Two nonimages of \mathbb{H}^* Non impeditus ab ulla scientia

K. P. Hart

Faculty EEMCS TU Delft

Galway, 5 June, 2008: 14:15 - 15:15

Outline

History 2

New stuff 3

- Separability
- First-countability
- First-countability and \mathbb{N}^*
- First-countability and \mathbb{H}^*

4 Sources

Čech-Stone compactification

Every completely regular space X has a compactification, βX , with the following extension property: if $f : X \to [0, 1]$ is continuous then f admits an extension $\beta f : \beta X \to [0, 1]$ (and hence also for arbitrary compact co-domains).

For normal X: whenever A and B are closed and disjoint in X then $cl_{\beta X} A$ and $cl_{\beta X} B$ are disjoint.

We write X^* to mean $\beta X \setminus X$.

 $\mathbb N$ is the (discrete) space of natural numbers.

- βℕ is separable and extremally disconnected (disjoint open sets have disjoint closures)
- \mathbb{N}^* is very not separable, very not extremally disconnected and also not self-Tietze

 $\mathbb{H}=[0,\infty),$ the $\mathbb{H}alf$ line.

- $\beta \mathbb{H}$ is separable and connected
- \mathbb{H}^* is very not separable but it is connected
- it is also
 - one-dimensional
 - hereditarily unicoherent
 - (if two continua meet their intersection is connected)
 - indecomposable (not the union of two proper subcontinua)

What are the continuous images of \mathbb{N}^* and \mathbb{H}^* ?

Parovičenko: all compact spaces of weight \aleph_1 (or less) are continuous images of \mathbb{N}^* .

Dow and YT: all continua of weight \aleph_1 (or less) are continuous images of $\mathbb{H}^*.$

The Continuum Hypothesis (CH) implies:

- the continuous images of \mathbb{N}^* are exactly the compact spaces of weight not more than 2^{\aleph_0}
- the continuous images of \mathbb{H}^* are exactly the continua of weight not more than 2^{\aleph_0}

Isn't that a pretty parallel?

What we are on about Separability History First-countability New stuff First-countability and N Sources First-countability and H

Separability and \mathbb{N}^*

Separable compact spaces have weight 2^{\aleph_0} (or less) but we can use ' β ' to show

Theorem

Every separable compact space is an \mathbb{N}^* -image.

Proof.

Let *D* be countable and dense in the compact space *X*. Let $f : \mathbb{N} \to D$ be onto with all fibers infinite. Then $\beta f[\mathbb{N}^*] = X$

So, no CH needed.

 What we are on about
 Separability

 History
 First-countability

 New stuff
 First-countability and N*

 Sources
 First-countability and H*

Separability and \mathbb{H}^*

How about separable continua? If K is one there is $f : \mathbb{N}^* \to K$. Can we extend it to $F : \mathbb{H}^* \to K$?

One approach:

- embed K into $C = [0, 1]^{2^{\aleph_0}}$
- extend f to $\overline{f}: \beta \mathbb{N} \to C$ (Tietze-Urysohn)
- connect the dots to get . . .
- $F : \mathbb{H} \to C$ such that $\beta F[\mathbb{H}^*] = K$

Won't work, because ...

What we are on about History First-countability New stuff First-countability and Sources First-countability and

Separability and \mathbb{H}^*

... of the following

Example

Replicate the sin $\frac{1}{x}$ -curve along the positive real axis:

$$\mathcal{K}_n = \{n\} \times [-1, 1] \cup \left\{ \langle n + t, \sin \frac{\pi}{t} \rangle : 0 < t \leq 1 \right\}$$

Let $K = \bigcup_n K_n$. The Open Colouring Axiom (OCA) implies that βK is not an \mathbb{H}^* -image.

