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K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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The theorem

Just so we know what we are talking about.

Theorem

Let A be a structure for some language L and let X be a subset
of A. There is an elementary substructure B of A of cardinality at
most ℵ0 · |X | · |L|.

We consider two languages:

lattice theory

set theory
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Why lattices?

Let X be a compact Hausdorff space and 2X its family of
closed sets.

We take a countable elementary sublattice, L, of 2X .

We take the Wallman space, wL, of L.

wL is compact metrizable and looks a lot like X .

We can use wL to get information about X .

Or reduce general problems to the metrizable case.
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The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

Why lattices?

Let X be a compact Hausdorff space and 2X its family of
closed sets.

We take a countable elementary sublattice, L, of 2X .

We take the Wallman space, wL, of L.

wL is compact metrizable and looks a lot like X .

We can use wL to get information about X .

Or reduce general problems to the metrizable case.
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K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Wallman space

It’s like the Stone space of a Boolean algebra.

Underlying set of wL: the ultrafilters on L.

For a ∈ L put ā = {u ∈ wL : a ∈ u}.
{ā : a ∈ L} serves as a base for the closed sets of wL.

The map qL : x 7→ {a ∈ L : x ∈ a} is a continuous surjection.

Because L is countable, the space wL is metrizable

K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

Covering dimension

Definition

dim X ≤ n if every finite open cover has a (finite) open refinement
of order at most n + 1

(i.e., every n + 2-element subfamily has an empty intersection).

There is a convenient first-order characterization.

Theorem (Hemmingsen)

dim X ≤ n iff every n + 2-element open cover has a shrinking with
an empty intersection.
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The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

Covering dimension

Definition

dim X ≤ n if every finite open cover has a (finite) open refinement
of order at most n + 1
(i.e., every n + 2-element subfamily has an empty intersection).

There is a convenient first-order characterization.

Theorem (Hemmingsen)

dim X ≤ n iff every n + 2-element open cover has a shrinking with
an empty intersection.
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Large inductive dimension

Definition

Ind X ≤ n if between every two disjoint closed sets A and B there
is a partition L that satisfies Ind L ≤ n − 1.

The starting point: IndX ≤ −1 iff X = ∅.

L is a partition between A and B means: there are closed sets F
and G that cover X and satisfy: F ∩ B = ∅, G ∩ A = ∅ and
F ∩ G = L.
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The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

Large inductive dimension

Definition

Ind X ≤ n if between every two disjoint closed sets A and B there
is a partition L that satisfies Ind L ≤ n − 1.
The starting point: IndX ≤ −1 iff X = ∅.

L is a partition between A and B means:

there are closed sets F
and G that cover X and satisfy: F ∩ B = ∅, G ∩ A = ∅ and
F ∩ G = L.
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K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Dimensionsgrad

Definition

Dg X ≤ n between every two disjoint closed sets A and B there is
a cut C that satisfies Dg C ≤ n − 1.

The starting point: Dg X ≤ −1 iff X = ∅.

C is a cut between A and B means: C ∩ K 6= ∅ whenever K is a
subcontinuum of X that meets both A and B.
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(In)equalities

For σ-compact metric X : dim X

= IndX = Dg X

The first equality is classical and holds for all metric X

the second is fairly recent (1999).

There is for each n a locally connected Polish Xn with
Dg Xn = 1 and dim Xn = n (Fedorchuk, van Mill)
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More inequalities

For arbitrary compact Hausdorff spaces

:

Dg X ≤ Ind X (each partition is a cut)

dim X ≤ Ind X (Vedenissof)

dim X ≤ Dg X (Fedorchuk)

We will reprove the last two inequalities.
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The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

More inequalities

For arbitrary compact Hausdorff spaces:

Dg X ≤ Ind X (each partition is a cut)

dim X ≤ Ind X (Vedenissof)

dim X ≤ Dg X (Fedorchuk)

We will reprove the last two inequalities.
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Covering dimension

Here is Hemmingsen’s characterization of dim X ≤ n

reformulated
in terms of closed sets and cast as a formula, δn, in the language
of lattices

(∀x1)(∀x2) · · · (∀xn+2)(∃y1)(∃y2) · · · (∃yn+2)[
(x1 ∩ x2 ∩ · · · ∩ xn+2 = 0) =⇒(

(x1 ≤ y1) ∧ (x2 ≤ y2) ∧ · · · ∧ (xn+2 ≤ yn+2)

∧ (y1 ∩ y2 ∩ · · · ∩ yn+2 = 0)

