies $\text{Ind } L \leq n-1$. The starting point: $\text{Ind } X \leq -1$ iff $X = \emptyset$.

L is a partition between *A* and *B* means: there are closed sets *F* and *G* that cover *X* and satisfy: $F \cap B = \emptyset$, $G \cap A = \emptyset$ and $F \cap G = L$.

Dimensionsgrad

Definition

 $\operatorname{Dg} X \leq n$ between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} L \leq n - 1$.

Dimensionsgrad

Definition

 $\operatorname{Dg} X \leq n$ between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} L \leq n-1$. The starting point: $\operatorname{Dg} X \leq -1$ iff $X = \emptyset$.

Dimensionsgrad

Definition

 $\operatorname{Dg} X \leq n$ between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} L \leq n-1$. The starting point: $\operatorname{Dg} X \leq -1$ iff $X = \emptyset$.

C is a **cut** between *A* and *B* means:

Dimensionsgrad

Definition

 $\operatorname{Dg} X \leq n$ between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} L \leq n-1$. The starting point: $\operatorname{Dg} X \leq -1$ iff $X = \emptyset$.

C is a cut between *A* and *B* means: $C \cap K \neq \emptyset$ whenever *K* is a subcontinuum of *X* that meets both *A* and *B*.

• For σ -compact metric X: dim X

< ロ > < 同 > < 回 > < 回 >

• For σ -compact metric X: dim $X = \operatorname{Ind} X$

(日)

• For σ -compact metric X: dim $X = \operatorname{Ind} X = \operatorname{Dg} X$

- For σ -compact metric X: dim $X = \operatorname{Ind} X = \operatorname{Dg} X$
- The first equality is classical and holds for all metric X

- For σ -compact metric X: dim $X = \operatorname{Ind} X = \operatorname{Dg} X$
- The first equality is classical and holds for all metric X
- the second is fairly recent (1999).

- For σ -compact metric X: dim $X = \operatorname{Ind} X = \operatorname{Dg} X$
- The first equality is classical and holds for all metric X
- the second is fairly recent (1999).
- There is for each n a locally connected Polish X_n with Dg X = 1 and dim $X_n = n$ (Fedorchuk, van Mill)

More inequalities

• $Dg X \leq Ind X$ (each partition is a cut)

More inequalities

- $Dg X \leq Ind X$ (each partition is a cut)
- dim $X \leq \operatorname{Ind} X$ (Vedenissof)

More inequalities

- $\operatorname{Dg} X \leq \operatorname{Ind} X$ (each partition is a cut)
- dim $X \leq \text{Ind } X$ (Vedenissof)
- dim $X \leq Dg X$ (Fedorchuk)

More inequalities

- $\operatorname{Dg} X \leq \operatorname{Ind} X$ (each partition is a cut)
- dim $X \leq \operatorname{Ind} X$ (Vedenissof)
- dim $X \leq Dg X$ (Fedorchuk)

We will reprove the last two inequalities.

A structure (group, field, lattice) A is an elementary substructure of a similar structure B if

Definition

A structure (group, field, lattice) A is an elementary substructure of a similar structure B if every equation with parameters from Athat has a solution in B already has a solution in A.

Definition

A structure (group, field, lattice) A is an elementary substructure of a similar structure B if every equation with parameters from Athat has a solution in B already has a solution in A.

These are (apparently) very rich substructures

 \bullet the field ${\mathbb Q}$ is not an elementary substructure of the field ${\mathbb R}$

the field Q is not an elementary substructure of the field R; consider x ⋅ x = 2

- the field Q is not an elementary substructure of the field R; consider x ⋅ x = 2
- \bullet the ordered set $\mathbb Z$ is not an elementary substructure of the ordered set $\mathbb Q$

- the field Q is not an elementary substructure of the field R; consider x ⋅ x = 2
- the ordered set Z is not an elementary substructure of the ordered set Q; consider 0 < x < 1

Examples

- the field Q is not an elementary substructure of the field R; consider x ⋅ x = 2
- the ordered set Z is not an elementary substructure of the ordered set Q; consider 0 < x < 1
- the field $\mathbb A$ of real algebraic numbers is an elementary substructure of the field $\mathbb R$

Examples

- the field Q is not an elementary substructure of the field R; consider x ⋅ x = 2
- the ordered set Z is not an elementary substructure of the ordered set Q; consider 0 < x < 1
- \bullet the field $\mathbb A$ of real algebraic numbers is an elementary substructure of the field $\mathbb R$
- \bullet the ordered set ${\mathbb Q}$ is an elementary substructure of the ordered set ${\mathbb R}$

How to make them

There are plenty of elementary substructures.