Separability First-countability First-countability and \mathbb{N}^* First-countability and \mathbb{H}^*

Separability and \mathbb{H}^*

Very rough sketch of the argument

- Start with a putative $f: \mathbb{H}^* \twoheadrightarrow \beta K$
- Extract from it a continuous surjection $g: \mathbb{N}^* \twoheadrightarrow \beta \mathbb{N}$
- OCA implies g contains a similar map that is induced by a function $h:\mathbb{N}\to\mathbb{N}$
- Use h and the wiggly bits to create $s: \mathbb{N}^* \twoheadrightarrow (\omega imes (\omega + 1))^*$
- OCA implies such surjections do not exist

 $\begin{array}{l} \text{Separability} \\ \textbf{First-countability} \\ \text{First-countability and } \mathbb{N}^{*} \\ \text{First-countability and } \mathbb{H}^{*} \end{array}$

First-countability

Arkhangel'skii's theorem(s)

A first-countable compact space has cardinality and hence(!) weight 2^{\aleph_0} or less.

Thus, CH implies first-countable compact spaces and continua are continuous images of \mathbb{N}^* and \mathbb{H}^* , respectively.

Separability First-countability $\mathbf{First-countability}$ and \mathbb{N}^* First-countability and \mathbb{H}^*

(A variation of) Bell's example

Example (Murray Bell)

There is a consistent example of a first-countable compact space that is not an $\mathbb{N}^*\text{-}\text{image}.$

Step 1

Add \aleph_2 many Cohen reals to your universe. Use Fn(L, 2), where $L = \{ \langle \alpha, \beta \rangle : \alpha < \beta < \omega_2 \}$. You get $E \subseteq L$ with the following property: there is no family $\{A_{\alpha} : \alpha < \omega_2\}$ of subsets of \mathbb{N} such that $\langle \alpha, \beta \rangle \in E$ if and only if $A_{\alpha} \cap A_{\beta}$ is infinite.

Separability First-countability **First-countability and** \mathbb{N}^* First-countability and \mathbb{H}^*

(A variation of) Bell's example

Step 2

Take the Alexandroff double, \mathbb{I} , of the unit interval:

• set:
$$[0,1]\times\{0,1\}$$

- at $\langle x, 0 \rangle$ basic neighbourhoods are $U(x, n) = ((x - 2^{-n}, x + 2^{-n}) \times \{0, 1\}) \setminus \{\langle x, 1 \rangle\}$
- each $\langle x,1 \rangle$ isolated

What we are on about Se History Fir New stuff Fir Sources Fir

Separability First-countability $\mathbf{First-countability}$ and \mathbb{N}^* First-countability and \mathbb{H}^*

(A variation of) Bell's example

Step 3

Work in \mathbb{I}^2 . For each $x \in [0, 1]$ let C_x be the cross $\{\langle x, 1 \rangle\} \times \mathbb{I} \cup \mathbb{I} \times \{\langle x, 1 \rangle\}$

Step 4

Take an injection $\alpha \mapsto x_{\alpha}$ from ω_2 into [0,1] and let $E^s = \{ \langle x_{\alpha}, x_{\beta} \rangle : \langle \alpha, \beta \rangle \in E \text{ or } \langle \alpha, \beta \rangle \in E \}.$ Delete from \mathbb{I}^2 all points $\langle \langle x, 1 \rangle, \langle y, 1 \rangle \rangle$ with $\langle x, y \rangle \notin E^s$. What is left we call \mathbb{I}_E . Note: \mathbb{I}_E is closed, hence compact.

 $\begin{array}{l} \text{Separability} \\ \text{First-countability} \\ \textbf{First-countability and } \mathbb{N}^{*} \\ \text{First-countability and } \mathbb{H}^{*} \end{array}$

(A variation of) Bell's example

Step 5

Observe: $C_x \cap C_y \cap \mathbb{I}_E$ is nonempty if and only $\langle x, y \rangle \in E^s$. Also: $C_x \cap \mathbb{I}_E$ is compact and open in \mathbb{I}_E .