∧ (y1 ∪ y2 ∪ · · · ∪ yn+2 = 1)
)]

.
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K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Large inductive dimension

We can express IndX ≤ n in a similar fashion, the formula In(a)
becomes (recursively)

(∀x)(∀y)(∃u)[
(
(
(x ≤ a)∧(y ≤ a)∧(x∩y = 0)

)
=⇒

(
partn(u, x , y , a)∧In−1(u)

)]
where partn(u, x , y , a) says that u is a partition between x and y in
the (sub)space a:

(∃f )(∃g)
(
(x ∩ f = 0) ∧ (y ∩ g = 0) ∧ (f ∪ g = a) ∧ (f ∩ g = u)

)
.

We start with I−1(a), which denotes a = 0
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The formula cut(u, x , y , a) expresses that u is a cut between x and
y in a:
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,
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Ind X ≤ n iff 2X � In(X )

Dg X ≤ n iff 2X � ∆n(X )
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K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Covering dimension

Theorem

Let X be compact. Then dim X ≤ n iff some (every) lattice-base
for its closed sets satisfies δn.

Proof.

Both directions use swelling and shrinking to replace the finite
families by combinatorially equivalent subfamilies of the base.
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The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

Covering dimension

Theorem

Let X be compact. Then dim X ≤ n iff some (every) lattice-base
for its closed sets satisfies δn.

Proof.

Both directions use swelling and shrinking to replace the finite
families by combinatorially equivalent subfamilies of the base.
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Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, B, for its closed
sets satisfies In(X ) then Ind X ≤ n.

Proof.

Induction: given A and B expand them to A′,B ′ ∈ B. Then find
L ∈ B, between A′ and B ′, such that BL = {D ∈ B : D ⊆ L}
satisfies In−1(L). As BL is a base for the closed sets of L we know,
by inductive assumption, that Ind L ≤ n − 1.

No equivalence, see later.
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Theorem

Let X be compact. If some lattice lattice-base, B, for its closed
sets satisfies ∆n(X ) then

we can’t say anything about Dg X.

Proof.

Let X = [0, 1] and let B be the lattice-base generated by the
family of sets of the form [0, q] ∪ {q + 2−n : n ∈ ω} (q rational)
and [p, 1] ∪ {p − 2−n : n ∈ ω} (p irrational).
B has no connected elements, hence it satisfies ∆0(X ) vacuously
but Dg[0, 1] = 1.
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dim wL = dim X

Proof.

By elementarity we see that 2X � δn iff L � δn. Previous theorem:
L satisfies δn iff 2wL does.
It follows that dim X ≤ n iff dim wL ≤ n for all n.
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The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

Covering dimension

Theorem

dim wL = dim X

Proof.

By elementarity we see that 2X � δn iff L � δn. Previous theorem:
L satisfies δn iff 2wL does.
It follows that dim X ≤ n iff dim wL ≤ n for all n.
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Ind wL ≤ Ind X

Proof.

By elementarity we see that 2X � In(X ) iff L � In(X ). By previous
theorem we know IndwL ≤ n, whenever L satisfies In(wL).
Thus: IndX ≤ n implies Ind wL ≤ n.

K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Theorem

Dg wL ≤ Dg X

Nonproof

By elementarity we see that 2X � ∆n(X ) iff L � ∆n(X ).
By previous theorem we know nothing yet about Dg wL.
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Theorem

Dg wL ≤ Dg X

Proof.

Let A and B be closed and disjoint in wL. Wlog: A,B ∈ L.
Elementarity: there is C ∈ L that is a cut between A and B in X
and that satisfies ∆n−1(C ) ≤ n − 1.
Inductive assumption: Dg C ≤ n − 1 in wL, because
M = {D ∈ L : D ⊆ C} is an elementary sublattice of
{D ∈ 2X : D ⊆ C} and C -in-wL is wM.
Still to show: C -in-wL is a cut between A and B in wL.
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Proof (continued)

Let F be a closed set in wL that meets A and B but not C .

We show F is not connected.
Find H in L around F , disjoint from C .
Back in X no component of H meets C , hence it does not meet
both A and B.
By well-known topology and elementarity there are disjoint
elements HA and HB of L such that H = HA ∪ HB , A ∩ H ⊆ HA

and B ∩ H ⊆ HB .
Down in wL we have exactly the same relations, so HA and HB

show F is not connected.
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The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

Proof (continued)

Let F be a closed set in wL that meets A and B but not C .
We show F is not connected.

