The Löwenheim-Skolem theorem has been very good to me Non impeditus ab ulla scientia

K. P. Hart

Faculty EEMCS TU Delft

Paris, 10 November, 2008: 14:00-15:15

2 Dimensions

白 ト イヨ ト イヨト

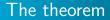
2 Dimensions

3 Categoricity

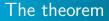
A problem of Lelek

5 Sources

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶



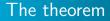
Just so we know what we are talking about.



Just so we know what we are talking about.

Theorem

Let A be a structure for some language \mathcal{L} and let X be a subset of A. There is an elementary substructure B of A of cardinality at most $\aleph_0 \cdot |X| \cdot |\mathcal{L}|$.

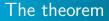


Just so we know what we are talking about.

Theorem

Let A be a structure for some language \mathcal{L} and let X be a subset of A. There is an elementary substructure B of A of cardinality at most $\aleph_0 \cdot |X| \cdot |\mathcal{L}|$.

We consider two languages:



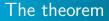
Just so we know what we are talking about.

Theorem

Let A be a structure for some language \mathcal{L} and let X be a subset of A. There is an elementary substructure B of A of cardinality at most $\aleph_0 \cdot |X| \cdot |\mathcal{L}|$.

We consider two languages:

lattice theory



Just so we know what we are talking about.

Theorem

Let A be a structure for some language \mathcal{L} and let X be a subset of A. There is an elementary substructure B of A of cardinality at most $\aleph_0 \cdot |X| \cdot |\mathcal{L}|$.

We consider two languages:

- lattice theory
- set theory

• Let X be a compact Hausdorff space and 2^X its family of closed sets.

- Let X be a compact Hausdorff space and 2^X its family of closed sets.
- We take a countable elementary sublattice, L, of 2^X .

- Let X be a compact Hausdorff space and 2^X its family of closed sets.
- We take a countable elementary sublattice, L, of 2^{X} .
- We take the Wallman space, wL, of L.

- Let X be a compact Hausdorff space and 2^X its family of closed sets.
- We take a countable elementary sublattice, L, of 2^{X} .
- We take the Wallman space, wL, of L.
- wL is compact metrizable and looks a lot like X.

- Let X be a compact Hausdorff space and 2^X its family of closed sets.
- We take a countable elementary sublattice, L, of 2^X.
- We take the Wallman space, wL, of L.
- wL is compact metrizable and looks a lot like X.
- We can use wL to get information about X.

- Let X be a compact Hausdorff space and 2^X its family of closed sets.
- We take a countable elementary sublattice, L, of 2^X.
- We take the Wallman space, wL, of L.
- wL is compact metrizable and looks a lot like X.
- We can use wL to get information about X.
- Or reduce general problems to the metrizable case.

Wallman space

It's like the Stone space of a Boolean algebra.

• Underlying set of *wL*: the ultrafilters on *L*.

Wallman space

- Underlying set of *wL*: the ultrafilters on *L*.
- For $a \in L$ put $\bar{a} = \{u \in wL : a \in u\}$.

Wallman space

- Underlying set of *wL*: the ultrafilters on *L*.
- For $a \in L$ put $\bar{a} = \{u \in wL : a \in u\}$.
- $\{\bar{a}: a \in L\}$ serves as a base for the closed sets of wL.

Wallman space

- Underlying set of *wL*: the ultrafilters on *L*.
- For $a \in L$ put $\bar{a} = \{u \in wL : a \in u\}$.
- $\{\bar{a} : a \in L\}$ serves as a base for the closed sets of wL.
- The map $q_L : x \mapsto \{a \in L : x \in a\}$ is a continuous surjection.

Wallman space

- Underlying set of *wL*: the ultrafilters on *L*.
- For $a \in L$ put $\bar{a} = \{u \in wL : a \in u\}$.
- $\{\bar{a} : a \in L\}$ serves as a base for the closed sets of wL.
- The map $q_L : x \mapsto \{a \in L : x \in a\}$ is a continuous surjection.
- Because *L* is countable, the space *wL* is metrizable

- 3 Categoricity
- A problem of Lelek

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Covering dimension

Definition

 $\dim X \le n$ if every finite open cover has a (finite) open refinement of order at most n+1

日 ・ ・ ヨ ・ ・

Covering dimension

Definition

dim $X \le n$ if every finite open cover has a (finite) open refinement of order at most n + 1(i.e., every n + 2-element subfamily has an empty intersection).

Covering dimension

Definition

dim $X \le n$ if every finite open cover has a (finite) open refinement of order at most n + 1(i.e., every n + 2-element subfamily has an empty intersection).

There is a convenient first-order characterization.

Covering dimension

Definition

dim $X \le n$ if every finite open cover has a (finite) open refinement of order at most n + 1(i.e., every n + 2-element subfamily has an empty intersection).

There is a convenient first-order characterization.

Theorem (Hemmingsen)

dim $X \le n$ iff every n + 2-element open cover has a shrinking with an empty intersection.

Large inductive dimension

Definition

Ind $X \le n$ if between every two disjoint closed sets A and B there is a partition L that satisfies $\text{Ind } L \le n - 1$.

Large inductive dimension

Definition

Ind $X \leq n$ if between every two disjoint closed sets A and B there is a partition L that satisfies $\operatorname{Ind} L \leq n-1$. The starting point: $\operatorname{Ind} X \leq -1$ iff $X = \emptyset$.

Large inductive dimension

Definition

Ind $X \leq n$ if between every two disjoint closed sets A and B there is a partition L that satisfies $\operatorname{Ind} L \leq n-1$. The starting point: $\operatorname{Ind} X \leq -1$ iff $X = \emptyset$.

L is a partition between A and B means:

Large inductive dimension

Definition

Ind $X \leq n$ if between every two disjoint closed sets A and B there is a partition L that satisfies $\operatorname{Ind} L \leq n-1$. The starting point: $\operatorname{Ind} X \leq -1$ iff $X = \emptyset$.

L is a partition between *A* and *B* means: there are closed sets *F* and *G* that cover *X* and satisfy: $F \cap B = \emptyset$, $G \cap A = \emptyset$ and $F \cap G = L$.

