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Space to lattice

Take a topological space X

; it comes with a lattice: 2X , the family
of closed sets, with ∩ and ∪ as its operations.
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Let L be a distributive lattice with 0 and 1.

Can we find a space to go with L?

Yes we can! (To quote Bob the Builder)
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Ultrafilters

A filter on L is a nonempty subset u that satisfies

0 /∈ u

if x , y ∈ u then x ∧ y ∈ u0

if x ∈ u and y > x then y ∈ u

An ultrafilter on L is a filter that is maximal in the congeries of all
filters, ordered by inclusion.
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As to their existence . . .

I am definitely

PRO-CHOICE
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Wallman space

The Wallman space of L, denoted wL, is defined as follows

the points are the ultrafilters on L

the sets a∗ = {u ∈ wL : a ∈ u}, where a ∈ L,
serve as a base for the closed sets
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Properties

(a ∧ b)∗ = a∗ ∩ b∗ and (a ∨ b)∗ = a∗ ∪ b∗

(the latter needs ‘ultra’, or rather ‘prime’)

wL is compact

points are closed (wL is a T1-space): {u} =
⋂
{a∗ : a ∈ u}

a 7→ a∗ is not always injective, e.g.,
if L = [

√
2, π] then wL consists of just one point

isomorphism iff
a 
 b implies there is c > 0 such that c 6 a and c ∧ b = 0
(L is said to be separative)
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Hausdorff

The space wL is Hausdorff iff L is normal, i.e.,

a ∧ b = 0 implies there are p and q such that

a ∧ p = 0, b ∧ q = 0, and p ∨ q = 1

Think of normality for topological spaces formulated in terms of
closed sets only
(the complements of p and q are disjoint neighbourhoods of a
and b respectively).

From now on: all spaces compact Hausdorff and
all lattices distributive, separative, normal and with 0 and 1.
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Duality?

Clearly X = w(2X ):

X and w(2X ) both correspond to the set of atoms of 2X .

Also: a continuous f : X → Y determines a homomorphism
2f : 2Y → 2X by taking preimages: 2f (a) = f −1[a].

If f is injective then 2f is surjective

If f is surjective then 2f is injective
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Duality?

Clearly, L = 2wL

, not!

L and {a∗ : a ∈ L} are isomorphic, but . . .

. . . {a∗ : a ∈ L} is hardly ever the full family of closed sets of wL.

Example

Let L be the lattice generated by the intervals in [0, 1] with rational
end points. Then wL = [0, 1], but L is countable and 2[0,1] is not.
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Duality?

In fact

Theorem

If B is a sublattice of 2X that is also a base for the closed sets
of X then X = wB.

So, every X generally corresponds to many lattices.

E.g., if X is compact metric then X corresponds to 2X but also to
(various) countable lattices.
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One space, three lattices (at least)

Consider the unit interval [0, 1].

Here are three lattices for it:

2[0,1], full lattice of closed sets

L, generated by intervals with rational end points

M, generated by
{

[0, q] : q ∈ Q ∩ (0, 1]
}

together with{
[πq, 1] : q ∈ Q ∩ [0, 1/π)

}
.

Spot the differences

Cardinalities, (non-)existence of atoms . . .
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Duality?

If ϕ : L→ M is a homomorphism then it induces a continuous map
wϕ : wM → wL:

Let u ∈ wM, then {wϕ(u)} =
⋂
{a∗ : a ∈ L, ϕ(a) ∈ u}.

If ϕ is surjective then wϕ is injective

If ϕ is injective then wϕ is surjective
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To begin

Theorem

If two spaces have isomorphic lattice-bases for the closed sets then
they are homeomorphic.

Why is this useful?

Spaces have too many points . . .

K. P. Hart Algebraic Topology, but not as you know it



Duality for compact Hausdorff spaces and lattices
What’s the use?

Reflections on dimension
Sources

Homeomorphisms
Embeddings
Onto mappings

Homeomorphisms

To begin

Theorem

If two spaces have isomorphic lattice-bases for the closed sets then
they are homeomorphic.

Why is this useful?

Spaces have too many points . . .

K. P. Hart Algebraic Topology, but not as you know it



Duality for compact Hausdorff spaces and lattices
What’s the use?

Reflections on dimension
Sources

Homeomorphisms
Embeddings
Onto mappings

Homeomorphisms

To begin

Theorem

If two spaces have isomorphic lattice-bases for the closed sets then
they are homeomorphic.

Why is this useful?

Spaces have too many points . . .

K. P. Hart Algebraic Topology, but not as you know it



Duality for compact Hausdorff spaces and lattices
What’s the use?

Reflections on dimension
Sources

Homeomorphisms
Embeddings
Onto mappings

Homeomorphisms

To begin

Theorem

If two spaces have isomorphic lattice-bases for the closed sets then
they are homeomorphic.

Why is this useful?

Spaces have too many points . . .

K. P. Hart Algebraic Topology, but not as you know it



Duality for compact Hausdorff spaces and lattices
What’s the use?