Find H in L around F , disjoint from C .
Back in X no component of H meets C , hence it does not meet
both A and B.
By well-known topology and elementarity there are disjoint
elements HA and HB of L such that H = HA ∪ HB , A ∩ H ⊆ HA

and B ∩ H ⊆ HB .
Down in wL we have exactly the same relations, so HA and HB

show F is not connected.
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Finishing up

Let X be compact Hausdorff and let L be a countable elementary
sublattice of 2X . Then

Vedenissof: dim X = dim wL = IndwL ≤ Ind X

Fedorchuk: dim X = dim wL = Dg wL ≤ Dg X

There are X with dim X < Dg X , so Dg wL < Dg X and
Ind wL < Ind X are possible.
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The result

Given a metric continuum X there is another metric continuum Y
such that

X and Y look the same
(they have elementarily equivalent countable bases)

X and Y are not homeomorphic
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Example: zero-dimensionality

Here is a first-order sentence, call it ζ

(∀x)(∀y)(∃u)(∃v)(
(x u y = 0) → ((x ≤ u) ∧ (y ≤ v) ∧ (u u v = 0) ∧ (u t v = 1))

)

In words: any two disjoint closed sets (x and y) can be separated
by clopen sets (u and v).
By compactness, if some base satisfies this sentence then the space
is zero-dimensional.
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Example: no isolated points

Here is a another first-order sentence, call it π

(∀x)(∃y)
(
(x < 1) → ((x < y) ∧ (y < 1))

)

In words: every closed proper subset (x) is properly contained in a
closed proper subset (y);
in fewer words: there are no isolated points.
If some base satisfies this sentence then the space has no isolated
points.

K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Example: the Cantor set is categorical

Let X be compact metric with a countable base B for the closed
sets that satisfies ζ and π.

Then X is zero-dimensional and without isolated points.
So X is (homeomorphic to) the Cantor set C .

Thus: if X looks like C then X is homeomorphic to C .

The Cantor set is categorical among compact metric spaces.

K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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What the main result says

Among metric continua there is no categorical space.

No (in)finite list of first-order properties will characterize a single
metric continuum.

K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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A case in point: the pseudoarc

The pseudoarc is the only metric continuum that is

hereditarily indecomposable and

chainable

A two-item list but . . .
Chainability is not first-order.
(Hereditary indecomposability is.)
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An embedding lemma

Lemma

Let X and Z be metric continua, with countable lattice bases, B
and C, for their respective families of closed sets.
Let u be a free ultrafilter on ω.
There is an embedding of C into the ultrapower of B by u.
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How to make Y

Let X and Z be metric continua, with countable lattice bases, B
and C, for their respective families of closed sets.

Let u be a free ultrafilter on ω.
Let ϕ : C → Bu be an embedding.

Apply the Löwenheim-Skolem theorem:
Find a countable elementary sublattice D of Bu that contains ϕ[C].
Let Y be the Wallman space of D.
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Properties of Y

Y is compact metric (D is countable).

D is a base for the closed sets of Y (by Wallman’s theorem).

D is elementarily equivalent to Bu and hence to B.

Y maps onto Z (because ϕ[C] is embedded into D).
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Getting a good Y

Let X be given, with a countable base B for its closed sets.

There is a metric continuum Z that is not a continuous image
of X (Waraszkiewicz).
Find Y with a base that is elementarily equivalent to B and
such that Y maps onto Z .
So: Y is not homeomorphic to X .

K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Chainability

Definition

A continuum, X , is chainable if every (finite) open cover U has an
open chain-refinement V.

V can be written as {Vi : i < n} such that Vi ∩ Vj 6= ∅ iff
|i − j | ≤ 1.

[0, 1] is chainable; the circle S1 is not.
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Span zero

Definition

A continuum, X , has xxx span zero if every subcontinuum Z of
X × X that satisfies yyy intersects the diagonal {〈x , x〉 : x ∈ X}.

xxx yyy

. . . π1[Z ] = π2[Z ]
semi π1[Z ] ⊆ π2[Z ]

surjective π1[Z ] = π2[Z ] = X
surjective semi π2[Z ] = X

[0, 1] has all spans zero, S1 has all spans non-zero
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Question (Lelek)

What about the converse?

This is an important problem in metric continuum theory.
We free it from the metric constraints.
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Any counterexample to Lelek’s problem can be converted into a
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Proof.

Let X be a counterexample, let L ≺ 2X . Then wL is a metrizable
counterexample.
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A problem of Lelek
Sources

Complications

(Non-)chainability is not a firt-order property of the lattice 2X .