Dimensionsgrad

Definition

 $\operatorname{Dg} X \leq n$ between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} C \leq n-1$.

・日・ ・ヨ・ ・

Dimensionsgrad

Definition

 $\operatorname{Dg} X \leq n$ between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} C \leq n-1$. The starting point: $\operatorname{Dg} X \leq -1$ iff $X = \emptyset$.

Dimensionsgrad

Definition

 $\operatorname{Dg} X \leq n$ between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} C \leq n-1$. The starting point: $\operatorname{Dg} X \leq -1$ iff $X = \emptyset$.

C is a cut between A and B means:

Dimensionsgrad

Definition

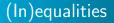
 $\operatorname{Dg} X \leq n$ between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} C \leq n-1$. The starting point: $\operatorname{Dg} X \leq -1$ iff $X = \emptyset$.

C is a cut between *A* and *B* means: $C \cap K \neq \emptyset$ whenever *K* is a subcontinuum of *X* that meets both *A* and *B*.

• For σ -compact metric X: dim X

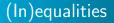
K. P. Hart The Löwenheim-Skolem theorem has been very good to me

・ 同 ト ・ ヨ ト ・ ヨ ト



• For σ -compact metric X: dim $X = \operatorname{Ind} X$

< 同 > < 三 > < 三 >



• For σ -compact metric X: dim $X = \operatorname{Ind} X = \operatorname{Dg} X$

- For σ -compact metric X: dim $X = \operatorname{Ind} X = \operatorname{Dg} X$
- The first equality is classical and holds for all metric X

- For σ -compact metric X: dim $X = \operatorname{Ind} X = \operatorname{Dg} X$
- The first equality is classical and holds for all metric X
- the second is fairly recent (1999).

- For σ-compact metric X: dim X = Ind X = Dg X
- The first equality is classical and holds for all metric X
- the second is fairly recent (1999).
- There is for each *n* a locally connected Polish X_n with $\operatorname{Dg} X_n = 1$ and dim $X_n = n$ (Fedorchuk, van Mill)

More inequalities

For arbitrary compact Hausdorff spaces

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

More inequalities

For arbitrary compact Hausdorff spaces:

• $Dg X \leq Ind X$ (each partition is a cut)

More inequalities

For arbitrary compact Hausdorff spaces:

- $Dg X \leq Ind X$ (each partition is a cut)
- dim $X \leq \operatorname{Ind} X$ (Vedenissof)

More inequalities

For arbitrary compact Hausdorff spaces:

- $Dg X \leq Ind X$ (each partition is a cut)
- dim $X \leq \operatorname{Ind} X$ (Vedenissof)
- dim X ≤ Dg X (Fedorchuk)

More inequalities

For arbitrary compact Hausdorff spaces:

- $Dg X \leq Ind X$ (each partition is a cut)
- dim $X \leq \operatorname{Ind} X$ (Vedenissof)
- dim $X \leq Dg X$ (Fedorchuk)

We will reprove the last two inequalities.

Covering dimension

Here is Hemmingsen's characterization of dim $X \leq n$

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

▲□ ▶ ▲ □ ▶ ▲ □

Covering dimension

Here is Hemmingsen's characterization of dim $X \leq n$ reformulated in terms of closed sets

▲□ ▶ ▲ □ ▶ ▲ □

Covering dimension

Here is Hemmingsen's characterization of dim $X \le n$ reformulated in terms of closed sets and cast as a formula, δ_n , in the language of lattices

・日・ ・ヨ・ ・

Covering dimension

Here is Hemmingsen's characterization of dim $X \le n$ reformulated in terms of closed sets and cast as a formula, δ_n , in the language of lattices

$$(\forall x_1)(\forall x_2)\cdots(\forall x_{n+2})(\exists y_1)(\exists y_2)\cdots(\exists y_{n+2}) \\ [(x_1 \cap x_2 \cap \cdots \cap x_{n+2} = \mathbf{0}) \implies \\ ((x_1 \leq y_1) \wedge (x_2 \leq y_2) \wedge \cdots \wedge (x_{n+2} \leq y_{n+2}) \\ \wedge (y_1 \cap y_2 \cap \cdots \cap y_{n+2} = \mathbf{0}) \\ \wedge (y_1 \cup y_2 \cup \cdots \cup y_{n+2} = \mathbf{1}))].$$

Delft University of Technology

Large inductive dimension

We can express $\operatorname{Ind} X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

Large inductive dimension

We can express $\operatorname{Ind} X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

 $(\forall x)(\forall y)(\exists u)$ $[(((x \le a) \land (y \le a) \land (x \cap y = o)) \implies (partn(u, x, y, a) \land I_{n-1}(u))]$

通 と く ヨ と く ヨ と

Large inductive dimension

We can express $\operatorname{Ind} X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u) [(((x \le a) \land (y \le a) \land (x \cap y = o)) \implies (partn(u, x, y, a) \land I_{n-1}(u))]$$

where partn(u, x, y, a) says that u is a partition between x and y in the (sub)space a:

Large inductive dimension

We can express $\operatorname{Ind} X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u) [(((x \le a) \land (y \le a) \land (x \cap y = o)) \implies (partn(u, x, y, a) \land I_{n-1}(u))]$$

where partn(u, x, y, a) says that u is a partition between x and y in the (sub)space a:

$$(\exists f)(\exists g)((x \cap f = o) \land (y \cap g = o) \land (f \cup g = a) \land (f \cap g = u)).$$

Large inductive dimension

We can express $\operatorname{Ind} X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u) [(((x \le a) \land (y \le a) \land (x \cap y = o)) \implies (partn(u, x, y, a) \land I_{n-1}(u))]$$

where partn(u, x, y, a) says that u is a partition between x and y in the (sub)space a:

$$(\exists f)(\exists g)((x \cap f = o) \land (y \cap g = o) \land (f \cup g = a) \land (f \cap g = u)).$$

We start with $I_{-1}(a)$, which denotes a = o

″uDelft

Dimensionsgrad

Here we have the recursive definition of a formula $\Delta_n(a)$:

Dimensionsgrad

Here we have the recursive definition of a formula $\Delta_n(a)$:

$$(\forall x)(\forall y)(\exists u) [((x \le a) \land (y \le a) \land (x \cap y = o)) \implies (\operatorname{cut}(u, x, y, a) \land \Delta_{n-1}(u))],$$

Dimensionsgrad

Here we have the recursive definition of a formula $\Delta_n(a)$:

$$\begin{aligned} &(\forall x)(\forall y)(\exists u)\\ &\left[\left((x \leq a) \land (y \leq a) \land (x \cap y = o)\right) \implies (\operatorname{cut}(u, x, y, a) \land \Delta_{n-1}(u))\right],\\ &\text{and } \Delta_{-1}(a) \text{ denotes } a = o. \end{aligned}$$

Dimensionsgrad (auxiliary formulas)

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

Dimensionsgrad (auxiliary formulas)

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

$$(\forall v) [((v \leq a) \land \operatorname{conn}(v) \land (v \cap x \neq o) \land (v \cap y \neq o)) \implies (v \cap u \neq o)],$$

Dimensionsgrad (auxiliary formulas)

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

$$(\forall v) [((v \leq a) \land \operatorname{conn}(v) \land (v \cap x \neq o) \land (v \cap y \neq o)) \implies (v \cap u \neq o)],$$

and conn(a) says that a is connected:

Dimensionsgrad (auxiliary formulas)

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

$$(\forall v) [((v \leq a) \land \operatorname{conn}(v) \land (v \cap x \neq o) \land (v \cap y \neq o)) \implies (v \cap u \neq o)],$$

and conn(a) says that a is connected:

$$(\forall x)(\forall y)[((x \cap y = 0) \land (x \cup y = a)) \implies ((x = 0) \lor (x = a))],$$

Why formulas?

• dim
$$X \leq n$$
 iff $2^X \models \delta_n$

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

→ 母→ → 国→ → 国→

Why formulas?

• dim
$$X \leq n$$
 iff $2^X \models \delta_n$

• Ind
$$X \leq n$$
 iff $2^X \vDash I_n(X)$

<ロ> <同> <同> < 回> < 回>

Why formulas?

• dim
$$X \leq n$$
 iff $2^X \models \delta_n$

• Ind
$$X \leq n$$
 iff $2^X \vDash I_n(X)$

•
$$\operatorname{Dg} X \leq n$$
 iff $2^X \vDash \Delta_n(X)$

<ロ> <同> <同> < 回> < 回>

Covering dimension

Theorem

Let X be compact. Then dim $X \le n$ iff some (every) lattice-base for its closed sets satisfies δ_n .

Covering dimension

Theorem

Let X be compact. Then dim $X \le n$ iff some (every) lattice-base for its closed sets satisfies δ_n .

Proof.

Both directions use swelling and shrinking to replace the finite families by combinatorially equivalent subfamilies of the base.

Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $I_n(X)$ then $\operatorname{Ind} X \leq n$.

Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $I_n(X)$ then $\operatorname{Ind} X \leq n$.

Proof.

Induction: given A and B expand them to $A', B' \in \mathcal{B}$. Then find $L \in \mathcal{B}$, between A' and B', such that $\mathcal{B}_L = \{D \in \mathcal{B} : D \subseteq L\}$ satisfies $I_{n-1}(L)$. As \mathcal{B}_L is a base for the closed sets of L we know, by inductive assumption, that $\operatorname{Ind} L \leq n-1$.

Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $I_n(X)$ then $\operatorname{Ind} X \leq n$.

Proof.

Induction: given A and B expand them to $A', B' \in \mathcal{B}$. Then find $L \in \mathcal{B}$, between A' and B', such that $\mathcal{B}_L = \{D \in \mathcal{B} : D \subseteq L\}$ satisfies $I_{n-1}(L)$. As \mathcal{B}_L is a base for the closed sets of L we know, by inductive assumption, that $\operatorname{Ind} L \leq n-1$.

No equivalence, see later.

Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then

Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about $\operatorname{Dg} X$.

Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about $\operatorname{Dg} X$.

Proof.

Let X = [0, 1] and let \mathcal{B} be the lattice-base generated by the family of sets of the form $[0, q] \cup \{q + 2^{-n} : n \in \omega\}$ (q rational) and $[p, 1] \cup \{p - 2^{-n} : n \in \omega\}$ (p irrational).

IUDelft

- 4 同 2 4 日 2 4 日 2 4

Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about $\operatorname{Dg} X$.

Proof.

Let X = [0, 1] and let \mathcal{B} be the lattice-base generated by the family of sets of the form $[0, q] \cup \{q + 2^{-n} : n \in \omega\}$ (q rational) and $[p, 1] \cup \{p - 2^{-n} : n \in \omega\}$ (p irrational). \mathcal{B} has no connected elements, hence it satisfies $\Delta_0(X)$ vacuously

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

- 4 回 2 4 回 2 4 回 2 4

UDelft

Dimensionsgrad

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about $\operatorname{Dg} X$.

Proof.

Let X = [0, 1] and let \mathcal{B} be the lattice-base generated by the family of sets of the form $[0, q] \cup \{q + 2^{-n} : n \in \omega\}$ (q rational) and $[p, 1] \cup \{p - 2^{-n} : n \in \omega\}$ (p irrational). \mathcal{B} has no connected elements, hence it satisfies $\Delta_0(X)$ vacuously but Dg[0, 1] = 1.

Covering dimension

Theorem

 $\dim wL = \dim X$

- 4 回 🕨 🔺 国 🕨 🔺 国

Covering dimension

Theorem

 $\dim wL = \dim X$

Proof.

By elementarity we see that $2^X \vDash \delta_n$ iff $L \vDash \delta_n$.

Covering dimension

Theorem

 $\dim wL = \dim X$

Proof.

By elementarity we see that $2^X \vDash \delta_n$ iff $L \vDash \delta_n$. Previous theorem: L satisfies δ_n iff 2^{wL} does.

Covering dimension

Theorem

 $\dim wL = \dim X$

Proof.

By elementarity we see that $2^X \models \delta_n$ iff $L \models \delta_n$. Previous theorem: L satisfies δ_n iff 2^{wL} does. It follows that dim $X \le n$ iff dim $wL \le n$ for all n.