Final step

Assume $f : \mathbb{N}^* \to \mathbb{I}_E$ is continuous and onto. Choose, for each α , an infinite subset A_{α} of \mathbb{N} such that $f^{\leftarrow}[C_{x_{\alpha}}] = A_{\alpha}^*$ Now we have: $A_{\alpha} \cap A_{\beta}$ is infinite if and only if $\langle \alpha, \beta \rangle \in E$

What we are on about Separability History First-countability New stuff First-countability and №* Sources First-countability and №

Our example

Example (Dow and YT)

There is a consistent example of a first-countable continuum that is not an $\mathbb{H}^*\text{-}\text{image}.$

Step 1

Add \aleph_2 many Cohen reals to your universe. Use $\operatorname{Fn}(L, 2)$, where $L = \{ \langle \alpha, \beta \rangle : \alpha < \beta < \omega_2 \}$. You get $E \subseteq L$ with the following property: there is no family $\{ U_{\alpha} : \alpha < \omega_2 \}$ of open subset of \mathbb{H} such that $\langle \alpha, \beta \rangle \in E$ if and only if $U_{\alpha} \cap U_{\beta}$ is unbounded

What we are on about Separability History First-countability New stuff First-countability and ℝ* Sources First-countability and ⊞*

Our example

Step 2

Take the connected comb $\mathbb{C},$ Saalfrank's connected version of the Alexandroff double of the unit interval:

- set: $[0,1] \times [0,1]$
- at $\langle x, 0 \rangle$ basic neighbourhoods are $U(x, n) = ((x - 2^{-n}, x + 2^{-n}) \times [0, 1]) \setminus (\{x\} \times [2^{-n}, 1])$
- at $\langle x, y \rangle$ (y > 0) basic neighbourhoods are $U(x, y, n) = \{x\} \times (y 2^{-n}, y + 2^{-n})$

What we are on about History New stuff Sources First-countability and N*

Our example

Step 3

Work in \mathbb{C}^2 . For each $x \in [0, 1]$ let C_x be the (two-dimensional) cross $(\{x\} \times (0, 1] \times \mathbb{C}) \cup (\mathbb{C} \times \{x\} \times (0, 1])$

Step 4

Take an injection $\alpha \mapsto x_{\alpha}$ from ω_2 into [0, 1] and let $E^s = \{ \langle x_{\alpha}, x_{\beta} \rangle : \langle \alpha, \beta \rangle \in E \text{ or } \langle \alpha, \beta \rangle \in E \}.$

 What we are on about
 Separability

 History
 First-countability

 New stuff
 First-countability and N*

 Sources
 First-countability and H*

Our example

Step 5

Delete from \mathbb{C}^2 all open sets

$$\{x\} \times (0,1] \times \{y\} \times (0,1]$$

for which $\langle x, y \rangle \notin E^s$. What is left we call \mathbb{C}_E . Note: \mathbb{C}_E is closed, hence compact. The space \mathbb{C}_E is also (arcwise) connected.

 What we are on about
 Separability

 History
 First-countability

 New stuff
 First-countability and N*

 Sources
 First-countability and H*

Our example

Step 6

Observe: $C_x \cap C_y \cap \mathbb{C}_E$ is nonempty if and only $\langle x, y \rangle \in E^s$. Also: $C_x \cap \mathbb{C}_E$ is open in \mathbb{C}_E (but not clopen).

Step 7

We need substitutes for the clopen sets. For $x \in [0, 1]$ and a > 0 let $D_{x,a} = (\{x\} \times [a, 1] \times \mathbb{C}) \cup (\mathbb{C} \times \{x\} \times [a, 1]).$ Note: if a < b then $D_{x,b}$ is contained in the interior of $D_{x,a}$.

What we are on about History New stuff Sources First-countability and N*

Our example

Final step

Assume $f : \mathbb{H}^* \to \mathbb{C}_E$ is continuous and onto. Choose, for each α , an open subset U_{α} of \mathbb{H} such that

$$f^{\leftarrow}[D_{x_{\alpha},1}] \subseteq \mathsf{Ex} U_{\alpha} \subseteq f^{\leftarrow}[D_{x_{\alpha},\frac{1}{2}}]$$

Now we have: $U_{\alpha} \cap U_{\beta}$ is unbounded if and only if $\langle \alpha, \beta \rangle \in E$ (because the same holds for the families $\{D_{x,a}\}_x$).

Light reading

Website: http://fa.its.tudelft.nl/~hart

- Alan Dow and Klaas Pieter Hart, A separable non-remainder of Ⅲ, http://arxiv.org/abs/0805.2265
- Alan Dow and Klaas Pieter Hart, A first-countable non-remainder of H, http://arxiv.org/abs/0708.4739