Reflections on dimension
Sources

Homeomorphisms
Embeddings
Onto mappings

The Cantor set

Theorem (Brouwer)

The Cantor set is the only compact metric space that is
zero-dimensional and perfect.

zero-dimensional: the clopen sets form a base

perfect: no isolated points

Too many points: continuum is way too many.
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The conditions imply that in any such space the clopen sets form a
countable atomless Boolean algebra that is also a base for the
closed sets.

Any two such Boolean algebras are isomorphic, hence the
corresponding spaces are homeomorphic.

The isomorphism can be constructed in a comfortably short
recursion along the natural numbers.
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Urysohn’s embedding theorem

Theorem

Every compact metric space can be embedded into the Hilbert
cube [0, 1]N.

Let X be compact metrizable, with a countable base
B = {Bn : n ∈ N} for its closed sets. Take a metric d on X
bounded by 1.
As a base for the closed sets of [0, 1]N we take the lattice L
generated by the strips Sn,q = π−1

n

[
[0, q]

]
and Tn,q = π−1

n

[
[q, 1]

]
,

where n ∈ N and q ∈ Q.
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Urysohn’s embedding theorem

The strips are independent enough to ensure the existence of a
homomorphism

ϕ : L → 2X

that satisfies ϕ : Sn,q 7→ {x : d(x ,Bn) 6 q} and
ϕ : Tn,q 7→ {x : d(x ,Bn) > q}.

Thus, ϕ[L] is a lattice-base for the closed sets of X .

Apply duality: wϕ : X → [0, 1]N is an embedding.
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The Cantor set

A recursion, similar to that in the case of homeomorphisms, will
produce an injective homomorphism from a given countable lattice
into the clopen algebra of the Cantor set.

And so

Theorem (Alexandroff/Hausdorff)

Every compact metric space is a continuous image of the Cantor
set.
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Covering dimension

Definition (Lebesgue)

dim X 6 n if every finite open cover has a (finite) open refinement
of order at most n + 1

(i.e., every n + 2-element subfamily has an empty intersection).

There is a convenient characterization.

Theorem (Hemmingsen)

dim X 6 n iff every n + 2-element open cover has a shrinking with
an empty intersection.
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Covering dimension

We say dim X = n if dim X 6 n but dim X 
 n − 1

;
also, dim X =∞ means dim X 
 n for all n ∈ N.
dim X is the covering dimension of X .

Theorem

dim[0, 1]n = n for all n ∈ N ∪ {∞}.

Thus, dim helps in showing that all cubes are topologically distinct.
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Large inductive dimension

Definition (Čech)

Ind X 6 n if between every two disjoint closed sets A and B there
is a partition L that satisfies Ind L 6 n − 1.

The starting point: Ind X 6 −1 iff X = ∅.

L is a partition between A and B means: there are closed sets F
and G that cover X and satisfy: F ∩ B = ∅, G ∩ A = ∅ and
F ∩ G = L.
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Definition (Brouwer)

Dg X 6 n between every two disjoint closed sets A and B there is
a cut C that satisfies Dg C 6 n − 1.

The starting point: Dg X 6 −1 iff X = ∅.

C is a cut between A and B means: C ∩ K 6= ∅ whenever K is a
subcontinuum of X that meets both A and B.

K. P. Hart Algebraic Topology, but not as you know it
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subcontinuum of X that meets both A and B.
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We say Dg X = n if Dg X 6 n but Dg X 
 n − 1

;
also, Dg X =∞ means Dg X 
 n for all n ∈ N.
Dg X is the Dimensionsgrad of X .

Theorem

Dg[0, 1]n = n for all n ∈ N ∪ {∞}.

Thus, Dg helps in showing that all cubes are topologically distinct.
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Theorem

For every compact metrizable space X we have

dim X = Dg X = Ind X

dim X = Ind X for all metrizable X

dim X = Dg X for all σ-compact metrizable X . . .

. . . but not for all separable metrizable X

K. P. Hart Algebraic Topology, but not as you know it



Duality for compact Hausdorff spaces and lattices
What’s the use?

Reflections on dimension
Sources

Dimension functions
Formulas
Bases
Reflections

Equalities

Theorem

For every compact metrizable space X we have

dim X = Dg X = Ind X

dim X = Ind X for all metrizable X

dim X = Dg X for all σ-compact metrizable X . . .

. . . but not for all separable metrizable X

K. P. Hart Algebraic Topology, but not as you know it



Duality for compact Hausdorff spaces and lattices
What’s the use?

Reflections on dimension
Sources

Dimension functions
Formulas
Bases
Reflections

Equalities

Theorem

For every compact metrizable space X we have

dim X = Dg X = Ind X

dim X = Ind X for all metrizable X

dim X = Dg X for all σ-compact metrizable X . . .

. . . but not for all separable metrizable X

K. P. Hart Algebraic Topology, but not as you know it



Duality for compact Hausdorff spaces and lattices
What’s the use?