Large inductive dimension

Theorem

 $\operatorname{Ind} wL \leq \operatorname{Ind} X$

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

▲□ ▶ ▲ 臣 ▶ ▲ 臣

Large inductive dimension

Theorem

 $\operatorname{Ind} wL \leq \operatorname{Ind} X$

Proof.

By elementarity we see that $2^X \vDash I_n(X)$ iff $L \vDash I_n(X)$.

Large inductive dimension

Theorem

Ind $wL \leq \operatorname{Ind} X$

Proof.

By elementarity we see that $2^X \models I_n(X)$ iff $L \models I_n(X)$. By previous theorem we know $\text{Ind } wL \le n$, whenever L satisfies $I_n(wL)$.

Large inductive dimension

Theorem

Ind $wL \leq \operatorname{Ind} X$

Proof.

By elementarity we see that $2^X \models I_n(X)$ iff $L \models I_n(X)$. By previous theorem we know $\text{Ind } wL \le n$, whenever L satisfies $I_n(wL)$. Thus: $\text{Ind } X \le n$ implies $\text{Ind } wL \le n$.

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, wL \leq \mathsf{Dg} \, X$

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

Dimensionsgrad

Theorem

 $\operatorname{Dg} wL \leq \operatorname{Dg} X$

Nonproof

By elementarity we see that
$$2^X \vDash \Delta_n(X)$$
 iff $L \vDash \Delta_n(X)$.

・日・ ・ ヨ・ ・

Dimensionsgrad

Theorem

 $\operatorname{Dg} wL \leq \operatorname{Dg} X$

Nonproof

By elementarity we see that $2^X \models \Delta_n(X)$ iff $L \models \Delta_n(X)$. By previous theorem we know nothing yet about Dg *wL*.

Dimensionsgrad

Theorem

 $\operatorname{Dg} wL \leq \operatorname{Dg} X$

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

Dimensionsgrad

Theorem

 $\operatorname{Dg} wL \leq \operatorname{Dg} X$

Proof.

Let A and B be closed and disjoint in wL. Wlog: $A, B \in L$.

Delft University of Technology

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, \mathsf{wL} \leq \mathsf{Dg} \, X$

Proof.

Let A and B be closed and disjoint in wL. Wlog: $A, B \in L$. Elementarity: there is $C \in L$ that is a cut between A and B in X and that satisfies $\Delta_{n-1}(C) \leq n-1$.

Delft University of Technolog

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, \mathsf{wL} \leq \mathsf{Dg} \, \mathsf{X}$

Proof.

Let A and B be closed and disjoint in wL. Wlog: $A, B \in L$. Elementarity: there is $C \in L$ that is a cut between A and B in X and that satisfies $\Delta_{n-1}(C) \leq n-1$. Inductive assumption: Dg $C \leq n-1$ in wL

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

Delft University of Technolog

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, \mathsf{wL} \leq \mathsf{Dg} \, \mathsf{X}$

Proof.

Let A and B be closed and disjoint in wL. Wlog: $A, B \in L$. Elementarity: there is $C \in L$ that is a cut between A and B in X and that satisfies $\Delta_{n-1}(C) \leq n-1$. Inductive assumption: $Dg C \leq n-1$ in wL, because $M = \{D \in L : D \subseteq C\}$ is an elementary sublattice of $\{D \in 2^X : D \subseteq C\}$ and C-in-wL is wM.

Delft University of Technol

Dimensionsgrad

Theorem

 $\mathsf{Dg} \, \mathsf{wL} \leq \mathsf{Dg} \, X$

Proof.

Let A and B be closed and disjoint in wL. Wlog: $A, B \in L$. Elementarity: there is $C \in L$ that is a cut between A and B in X and that satisfies $\Delta_{n-1}(C) \leq n-1$. Inductive assumption: $Dg C \leq n-1$ in wL, because $M = \{D \in L : D \subseteq C\}$ is an elementary sublattice of $\{D \in 2^X : D \subseteq C\}$ and C-in-wL is wM. Still to show: C-in-wL is a cut between A and B in wL.

Delft University of Technology

Proof (continued)

Let F be a closed set in wL that meets A and B but not C.

Delft University of Technology

白 ト イヨ ト イヨト

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Delft University of Technology

伺 ト イヨ ト イヨト

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected. Find H in L around F, disjoint from C.

Delft University of Technology

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected. Find H in L around F, disjoint from C. Back in X no component of H meets C, hence it does *not* meet both A and B.

. . . .

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected. Find H in L around F, disjoint from C. Back in X no component of H meets C, hence it does *not* meet both A and B.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Find H in L around F, disjoint from C.

Back in X no component of H meets C, hence it does *not* meet both A and B.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Find H in L around F, disjoint from C.

Back in X no component of H meets C, hence it does *not* meet both A and B.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Find H in L around F, disjoint from C.

Back in X no component of H meets C, hence it does *not* meet both A and B.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$ and $B \cap H \subseteq H_B$.

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Find H in L around F, disjoint from C.

Back in X no component of H meets C, hence it does *not* meet both A and B.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$ and $B \cap H \subseteq H_B$.

Down in wL we have exactly the same relations, so H_A and H_B show F is not connected.

Let X be compact Hausdorff and let L be a *countable* elementary sublattice of 2^X . Then

Let X be compact Hausdorff and let L be a *countable* elementary sublattice of 2^X . Then

Vedenissof: dim $X = \dim wL = \operatorname{Ind} wL \leq \operatorname{Ind} X$

Let X be compact Hausdorff and let L be a *countable* elementary sublattice of 2^X . Then

Vedenissof: dim $X = \dim wL = \operatorname{Ind} wL \leq \operatorname{Ind} X$ Fedorchuk: dim $X = \dim wL = \operatorname{Dg} wL \leq \operatorname{Dg} X$

Finishing up

Let X be compact Hausdorff and let L be a *countable* elementary sublattice of 2^X . Then

Vedenissof: dim $X = \dim wL = \operatorname{Ind} wL \leq \operatorname{Ind} X$

Fedorchuk: dim $X = \dim wL = \operatorname{Dg} wL \leq \operatorname{Dg} X$

There are X with dim X < Dg X, so Dg wL < Dg X and Ind wL < Ind X are possible.