How to make them

There are plenty of elementary substructures.

Theorem (Löwenheim-Skolem)

Assume our language of discourse is countable.

How to make them

There are plenty of elementary substructures.

Theorem (Löwenheim-Skolem)

Assume our language of discourse is countable. Let B be a structure suitable for that language and let $X \subseteq B$

How to make them

There are plenty of elementary substructures.

Theorem (Löwenheim-Skolem)

Assume our language of discourse is countable. Let B be a structure suitable for that language and let $X \subseteq B$ then there is an elementary substructure A of B such that $X \subseteq A$ and $|A| \leq |X| + \aleph_0$.

Formulas Bases To work

Outline

- 2 Elementarity
- OProofs using elementarity
 - Formulas
 - Bases
 - To work

<ロ> <同> <同> < 回> < 回>

Formulas Bases To work

Covering dimension

Here is Hemmingsen's characterization of dim $X \leq n$

< ロ > < 同 > < 回 > < 回 >

Formulas Bases To work

Covering dimension

Here is Hemmingsen's characterization of dim $X \leq n$ reformulated in terms of closed sets

Formulas Bases To work

Covering dimension

Here is Hemmingsen's characterization of dim $X \leq n$ reformulated in terms of closed sets and cast as a formula, δ_n , in the language of lattices

Formulas Bases To work

Covering dimension

Here is Hemmingsen's characterization of dim $X \leq n$ reformulated in terms of closed sets and cast as a formula, δ_n , in the language of lattices

$$(\forall x_1)(\forall x_2)\cdots(\forall x_{n+2})(\exists y_1)(\exists y_2)\cdots(\exists y_{n+2}) \\ [(x_1 \cap x_2 \cap \cdots \cap x_{n+2} = o) \rightarrow \\ ((x_1 \leqslant y_1) \land (x_2 \leqslant y_2) \land \cdots \land (x_{n+2} \leqslant y_{n+2}) \\ \land (y_1 \cap y_2 \cap \cdots \cap y_{n+2} = o) \\ \land (y_1 \cup y_2 \cup \cdots \cup y_{n+2} = 1))].$$

Formulas Bases To work

Large inductive dimension

We can express $\text{Ind } X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

Formulas Bases To work

Large inductive dimension

We can express $\operatorname{Ind} X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

 $(\forall x)(\forall y)(\exists u)$ $[(((x \leqslant a) \land (y \leqslant a) \land (x \cap y = o)) \rightarrow (partn(u, x, y, a) \land I_{n-1}(u))]$

Formulas Bases To work

Large inductive dimension

We can express $\operatorname{Ind} X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

 $(\forall x)(\forall y)(\exists u)$ $[(((x \leq a) \land (y \leq a) \land (x \cap y = o)) \rightarrow (partn(u, x, y, a) \land I_{n-1}(u))]$

where partn(u, x, y, a) says that u is a partition between x and y in the (sub)space a:

Formulas Bases To work

Large inductive dimension

We can express $\operatorname{Ind} X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u) [(((x \leq a) \land (y \leq a) \land (x \cap y = o)) \rightarrow (partn(u, x, y, a) \land I_{n-1}(u))]$$

where partn(u, x, y, a) says that u is a partition between x and y in the (sub)space a:

$$(\exists f)(\exists g)((x \cap f = o) \land (y \cap g = o) \land (f \cup g = a) \land (f \cap g = u)).$$

Formulas Bases To work

Large inductive dimension

We can express $\operatorname{Ind} X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u) [(((x \leq a) \land (y \leq a) \land (x \cap y = o)) \rightarrow (partn(u, x, y, a) \land I_{n-1}(u))]$$

where partn(u, x, y, a) says that u is a partition between x and y in the (sub)space a:

$$(\exists f)(\exists g)((x \cap f = o) \land (y \cap g = o) \land (f \cup g = a) \land (f \cap g = u)).$$