Their natural formulations are Lω1,ω-formulas.

Chainability:

(∀u1)(∀u2)(∀u3)(∀u4)
(
(u1∪u2∪u3∪u4 = X ) →

∨
n∈ω

Φn(u1, u2, u3, u4)
)

where Φn(u1, u2, u3, u4) expresses that {u1, u2, u3, u4} has an
n-element chain refinement.

It suffices to consider four-element open covers only.
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Solution: Use Set Theory

Let θ be ‘suitably large’ and let M ≺ H(θ) be a countable
elementary substructure

and let L = M ∩ 2X .

Theorem

In this situation:

wL is chainable iff X is chainable

wL has span zero iff X has span zero (any kind)

Proof for Chainability.

Chainability is now first-order and, like covering dimension, one
needs only consider covers and refinements that belong to a certain
base.
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K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Categoricity

A problem of Lelek
Sources

Span zero

Key observation: let K = M ∩ 2X×X , then wK = wL× wL.

This gives the easy part: if there is a ‘bad’ continuum in X × X
then there is one in M and it is equally bad in wL× wL.

For the converse . . .
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The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

Span zero

Key observation: let K = M ∩ 2X×X , then wK = wL× wL.

This gives the easy part: if there is a ‘bad’ continuum in X × X
then there is one in M and it is equally bad in wL× wL.

For the converse . . .
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Span zero, continued

. . . if Z ⊆ wL× wL is ‘bad’ then there is an equally bad
continuum in X × X that maps onto Z .

Easier said than constructed: the difficulty lies in the fact that K is
not (necessarily) an elementary substructure of 2wK .

K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Span zero, the real argument

Apply Shelah’s Ultrapower theorem

: take a cardinal κ, an
ultrafilter u on κ and an isomorphism h :

∏
u(2

X×X ) →
∏

u wK
(which can be taken to be the identity on K ).

How does that help?

For that we need some topology.
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The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

Span zero, the real argument

Apply Shelah’s Ultrapower theorem: take a cardinal κ, an
ultrafilter u on κ and an isomorphism h :

∏
u(2

X×X ) →
∏

u wK
(which can be taken to be the identity on K ).

How does that help?

For that we need some topology.
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Sources

Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also
take a cardinal κ and an ultrafilter u on κ.

Consider β(κ× Y ). We have two maps

pκ : β(κ× Y ) → βκ (the extension of 〈α, y〉 7→ α).

pY : β(κ× Y ) → βκ (the extension of 〈α, y〉 7→ y).

The Wallman space of the ultrapower
∏

u B is the fiber p←κ (u).
Bankston calls this the ultracopower of Y ; we write Yu.

K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Sources

Span zero, the real argument

Back to Z ⊆ wK .

Let Zu = cl(κ× Z ) ∩ p←κ (u).

Zu is a continuum

wh[Zu] is a continuum in (X × X )u (wh is dual to h).

ZX = pX×X

[
wh[Zu]

]
is a continuum in X × X .

And

qK [ZX ] = qK

[
pX×X

[
wh[Zu]

]]
= pwK

[
(wh)−1

[
wh[Zu]

]]
= Z

So, that’s it!? Almost.

K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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K. P. Hart The Löwenheim-Skolem theorem has been very good to me
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Let Zu = cl(κ× Z ) ∩ p←κ (u).

Zu is a continuum

wh[Zu] is a continuum in (X × X )u (wh is dual to h).

ZX = pX×X

[
wh[Zu]

]
is a continuum in X × X .

And

qK [ZX ] = qK

[
pX×X

[
wh[Zu]

]]
= pwK

[
(wh)−1

[
wh[Zu]

]]
= Z
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K. P. Hart The Löwenheim-Skolem theorem has been very good to me



The Löwenheim-Skolem theorem
Dimensions
Categoricity

A problem of Lelek
Sources

Span zero, the real argument

First expand the language of lattice with two function symbols π1

and π2.

Apply Shelah’s theorem with this extended language. Then ZX will
inherit the mapping properties that Z has.

Finally then: if X is a non-chainable continuum that has span zero
(of one of the four kinds) than so is wL.
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Website: fa.its.tudelft.nl/~hart
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Elementarity and dimensions, Mathematical Notes, 78 (2005),
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K. P. Hart.
There is no categorical metric continuum, to appear.

D. Bartošová, K. P. Hart, B. van der Steeg,
Lelek’s problem is not a metric problem, to appear.
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