2 Dimensions

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Given a metric continuum \boldsymbol{X} there is another metric continuum \boldsymbol{Y} such that

Given a metric continuum X there is another metric continuum Y such that

• X and Y look the same (they have elementarily equivalent countable bases)

Given a metric continuum X there is another metric continuum Y such that

- X and Y look the same (they have elementarily equivalent countable bases)
- X and Y are not homeomorphic

Example: zero-dimensionality

Here is a first-order sentence, call it $\boldsymbol{\zeta}$

$$(\forall x)(\forall y)(\exists u)(\exists v) ((x \sqcap y = o) \to ((x \le u) \land (y \le v) \land (u \sqcap v = o) \land (u \sqcup v = 1)))$$

Example: zero-dimensionality

Here is a first-order sentence, call it ζ

$$(\forall x)(\forall y)(\exists u)(\exists v) ((x \sqcap y = 0) \to ((x \le u) \land (y \le v) \land (u \sqcap v = 0) \land (u \sqcup v = 1)))$$

In words: any two disjoint closed sets (x and y) can be separated by clopen sets (u and v).

Example: zero-dimensionality

Here is a first-order sentence, call it ζ

$$(\forall x)(\forall y)(\exists u)(\exists v) ((x \sqcap y = 0) \to ((x \le u) \land (y \le v) \land (u \sqcap v = 0) \land (u \sqcup v = 1)))$$

In words: any two disjoint closed sets (x and y) can be separated by clopen sets (u and v).

By *compactness*, if some base satisfies this sentence then the space is zero-dimensional.

Example: no isolated points

Here is a another first-order sentence, call it $\boldsymbol{\pi}$

$$(\forall x)(\exists y)((x < 1) \rightarrow ((x < y) \land (y < 1)))$$

Example: no isolated points

Here is a another first-order sentence, call it $\boldsymbol{\pi}$

$$(\forall x)(\exists y)((x < 1) \rightarrow ((x < y) \land (y < 1)))$$

In words: every closed proper subset (x) is properly contained in a closed proper subset (y);

Example: no isolated points

Here is a another first-order sentence, call it $\boldsymbol{\pi}$

$$(\forall x)(\exists y)((x < 1) \rightarrow ((x < y) \land (y < 1)))$$

In words: every closed proper subset (x) is properly contained in a closed proper subset (y);

in fewer words: there are no isolated points.

Example: no isolated points

Here is a another first-order sentence, call it $\boldsymbol{\pi}$

$$(\forall x)(\exists y)((x < 1) \rightarrow ((x < y) \land (y < 1)))$$

In words: every closed proper subset (x) is properly contained in a closed proper subset (y);

in fewer words: there are no isolated points.

If some base satisfies this sentence then the space has no isolated points.

Example: the Cantor set is categorical

Let X be compact metric with a countable base \mathcal{B} for the closed sets that satisfies ζ and π .

Example: the Cantor set is categorical

Let X be compact metric with a countable base \mathcal{B} for the closed sets that satisfies ζ and π .

Then X is zero-dimensional and without isolated points.

Example: the Cantor set is categorical

Let X be compact metric with a countable base \mathcal{B} for the closed sets that satisfies ζ and π . Then X is zero-dimensional and without isolated points.

So X is (homeomorphic to) the Cantor set C.

Example: the Cantor set is categorical

Let X be compact metric with a countable base \mathcal{B} for the closed sets that satisfies ζ and π . Then X is zero-dimensional and without isolated points. So X is (homeomorphic to) the Cantor set C.

Thus: if X looks like C then X is homeomorphic to C.

Example: the Cantor set is categorical

Let X be compact metric with a countable base \mathcal{B} for the closed sets that satisfies ζ and π . Then X is zero-dimensional and without isolated points. So X is (homeomorphic to) the Cantor set C.

Thus: if X looks like C then X is homeomorphic to C.

The Cantor set is categorical among compact metric spaces.

What the main result says

Among metric continua there is no categorical space.

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

What the main result says

Among metric continua there is no categorical space. No (in)finite list of first-order properties will characterize a single metric continuum.

A case in point: the pseudoarc

The pseudoarc is the only metric continuum that is

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

A case in point: the pseudoarc

The pseudoarc is the only metric continuum that is

• hereditarily indecomposable and

A case in point: the pseudoarc

The pseudoarc is the only metric continuum that is

- hereditarily indecomposable and
- chainable

A case in point: the pseudoarc

The pseudoarc is the only metric continuum that is

- hereditarily indecomposable and
- chainable
- A two-item list but . . .

A case in point: the pseudoarc

The pseudoarc is the only metric continuum that is

- hereditarily indecomposable and
- chainable

A two-item list but Chainability is *not* first-order.

A case in point: the pseudoarc

The pseudoarc is the only metric continuum that is

- hereditarily indecomposable and
- chainable

A two-item list but ... Chainability is *not* first-order. (Hereditary indecomposability is.)

An embedding lemma

Lemma

Let X and Z be metric continua, with countable lattice bases, \mathcal{B} and \mathcal{C} , for their respective families of closed sets. Let u be a free ultrafilter on ω . There is an embedding of \mathcal{C} into the ultrapower of \mathcal{B} by u.

How to make Y

Let X and Z be metric continua, with countable lattice bases, \mathcal{B} and \mathcal{C} , for their respective families of closed sets.

How to make Y

Let X and Z be metric continua, with countable lattice bases, \mathcal{B} and \mathcal{C} , for their respective families of closed sets. Let u be a free ultrafilter on ω .

How to make Y

Let X and Z be metric continua, with countable lattice bases, \mathcal{B} and \mathcal{C} , for their respective families of closed sets. Let u be a free ultrafilter on ω . Let $\varphi : \mathcal{C} \to \mathcal{B}_u$ be an embedding.

How to make Y

Let X and Z be metric continua, with countable lattice bases, \mathcal{B} and \mathcal{C} , for their respective families of closed sets. Let u be a free ultrafilter on ω . Let $\varphi : \mathcal{C} \to \mathcal{B}_u$ be an embedding.