We start with $I_{-1}(a)$, which denotes a = o

Formulas Bases To work

Dimensionsgrad

Here we have the recursive definition of a formula $\Delta_n(a)$:

Formulas Bases To work

Dimensionsgrad

Here we have the recursive definition of a formula $\Delta_n(a)$:

$$(\forall x)(\forall y)(\exists u)$$

 $[((x \leq a) \land (y \leq a) \land (x \cap y = o)) \rightarrow (\operatorname{cut}(u, x, y, a) \land \Delta_{n-1}(u))],$

Formulas Bases To work

Dimensionsgrad

Here we have the recursive definition of a formula $\Delta_n(a)$:

$$(\forall x)(\forall y)(\exists u) [((x \leq a) \land (y \leq a) \land (x \cap y = o)) \rightarrow (\operatorname{cut}(u, x, y, a) \land \Delta_{n-1}(u))],$$

and $\Delta_{-1}(a)$ denotes $a = o$.

Formulas Bases To work

Dimensionsgrad (auxiliary formulas)

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

・ロ・・ 日本・ ・ 回 ・ ・

Formulas Bases To work

Dimensionsgrad (auxiliary formulas)

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

$$(\forall v) [((v \leq a) \land \operatorname{conn}(v) \land (v \cap x \neq o) \land (v \cap y \neq o)) \rightarrow (v \cap u \neq o)],$$

・ロ・・ 日本・ ・ 回 ・ ・

Formulas Bases To work

Dimensionsgrad (auxiliary formulas)

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

$$(\forall v) [((v \leqslant a) \land \operatorname{conn}(v) \land (v \cap x \neq o) \land (v \cap y \neq o)) \rightarrow (v \cap u \neq o)],$$

and conn(a) says that a is connected:

Formulas Bases To work

Dimensionsgrad (auxiliary formulas)

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

$$(\forall v) [((v \leq a) \land \operatorname{conn}(v) \land (v \cap x \neq 0) \land (v \cap y \neq 0)) \rightarrow (v \cap u \neq 0)],$$

and conn(a) says that a is connected:

$$(\forall x)(\forall y)[((x \cap y = o) \land (x \cup y = a)) \rightarrow ((x = o) \lor (x = a))],$$

Formulas Bases To work

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate)

Formulas Bases To work

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate): O Formulas, Formulas! — Wherefore useth thou Formulas?

Formulas Bases To work

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate): O Formulas, Formulas! — Wherefore useth thou Formulas?

• dim $X \leq n$ iff 2^X satisfies δ_n

Formulas Bases To work

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate): O Formulas, Formulas! — Wherefore useth thou Formulas?

- dim $X \leq n$ iff 2^X satisfies δ_n
- Ind $X \leq n$ iff 2^X satisfies $I_n(X)$

Formulas Bases To work

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate): O Formulas, Formulas! — Wherefore useth thou Formulas?

- dim $X \leq n$ iff 2^X satisfies δ_n
- Ind $X \leq n$ iff 2^X satisfies $I_n(X)$
- $\operatorname{Dg} X \leq n$ iff 2^X satisfies $\Delta_n(X)$

Formulas Bases To work

Outline

- 2 Elementarity
- OProofs using elementarity
 - Formulas
 - Bases
 - To work

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Formulas Bases To work

Covering dimension

Theorem

Let X be compact. Then dim $X \leq n$ iff some (every) lattice-base for its closed sets satisfies δ_n .

Formulas Bases To work

Covering dimension

Theorem

Let X be compact. Then dim $X \leq n$ iff some (every) lattice-base for its closed sets satisfies δ_n .

Proof.

Both directions use swelling and shrinking to replace the finite families by combinatorially equivalent subfamilies of the base.

Formulas Bases To work

Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $I_n(X)$ then $\operatorname{Ind} X \leq n$.

Formulas Bases To work

Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $I_n(X)$ then $\operatorname{Ind} X \leq n$.

Proof.