Reflections on dimension
Sources

Dimension functions
Formulas
Bases
Reflections

Equalities

Theorem

For every compact metrizable space X we have

dim X = Dg X = Ind X

dim X = Ind X for all metrizable X

dim X = Dg X for all σ-compact metrizable X . . .

. . . but not for all separable metrizable X

K. P. Hart Algebraic Topology, but not as you know it



Duality for compact Hausdorff spaces and lattices
What’s the use?

Reflections on dimension
Sources

Dimension functions
Formulas
Bases
Reflections

More inequalities

For compact Hausdorff spaces:

Dg X 6 Ind X (each partition is a cut)

dim X 6 Ind X (Vedenissof)

dim X 6 Dg X (Fedorchuk)

We will (re)prove the last two inequalities algebraically.
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Wallman’s construction
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Covering dimension

Here is Hemmingsen’s characterization of dim X 6 n

reformulated
in terms of closed sets and cast as a formula, δn, in the language
of lattices

(∀x1)(∀x2) · · · (∀xn+2)(∃y1)(∃y2) · · · (∃yn+2)[
(x1 ∩ x2 ∩ · · · ∩ xn+2 = 0)→(

(x1 6 y1) ∧ (x2 6 y2) ∧ · · · ∧ (xn+2 6 yn+2)

∧ (y1 ∩ y2 ∩ · · · ∩ yn+2 = 0)

∧ (y1 ∪ y2 ∪ · · · ∪ yn+2 = 1)
)]
.
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Large inductive dimension

We can express Ind X 6 n in a similar fashion, the formula In(a)
becomes (recursively)

(∀x)(∀y)(∃u)[
(
(
(x 6 a)∧(y 6 a)∧(x∩y = 0)

)
→
(
partn(u, x , y , a)∧In−1(u)

)]
where partn(u, x , y , a) says that u is a partition between x and y in
the (sub)space a:

(∃f )(∃g)
(
(x ∩ f = 0) ∧ (y ∩ g = 0) ∧ (f ∪ g = a) ∧ (f ∩ g = u)

)
.

We start with I−1(a), which denotes a = 0
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Here we have the recursive definition of a formula ∆n(a):

(∀x)(∀y)(∃u)[(
(x 6 a)∧(y 6 a)∧(x∩y = 0)

)
→
(
cut(u, x , y , a)∧∆n−1(u)

)]
,

and ∆−1(a) denotes a = 0.
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Dimensionsgrad (auxiliary formulas)

The formula cut(u, x , y , a) expresses that u is a cut between x and
y in a:

(∀v)
[(

(v 6 a)∧conn(v)∧(v∩x 6= 0)∧(v∩y 6= 0)
)
→ (v∩u 6= 0)

]
,

and conn(a) says that a is connected:

(∀x)(∀y)
[(

(x ∩ y = 0) ∧ (x ∪ y = a)
)
→
(
(x = 0) ∨ (x = a)

)]
,
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Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate)

:
O Formulas, Formulas! — Wherefore useth thou Formulas?

Forsooth! It giveth us an algebraic handle on these dimensions:

dim X 6 n iff δn holds in 2X

Ind X 6 n iff In(X ) holds in 2X

Dg X 6 n iff ∆n(X ) holds in 2X
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Covering dimension

Theorem

Let X be compact. Then dim X 6 n iff some (every) lattice-base
for its closed sets satisfies δn.

Proof: compactness and a shrinking-and-swelling argument.
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Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, B, for its closed
sets satisfies In(X ) then Ind X 6 n.

Proof: induction and, again, a swelling-and-shrinking argument.

No equivalence, see later.
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Theorem

Let X be compact. If some lattice lattice-base, B, for its closed
sets satisfies ∆n(X ) then

we can’t say anything about Dg X .

Proof: we can cheat and create, for [0, 1] say, a lattice base
without connected elements; that base satisfies ∆0(X ) vacuously.
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Take a rich sublattice

Let X be compact Hausdorff and let B be a countable sublattice
of 2X with exactly the same algebraic properties as 2X .

If you know your model theory: apply the Löwenheim-Skolem
theorem.
If not: think of taking a countable algebraic subfield of C, say.
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Covering dimension vs large inductive dimension

The formula δn holds in B iff it holds in 2X , hence

dim wB = dim X .

The formula In(X ) holds in B iff it holds in 2X , hence

Ind wB 6 Ind X .

But wB is compact metrizable, so dim wB = Ind wB, hence

dim X 6 Ind X .
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Covering dimension vs large inductive dimension

There are (many) compact Hausdorff spaces with non-coinciding
dimensions, e.g., an early example of a compact L such that
dim L = 1 and Ind L = 2 (Lokucievskĭı).

In that case Ind wB < Ind L for countable (rich) sublattices of 2L.
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The stronger inequality dim X 6 Dg X can be proved via wB as
well.

The argument is more involved.
It uses in an essential way that B is a rich sublattice of 2X .

I’ll spare you the details.
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Light reading

Website: fa.its.tudelft.nl/~hart

K. P. Hart.
Elementarity and dimensions, Mathematical Notes, 78 (2005),
264–269.
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