Apply the Löwenheim-Skolem theorem:

How to make Y

Let X and Z be metric continua, with countable lattice bases, \mathcal{B} and \mathcal{C} , for their respective families of closed sets. Let u be a free ultrafilter on ω . Let $\varphi : \mathcal{C} \to \mathcal{B}_u$ be an embedding.

Apply the Löwenheim-Skolem theorem: Find a countable elementary sublattice \mathcal{D} of \mathcal{B}_u that contains $\varphi[\mathcal{C}]$.

How to make Y

Let X and Z be metric continua, with countable lattice bases, \mathcal{B} and \mathcal{C} , for their respective families of closed sets. Let u be a free ultrafilter on ω . Let $\varphi : \mathcal{C} \to \mathcal{B}_u$ be an embedding.

Apply the Löwenheim-Skolem theorem: Find a countable elementary sublattice \mathcal{D} of \mathcal{B}_u that contains $\varphi[\mathcal{C}]$. Let Y be the Wallman space of \mathcal{D} .

• Y is compact metric (\mathcal{D} is countable).

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

白 ト イヨ ト イヨ ト

- Y is compact metric (\mathcal{D} is countable).
- \mathcal{D} is a base for the closed sets of Y (by Wallman's theorem).

- Y is compact metric (\mathcal{D} is countable).
- \mathcal{D} is a base for the closed sets of Y (by Wallman's theorem).
- \mathcal{D} is elementarily equivalent to \mathcal{B}_u and hence to \mathcal{B} .

- Y is compact metric (\mathcal{D} is countable).
- \mathcal{D} is a base for the closed sets of Y (by Wallman's theorem).
- \mathcal{D} is elementarily equivalent to \mathcal{B}_u and hence to \mathcal{B} .
- Y maps onto Z (because $\varphi[\mathcal{C}]$ is embedded into \mathcal{D}).

Getting a good Y

Let X be given, with a countable base \mathcal{B} for its closed sets.

Getting a good Y

Let X be given, with a countable base \mathcal{B} for its closed sets. There is a metric continuum Z that is not a continuous image of X (Waraszkiewicz).

Getting a good Y

Let X be given, with a countable base \mathcal{B} for its closed sets. There is a metric continuum Z that is not a continuous image of X (Waraszkiewicz).

Find Y with a base that is elementarily equivalent to $\mathcal B$ and

Getting a good Y

Let X be given, with a countable base \mathcal{B} for its closed sets. There is a metric continuum Z that is not a continuous image of X (Waraszkiewicz). Find Y with a base that is elementarily equivalent to \mathcal{B} and

such that Y maps onto Z.

Getting a good Y

Let X be given, with a countable base \mathcal{B} for its closed sets. There is a metric continuum Z that is not a continuous image of X (Waraszkiewicz).

Find Y with a base that is elementarily equivalent to \mathcal{B} and such that Y maps onto Z.

So: Y is not homeomorphic to X.

2 Dimensions

3 Categoricity

▲□→ ▲ □→ ▲ □→

Chainability

Definition

A continuum, X, is chainable if every (finite) open cover \mathcal{U} has an open chain-refinement \mathcal{V} .

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

Chainability

Definition

A continuum, X, is chainable if every (finite) open cover \mathcal{U} has an open chain-refinement \mathcal{V} . \mathcal{V} can be written as $\{V_i : i < n\}$ such that $V_i \cap V_j \neq \emptyset$ iff $|i-j| \leq 1$.

Chainability

Definition

A continuum, X, is chainable if every (finite) open cover \mathcal{U} has an open chain-refinement \mathcal{V} . \mathcal{V} can be written as $\{V_i : i < n\}$ such that $V_i \cap V_j \neq \emptyset$ iff $|i-j| \leq 1$.

[0,1] is chainable; the circle S^1 is not.

Span zero

Definition

A continuum, X, has xxx span zero if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.

Span zero

Definition

A continuum, X, has xxx span zero if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.

ххх ууу

Span zero

Definition

A continuum, X, has xxx span zero if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.

 $\begin{array}{ccc} \mathsf{x}\mathsf{x}\mathsf{x} & \mathsf{y}\mathsf{y}\mathsf{y}\\ \ldots & \pi_1[Z] = \pi_2[Z] \end{array}$

Span zero

Definition

A continuum, X, has xxx span zero if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.

$$\begin{array}{ll} \mathsf{xxx} & \mathsf{yyy} \\ \dots & \pi_1[Z] = \pi_2[Z] \\ \mathsf{semi} & \pi_1[Z] \subseteq \pi_2[Z] \end{array}$$

Span zero

Definition

A continuum, X, has xxx span zero if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.

xxx semi surjective

yyy

$$\pi_1[Z] = \pi_2[Z]$$

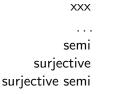
 $\pi_1[Z] \subseteq \pi_2[Z]$
 $\pi_1[Z] = \pi_2[Z] = X$

Span zero

Definition

A continuum, X, has xxx span zero if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.

1/1/1/



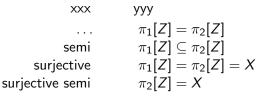
$$\pi_1[Z] = \pi_2[Z]$$

 $\pi_1[Z] \subseteq \pi_2[Z]$
 $\pi_1[Z] = \pi_2[Z] = X$
 $\pi_2[Z] = X$

Span zero

Definition

A continuum, X, has xxx span zero if every subcontinuum Z of $X \times X$ that satisfies yyy intersects the diagonal $\{\langle x, x \rangle : x \in X\}$.



[0,1] has all spans zero, S^1 has all spans non-zero

Theorem

In a chainable continuum all spans are zero.

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

Theorem

In a chainable continuum all spans are zero.

Question (Lelek)

What about the converse?

Theorem

In a chainable continuum all spans are zero.

Question (Lelek)

What about the converse?

This is an important problem in metric continuum theory.

Theorem

In a chainable continuum all spans are zero.

Question (Lelek)

What about the converse?

This is an important problem in metric continuum theory. We free it from the metric constraints.