Induction: given A and B expand them to $A', B' \in \mathcal{B}$. Then find $L \in \mathcal{B}$, between A' and B', such that $\mathcal{B}_L = \{D \in \mathcal{B} : D \subseteq L\}$ satisfies $I_{n-1}(L)$. As \mathcal{B}_L is a base for the closed sets of L we know, by inductive assumption, that $\operatorname{Ind} L \leq n-1$.

Formulas Bases To work

Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $I_n(X)$ then $\operatorname{Ind} X \leq n$.

Proof.

Induction: given A and B expand them to $A', B' \in \mathcal{B}$. Then find $L \in \mathcal{B}$, between A' and B', such that $\mathcal{B}_L = \{D \in \mathcal{B} : D \subseteq L\}$ satisfies $I_{n-1}(L)$. As \mathcal{B}_L is a base for the closed sets of L we know, by inductive assumption, that $\operatorname{Ind} L \leq n-1$.

No equivalence, see later.

Formulas Bases To work

Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then

Formulas Bases To work

Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about $\operatorname{Dg} X$.

Formulas Bases To work

Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about $\operatorname{Dg} X$.

Proof.

Let X = [0, 1] and let \mathcal{B} be the lattice-base generated by the family of sets of the form $[0, q] \cup \{q + 2^{-n} : n \in \omega\}$ (q rational) and $[p, 1] \cup \{p - 2^{-n} : n \in \omega\}$ (p irrational).

Formulas Bases To work

Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about $\operatorname{Dg} X$.

Proof.

Let X = [0, 1] and let \mathcal{B} be the lattice-base generated by the family of sets of the form $[0, q] \cup \{q + 2^{-n} : n \in \omega\}$ (q rational) and $[p, 1] \cup \{p - 2^{-n} : n \in \omega\}$ (p irrational). \mathcal{B} has no connected elements, hence it satisfies $\Delta_0(X)$ vacuously

Formulas Bases To work

Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about $\operatorname{Dg} X$.

Proof.

Let X = [0, 1] and let \mathcal{B} be the lattice-base generated by the family of sets of the form $[0, q] \cup \{q + 2^{-n} : n \in \omega\}$ (q rational) and $[p, 1] \cup \{p - 2^{-n} : n \in \omega\}$ (p irrational). \mathcal{B} has no connected elements, hence it satisfies $\Delta_0(X)$ vacuously but Dg[0, 1] = 1.

Formulas Bases To work

Outline

- 2 Elementarity
- Proofs using elementarity
 - Formulas
 - Bases
 - To work

<ロ> <同> <同> < 回> < 回>
Formulas Bases To work

Elementary images

Let X be a compact Hausdorff space and let L be an elementary sublattice of the lattice 2^X of all closed subsets of X.

Formulas Bases To work

Elementary images

Let X be a compact Hausdorff space and let L be an elementary sublattice of the lattice 2^X of all closed subsets of X.

Consider the Wallman space wL of L.

Formulas Bases To work

Elementary images

Let X be a compact Hausdorff space and let L be an elementary sublattice of the lattice 2^X of all closed subsets of X.

Consider the Wallman space wL of L.

What can we say about dim wL, Ind wL and Dg wL?

Formulas Bases To work

Covering dimension

Theorem

 $\dim wL = \dim X$

Formulas Bases To work

Covering dimension

Theorem

 $\dim wL = \dim X$

Proof.

Notice that δ_n and its negation state that certain systems of equations have solutions.

Formulas Bases To work

Covering dimension

Theorem

 $\dim wL = \dim X$

Proof.

Notice that δ_n and its negation state that certain systems of equations have solutions. By elementarity we see that 2^X satisfies δ_n iff L satisfies δ_n .

Formulas Bases To work

Covering dimension

Theorem

 $\dim wL = \dim X$

Proof.

Notice that δ_n and its negation state that certain systems of equations have solutions. By elementarity we see that 2^X satisfies δ_n iff L satisfies δ_n . Previous theorem: L satisfies δ_n iff 2^{wL} does.

Formulas Bases To work

Covering dimension

Theorem

 $\dim wL = \dim X$

Proof.

Notice that δ_n and its negation state that certain systems of equations have solutions. By elementarity we see that 2^X satisfies δ_n iff *L* satisfies δ_n . Previous theorem: *L* satisfies δ_n iff 2^{wL} does. It follows that dim $X \leq n$ iff dim $wL \leq n$ for all *n*.

