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Chainability

Definition

A continuum, X , is chainable if every (finite) open cover U has an
open chain-refinement V, i.e.,

V can be written as {Vi : i < n}
such that Vi ∩ Vj 6= ∅ iff |i − j | ≤ 1.

[0, 1] is chainable; the circle S1 is not.
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Span zero

Definition

A continuum, X , has xxx span zero if every subcontinuum Z of
X × X that satisfies yyy intersects the diagonal {〈x , x〉 : x ∈ X}.

xxx yyy

. . . π1[Z ] = π2[Z ]
semi π1[Z ] ⊆ π2[Z ]

surjective π1[Z ] = π2[Z ] = X
surjective semi π2[Z ] = X

[0, 1] has all spans zero, S1 has all spans non-zero
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The problem

Theorem

In a chainable continuum all spans are zero.

Question (Lelek)

What about the converse?

This is an important problem in metric continuum theory.
We free it from the metric constraints.
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A useful tool

Given a distributive, separative and normal latice L there is a
compact Hausdorff space wL with a base for its closed sets that is
isomorphic to L.

wL is the Wallman space of L.

Many properties of a space X are first-order when expressed in
terms of 2X , its lattice of (all) closed sets.

Quite often, in the case of wL, it suffices to work in L only.
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Reflection

Theorem

Any counterexample to Lelek’s problem can be converted into a
metrizable counterexample.

Proof.

Let X be a counterexample, let L ≺ 2X (an elementary sublattice).
Then wL is a metrizable counterexample.

Not quite . . .
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Complications

(Non-)chainability is not a first-order property of the lattice 2X .

Their natural formulations are Lω1,ω-formulas.

Chainability:

(∀u1)(∀u2)(∀u3)(∀u4)(
(u1 ∪ u2 ∪ u3 ∪ u4 = X )→

∨
n∈ω

Φn(u1, u2, u3, u4)
)

where Φn(u1, u2, u3, u4) expresses that {u1, u2, u3, u4} has an
n-element chain refinement.

It suffices to consider four-element open covers only.

K. P. Hart Lelek’s problem is not a metric problem
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Another complication

We have no decent formula, Lω1,ω or otherwise, that describes in
terms of 2X that X has span (non-)zero.

K. P. Hart Lelek’s problem is not a metric problem
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Solution: Use Set Theory

Let θ be ‘suitably large’ and let M ≺ H(θ) be a countable
elementary substructure

and let L = M ∩ 2X .

Theorem

In this situation:

wL is chainable iff X is chainable

wL has span zero iff X has span zero (any kind)

K. P. Hart Lelek’s problem is not a metric problem
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Proof for Chainability

Chainability is now first-order; we can quantify over the finite
subsets of 2X and finite ordinals.

Furthermore, one needs only consider covers and refinements that
belong to a certain base.

K. P. Hart Lelek’s problem is not a metric problem
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Span zero

Key observation: let K = M ∩ 2X×X , then wK = wL× wL.

This gives the easy part: if there is a ‘bad’ continuum in X × X
then there is one in M and it is equally bad in wL× wL.

For the converse . . .

K. P. Hart Lelek’s problem is not a metric problem
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Span zero, continued

. . . if Z ⊆ wL× wL is ‘bad’ then there is an equally bad
continuum in X × X that maps onto Z .

Easier said than constructed: the difficulty lies in the fact that K is
not (necessarily) an elementary substructure of 2wK .

K. P. Hart Lelek’s problem is not a metric problem
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Span zero, the real argument

Apply Shelah’s Ultrapower theorem

: take a cardinal κ, an
ultrafilter u on κ and an isomorphism h :

∏
u(2X×X )→

∏
u wK

(which can be taken to be the identity on K ).

How does that help?

For that we need some topology.

K. P. Hart Lelek’s problem is not a metric problem
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Dualizing ultrapowers

Take a compact Hausdorff space Y with a lattice base B. Also
take a cardinal κ and an ultrafilter u on κ.

Consider β(κ× Y ). We have two maps

pκ : β(κ× Y )→ βκ (the extension of 〈α, y〉 7→ α).

pY : β(κ× Y )→ βκ (the extension of 〈α, y〉 7→ y).

The Wallman space of the ultrapower
∏

u B is the fiber p←κ (u).
Bankston calls this the ultracopower of Y ; we write Yu.

K. P. Hart Lelek’s problem is not a metric problem
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Span zero, the real argument

Back to Z ⊆ wK .

Let Zu = cl(κ× Z ) ∩ p←κ (u).

Zu is a continuum

wh[Zu] is a continuum in (X × X )u (wh is dual to h).

ZX = pX×X

[
wh[Zu]

]
is a continuum in X × X .

And

qK [ZX ] = qK

[
pX×X

[
wh[Zu]

]]
= pwK

[
(wh)−1

[
wh[Zu]

]]
= Z

So, that’s it!? Almost.

K. P. Hart Lelek’s problem is not a metric problem
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First expand the language of lattice with two function symbols π1

and π2.

Apply Shelah’s theorem with this extended language. Then ZX will
inherit the mapping properties that Z has.

Finally then: if X is a non-chainable continuum that has span zero
(of one of the four kinds) than so is wL.
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Comment from Piotr Minc

Lelek’s problem is a metric problem.
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Light reading

Website: fa.its.tudelft.nl/~hart

D. Bartošová, K. P. Hart, B. van der Steeg,
Lelek’s problem is not a metric problem, to appear.
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