Reflection

Theorem

Any counterexample to Lelek's problem can be converted into a metrizable counterexample.

Reflection

Theorem

Any counterexample to Lelek's problem can be converted into a metrizable counterexample.

Proof.

Let X be a counterexample, let $L \prec 2^X$. Then wL is a metrizable counterexample.

Reflection

Theorem

Any counterexample to Lelek's problem can be converted into a metrizable counterexample.

Proof.

Let X be a counterexample, let $L \prec 2^X$. Then wL is a metrizable counterexample.

Not quite ...

Complications

(Non-)chainability is not a firt-order property of the lattice 2^{X} .

K. P. Hart The Löwenheim-Skolem theorem has been very good to me

□ > < E > < E</p>

Complications

(Non-)chainability is not a firt-order property of the lattice 2^{X} .

Their natural formulations are $L_{\omega_1,\omega}$ -formulas.

Complications

(Non-)chainability is not a firt-order property of the lattice 2^{X} .

Their natural formulations are $L_{\omega_1,\omega}$ -formulas.

Chainability:

$$(\forall u_1)(\forall u_2)(\forall u_3)(\forall u_4)((u_1\cup u_2\cup u_3\cup u_4=X)\rightarrow \bigvee_{n\in\omega}\Phi_n(u_1,u_2,u_3,u_4))$$

Complications

(Non-)chainability is not a firt-order property of the lattice 2^X .

Their natural formulations are $L_{\omega_1,\omega}$ -formulas.

Chainability:

$$(\forall u_1)(\forall u_2)(\forall u_3)(\forall u_4)((u_1\cup u_2\cup u_3\cup u_4=X)\rightarrow \bigvee_{n\in\omega}\Phi_n(u_1,u_2,u_3,u_4))$$

where $\Phi_n(u_1, u_2, u_3, u_4)$ expresses that $\{u_1, u_2, u_3, u_4\}$ has an *n*-element chain refinement.

Complications

(Non-)chainability is not a firt-order property of the lattice 2^X .

Their natural formulations are $L_{\omega_1,\omega}$ -formulas.

Chainability:

$$(\forall u_1)(\forall u_2)(\forall u_3)(\forall u_4)((u_1\cup u_2\cup u_3\cup u_4=X)\rightarrow \bigvee_{n\in\omega}\Phi_n(u_1,u_2,u_3,u_4))$$

where $\Phi_n(u_1, u_2, u_3, u_4)$ expresses that $\{u_1, u_2, u_3, u_4\}$ has an *n*-element chain refinement.

It suffices to consider four-element open covers only.

Solution: Use Set Theory

Let θ be 'suitably large' and let $M \prec H(\theta)$ be a countable elementary substructure

日 ・ ・ ヨ ・ ・

Solution: Use Set Theory

Let θ be 'suitably large' and let $M \prec H(\theta)$ be a countable elementary substructure and let $L = M \cap 2^X$.

Solution: Use Set Theory

Let θ be 'suitably large' and let $M \prec H(\theta)$ be a countable elementary substructure and let $L = M \cap 2^X$.

Theorem

In this situation:

Solution: Use Set Theory

Let θ be 'suitably large' and let $M \prec H(\theta)$ be a countable elementary substructure and let $L = M \cap 2^X$.

Theorem

In this situation:

• wL is chainable iff X is chainable

Solution: Use Set Theory

Let θ be 'suitably large' and let $M \prec H(\theta)$ be a countable elementary substructure and let $L = M \cap 2^X$.

Theorem

In this situation:

- wL is chainable iff X is chainable
- wL has span zero iff X has span zero (any kind)

Solution: Use Set Theory

Let θ be 'suitably large' and let $M \prec H(\theta)$ be a countable elementary substructure and let $L = M \cap 2^X$.

Theorem

In this situation:

- wL is chainable iff X is chainable
- wL has span zero iff X has span zero (any kind)

Proof for Chainability.

Chainability is now first-order and, like covering dimension, one needs only consider covers and refinements that belong to a certain base. $\hfill \Box$

Key observation: let $K = M \cap 2^{X \times X}$, then $wK = wL \times wL$.

白 ト イヨト イヨト

Key observation: let $K = M \cap 2^{X \times X}$, then $wK = wL \times wL$.

This gives the easy part: if there is a 'bad' continuum in $X \times X$ then there is one in M and it is equally bad in $wL \times wL$.

Span zero

Key observation: let $K = M \cap 2^{X \times X}$, then $wK = wL \times wL$.

This gives the easy part: if there is a 'bad' continuum in $X \times X$ then there is one in M and it is equally bad in $wL \times wL$.

For the converse ...

Span zero, continued

... if $Z \subseteq wL \times wL$ is 'bad' then there is an equally bad continuum in $X \times X$ that maps onto Z.

▲□ → ▲ □ → ▲ □

Span zero, continued

... if $Z \subseteq wL \times wL$ is 'bad' then there is an equally bad continuum in $X \times X$ that maps onto Z.

Easier said than constructed

Span zero, continued

... if $Z \subseteq wL \times wL$ is 'bad' then there is an equally bad continuum in $X \times X$ that maps onto Z.

Easier said than constructed: the difficulty lies in the fact that K is not (necessarily) an elementary substructure of 2^{wK} .

Span zero, the real argument

Apply Shelah's Ultrapower theorem

Span zero, the real argument

Apply Shelah's Ultrapower theorem: take a cardinal κ , an ultrafilter u on κ and an isomorphism $h: \prod_{u} (2^{X \times X}) \to \prod_{u} wK$ (which can be taken to be the identity on K).

Span zero, the real argument

Apply Shelah's Ultrapower theorem: take a cardinal κ , an ultrafilter u on κ and an isomorphism $h: \prod_u (2^{X \times X}) \to \prod_u wK$ (which can be taken to be the identity on K).

How does that help?

Span zero, the real argument

Apply Shelah's Ultrapower theorem: take a cardinal κ , an ultrafilter u on κ and an isomorphism $h: \prod_{u} (2^{X \times X}) \to \prod_{u} wK$ (which can be taken to be the identity on K).

How does that help?

For that we need some topology.

Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ .

Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ .

Consider $\beta(\kappa \times Y)$. We have two maps

Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ .

Consider $\beta(\kappa \times Y)$. We have two maps

• $p_{\kappa}: \beta(\kappa \times Y) \to \beta \kappa$ (the extension of $\langle \alpha, y \rangle \mapsto \alpha$).

Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ .

Consider $\beta(\kappa \times Y)$. We have two maps

- $p_{\kappa} : \beta(\kappa \times Y) \to \beta \kappa$ (the extension of $\langle \alpha, y \rangle \mapsto \alpha$).
- $p_Y : \beta(\kappa \times Y) \to \beta \kappa$ (the extension of $\langle \alpha, y \rangle \mapsto y$).

Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ .

Consider $\beta(\kappa \times Y)$. We have two maps

- $p_{\kappa} : \beta(\kappa \times Y) \to \beta \kappa$ (the extension of $\langle \alpha, y \rangle \mapsto \alpha$).
- $p_Y : \beta(\kappa \times Y) \to \beta \kappa$ (the extension of $\langle \alpha, y \rangle \mapsto y$).

The Wallman space of the ultrapower $\prod_{u} B$ is the fiber $p_{\kappa}^{\leftarrow}(u)$.

Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also take a cardinal κ and an ultrafilter u on κ .

Consider $\beta(\kappa \times Y)$. We have two maps

- $p_{\kappa} : \beta(\kappa \times Y) \to \beta \kappa$ (the extension of $\langle \alpha, y \rangle \mapsto \alpha$).
- $p_Y : \beta(\kappa \times Y) \to \beta \kappa$ (the extension of $\langle \alpha, y \rangle \mapsto y$).

The Wallman space of the ultrapower $\prod_{u} B$ is the fiber $p_{\kappa}^{\leftarrow}(u)$. Bankston calls this the ultracopower of Y; we write Y_{u} .

Span zero, the real argument

Span zero, the real argument

Back to
$$Z \subseteq wK$$
.
• Let $Z_u = cl(\kappa \times Z) \cap p_{\kappa}^{\leftarrow}(u)$.

日本・モン・

Span zero, the real argument

- Let $Z_u = \operatorname{cl}(\kappa \times Z) \cap p_{\kappa}^{\leftarrow}(u)$.
- Z_u is a continuum

Span zero, the real argument

- Let $Z_u = \operatorname{cl}(\kappa \times Z) \cap p_{\kappa}^{\leftarrow}(u)$.
- Z_u is a continuum
- $wh[Z_u]$ is a continuum in $(X \times X)_u$ (wh is dual to h).

Span zero, the real argument

- Let $Z_u = \operatorname{cl}(\kappa \times Z) \cap p_{\kappa}^{\leftarrow}(u)$.
- Z_u is a continuum
- $wh[Z_u]$ is a continuum in $(X \times X)_u$ (wh is dual to h).
- $Z_X = p_{X \times X} [wh[Z_u]]$ is a continuum in $X \times X$.

Span zero, the real argument

Back to $Z \subseteq wK$.

- Let $Z_u = \operatorname{cl}(\kappa \times Z) \cap p_{\kappa}^{\leftarrow}(u)$.
- Z_u is a continuum
- $wh[Z_u]$ is a continuum in $(X \times X)_u$ (wh is dual to h).
- $Z_X = p_{X \times X} [wh[Z_u]]$ is a continuum in $X \times X$.

And

$$q_{\mathcal{K}}[Z_X] = q_{\mathcal{K}}\Big[p_{X \times X}\big[wh[Z_u]\big]\Big] = p_{w\mathcal{K}}\Big[(wh)^{-1}\big[wh[Z_u]\big]\Big] = Z$$

Span zero, the real argument

Back to $Z \subseteq wK$.

- Let $Z_u = \operatorname{cl}(\kappa \times Z) \cap p_{\kappa}^{\leftarrow}(u)$.
- Z_u is a continuum
- $wh[Z_u]$ is a continuum in $(X \times X)_u$ (wh is dual to h).
- $Z_X = p_{X \times X} [wh[Z_u]]$ is a continuum in $X \times X$.

And

$$q_{\mathcal{K}}[Z_X] = q_{\mathcal{K}}\Big[p_{X \times X}\big[wh[Z_u]\big]\Big] = p_{w\mathcal{K}}\Big[(wh)^{-1}\big[wh[Z_u]\big]\Big] = Z$$

So, that's it!?

Span zero, the real argument

Back to $Z \subseteq wK$.

- Let $Z_u = \operatorname{cl}(\kappa \times Z) \cap p_{\kappa}^{\leftarrow}(u)$.
- Z_u is a continuum
- $wh[Z_u]$ is a continuum in $(X \times X)_u$ (wh is dual to h).
- $Z_X = p_{X \times X} [wh[Z_u]]$ is a continuum in $X \times X$.

And

$$q_{\mathcal{K}}[Z_X] = q_{\mathcal{K}}\Big[p_{X \times X}\big[wh[Z_u]\big]\Big] = p_{w\mathcal{K}}\Big[(wh)^{-1}\big[wh[Z_u]\big]\Big] = Z$$

So, that's it!? Almost.

Span zero, the real argument

First expand the language of lattice with two function symbols π_1 and π_2 .

Span zero, the real argument

First expand the language of lattice with two function symbols π_1 and π_2 .

Apply Shelah's theorem with this extended language. Then Z_X will inherit the mapping properties that Z has.

Span zero, the real argument

First expand the language of lattice with two function symbols π_1 and π_2 .

Apply Shelah's theorem with this extended language. Then Z_X will inherit the mapping properties that Z has.

Finally then: if X is a non-chainable continuum that has span zero (of one of the four kinds) than so is wL.

2 Dimensions

3 Categoricity

A problem of Lelek

< 回 > < 回 > < 回 >

Light reading

Website: fa.its.tudelft.nl/~hart

🔋 K. P. Hart.

Elementarity and dimensions, Mathematical Notes, **78** (2005), 264–269.

📕 K. P. Hart.

There is no categorical metric continuum, to appear.

D. Bartošová, K. P. Hart, B. van der Steeg, Lelek's problem is not a metric problem, to appear.