Formulas Bases To work

Large inductive dimension

Theorem

 $\operatorname{Ind} wL \leq \operatorname{Ind} X$

・ロ・・ 日本・ ・ 回 ・ ・

Formulas Bases To work

Large inductive dimension

Theorem

Ind $wL \leq \text{Ind } X$

Proof.

Notice that $I_n(a)$ and its negation state that certain systems of equations have solutions.

Delft University of Technology

Formulas Bases To work

Large inductive dimension

Theorem

Ind $wL \leq \text{Ind } X$

Proof.

Notice that $I_n(a)$ and its negation state that certain systems of equations have solutions. By elementarity we see that 2^X satisfies $I_n(X)$ iff L does.

Formulas Bases To work

Large inductive dimension

Theorem

Ind $wL \leq \text{Ind } X$

Proof.

Notice that $I_n(a)$ and its negation state that certain systems of equations have solutions. By elementarity we see that 2^X satisfies $I_n(X)$ iff L does. By previous theorem we know $\operatorname{Ind} wL \leq n$, whenever L satisfies $I_n(wL)$.

Formulas Bases To work

Large inductive dimension

Theorem

Ind $wL \leq \text{Ind } X$

Proof.

Notice that $I_n(a)$ and its negation state that certain systems of equations have solutions. By elementarity we see that 2^X satisfies $I_n(X)$ iff L does. By previous theorem we know $\text{Ind } wL \leq n$, whenever L satisfies $I_n(wL)$. Thus: $\text{Ind } X \leq n$ implies $\text{Ind } wL \leq n$.

Delft University of Technology

Formulas Bases To work

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, wL \leqslant \mathsf{Dg} \, X$

・ロ・・ 日本・ ・ 回 ・ ・

Formulas Bases To work

Dimensionsgrad

Theorem

 $\mathsf{Dg} wL \leqslant \mathsf{Dg} X$

Nonroof

Notice that $\Delta_n(a)$ and its negation state that certain systems of equations have solutions.

Formulas Bases To work

Dimensionsgrad

Theorem

 $\mathsf{Dg} wL \leqslant \mathsf{Dg} X$

Nonroof

Notice that $\Delta_n(a)$ and its negation state that certain systems of equations have solutions. By elementarity we see that 2^X satisfies $\Delta_n(X)$ iff *L* does.

Formulas Bases To work

Dimensionsgrad

Theorem

 $\mathsf{Dg} wL \leq \mathsf{Dg} X$

Nonroof

Notice that $\Delta_n(a)$ and its negation state that certain systems of equations have solutions. By elementarity we see that 2^X satisfies $\Delta_n(X)$ iff *L* does.

By previous theorem we know nothing yet about Dg wL.

Formulas Bases To work

Dimensionsgrad

Theorem

 $\mathsf{Dg} wL \leq \mathsf{Dg} X$

(日)

Formulas Bases To work

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, wL \leqslant \mathsf{Dg} \, X$

Proof.

Let A and B be closed and disjoint in wL. Wlog: $A, B \in L$.

Delft University of Technology

Formulas Bases To work

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, wL \leqslant \mathsf{Dg} \, X$

Proof.

Let A and B be closed and disjoint in wL. Wlog: $A, B \in L$. There $C \in L$ that is a cut between A and B in X and that satisfies $\Delta_{n-1}(C) \leq n-1$.

Delft University of Technology

Formulas Bases To work

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, wL \leqslant \mathsf{Dg} \, X$

Proof.

Let A and B be closed and disjoint in wL. Wlog: $A, B \in L$. There $C \in L$ that is a cut between A and B in X and that satisfies $\Delta_{n-1}(C) \leq n-1$. Inductive assumption: Dg $C \leq n-1$ in wL

K. P. Hart Elementarity and dimension

I U Dell

Formulas Bases To work

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, wL \leqslant \mathsf{Dg} \, X$

Proof.

Let A and B be closed and disjoint in wL. Wlog: $A, B \in L$. There $C \in L$ that is a cut between A and B in X and that satisfies $\Delta_{n-1}(C) \leq n-1$. Inductive assumption: Dg $C \leq n-1$ in wL, because $M = \{D \in L : D \subseteq C\}$ is an elementary sublattice of $\{D \in 2^X : D \subseteq C\}$ and C-in-wL is wM.

Formulas Bases To work

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, wL \leqslant \mathsf{Dg} \, X$

Proof.

Let A and B be closed and disjoint in wL. Wlog: $A, B \in L$. There $C \in L$ that is a cut between A and B in X and that satisfies $\Delta_{n-1}(C) \leq n-1$. Inductive assumption: $\text{Dg } C \leq n-1$ in wL, because $M = \{D \in L : D \subseteq C\}$ is an elementary sublattice of $\{D \in 2^X : D \subseteq C\}$ and C-in-wL is wM. Still to show: C-in-wL is a cut between A and B in wL.

Proof (continued)

Let F be a closed set in wL that meets A and B but not C.

Delft University of Technology

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Delft University of Technology

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected. Find H in L around F, disjoint from C.

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected. Find H in L around F, disjoint from C. Back in X no component of H meets C, hence it does *not* meet both A and B.

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected. Find H in L around F, disjoint from C. Back in X no component of H meets C, hence it does *not* meet both A and B. By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that

Proof (continued)

Let *F* be a closed set in *wL* that meets *A* and *B* but not *C*. We show *F* is not connected. Find *H* in *L* around *F*, disjoint from *C*. Back in *X* no component of *H* meets *C*, hence it does *not* meet both *A* and *B*. By well-known topology and elementarity there are disjoint elements H_A and H_B of *L* such that $H = H_A \cup H_B$

Proof (continued)

Let *F* be a closed set in *wL* that meets *A* and *B* but not *C*. We show *F* is not connected. Find *H* in *L* around *F*, disjoint from *C*. Back in *X* no component of *H* meets *C*, hence it does *not* meet both *A* and *B*. By well-known topology and elementarity there are disjoint elements H_A and H_B of *L* such that $H = H_A \cup H_B$, $A \cap H \subset H_A$

Proof (continued)

Let *F* be a closed set in *wL* that meets *A* and *B* but not *C*. We show *F* is not connected. Find *H* in *L* around *F*, disjoint from *C*. Back in *X* no component of *H* meets *C*, hence it does *not* meet both *A* and *B*. By well-known topology and elementarity there are disjoint elements H_A and H_B of *L* such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$ and $B \cap H \subseteq H_B$.

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Find H in L around F, disjoint from C.

Back in X no component of H meets C, hence it does *not* meet both A and B.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$ and $B \cap H \subseteq H_B$.

Down in wL we have exactly the same relations, so H_A and H_B show F is not connected.

Formulas Bases To work

Finishing up

Let X be compact Hausdorff and let L be a *countable* elementary sublattice of 2^X . Then

(日)

Formulas Bases To work

Finishing up

Let X be compact Hausdorff and let L be a *countable* elementary sublattice of 2^X . Then

Vedenissof: dim $X = \dim wL = \operatorname{Ind} wL \leq \operatorname{Ind} X$

Formulas Bases To work

Finishing up

Let X be compact Hausdorff and let L be a *countable* elementary sublattice of 2^X . Then

Vedenissof: dim $X = \dim wL = \operatorname{Ind} wL \leq \operatorname{Ind} X$

Fedorchuk: dim $X = \dim wL = \operatorname{Dg} wL \leq \operatorname{Dg} X$

Formulas Bases To work

Finishing up

Let X be compact Hausdorff and let L be a *countable* elementary sublattice of 2^X . Then

Vedenissof: dim $X = \dim wL = \operatorname{Ind} wL \leq \operatorname{Ind} X$

Fedorchuk: dim $X = \dim wL = \operatorname{Dg} wL \leq \operatorname{Dg} X$

There are X with dim X < Dg X, so Dg wL < Dg X and Ind wL < Ind X are possible.

Dimensions Elementarity Proofs using elementarity Sources

Light reading

Website: fa.its.tudelft.nl/~hart

V. V. Fedorchuk,

On the Brouwer dimension of compact spaces, Mathematical Notes **73** (2003), 271–279,

🔒 K. P. Hart.

Elementarity and dimensions, Mathematical Notes, **78** (2005), 264–269.

