Algebraic Topology, of sorts. Part I Non impeditus ab ulla scientia

K. P. Hart

Faculty EEMCS TU Delft

Galway in Brum, 13 July, 2010: 14:00 - 15:00

Outline

- Duality for compact Hausdorff spaces and lattices
 - Wallman's construction
 - Duality
- 2 What's the use?
 - Homeomorphisms
 - Embeddings
 - Onto mappings
- Reflections on dimension
 - Dimension functions
 - Formulas
 - Bases
 - Reflections
- 4 Sources

Take a topological space X

Take a topological space X; it comes with a lattice

Take a topological space X; it comes with a lattice: 2^X , the family of closed sets

Take a topological space X; it comes with a lattice: 2^X , the family of closed sets, with \cap and \cup as its operations.

Take a topological space X; it comes with a lattice: 2^X , the family of closed sets, with \cap and \cup as its operations.

This lattice is distributive with o and 1.

Let L be a distributive lattice with o and 1.

Let L be a distributive lattice with o and 1.

Can we find a space to go with L?

Let L be a distributive lattice with o and 1.

Can we find a space to go with L?

Yes we can!

Let L be a distributive lattice with o and 1.

Can we find a space to go with L?

Yes we can! (To quote Bob the Builder)

Outline

- 1 Duality for compact Hausdorff spaces and lattices
 - Wallman's construction
 - Duality
- 2 What's the use?
 - Homeomorphisms
 - Embeddings
 - Onto mappings
- Reflections on dimension
 - Dimension functions
 - Formulas
 - Bases
 - Reflections
- 4 Sources

- o ∉ u
- if $x, y \in u$ then $x \wedge y \in u$

- o ∉ u
- if $x, y \in u$ then $x \wedge y \in u$
- if $x \in u$ and $y \geqslant x$ then $y \in u$

A filter on L is a nonempty subset u that satisfies

- o ∉ u
- if $x, y \in u$ then $x \wedge y \in u$
- if $x \in u$ and $y \geqslant x$ then $y \in u$

An *ultrafilter* on L is a filter that is maximal in the congeries of all filters, ordered by inclusion.

As to their existence . . .

I am definitely

As to their existence . . .

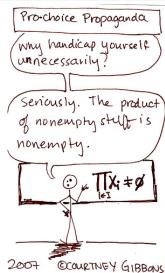
I am definitely

PRO-CHOICE

As to their existence . . .

I am definitely

PRO-CHOICE



Wallman space

The Wallman space of L, denoted wL, is defined as follows

Wallman space

The Wallman space of L, denoted wL, is defined as follows

• the points are the ultrafilters on L

Wallman space

The Wallman space of L, denoted wL, is defined as follows

- the points are the ultrafilters on L
- the sets $a^* = \{u \in wL : a \in u\}$, where $a \in L$, serve as a base for the *closed* sets

• $(a \wedge b)^* = a^* \cap b^*$ and $(a \vee b)^* = a^* \cup b^*$ (the latter needs 'ultra', or rather 'prime')

- $(a \wedge b)^* = a^* \cap b^*$ and $(a \vee b)^* = a^* \cup b^*$ (the latter needs 'ultra', or rather 'prime')
- wL is compact

- $(a \wedge b)^* = a^* \cap b^*$ and $(a \vee b)^* = a^* \cup b^*$ (the latter needs 'ultra', or rather 'prime')
- wL is compact
- points are closed (wL is a T_1 -space): $\{u\} = \bigcap \{a^* : a \in u\}$

- $(a \wedge b)^* = a^* \cap b^*$ and $(a \vee b)^* = a^* \cup b^*$ (the latter needs 'ultra', or rather 'prime')
- wL is compact
- points are closed (wL is a T_1 -space): $\{u\} = \bigcap \{a^* : a \in u\}$
- $a\mapsto a^*$ is not always injective, e.g., if $L=[\sqrt{2},\pi]$ then wL consists of just one point

- $(a \wedge b)^* = a^* \cap b^*$ and $(a \vee b)^* = a^* \cup b^*$ (the latter needs 'ultra', or rather 'prime')
- wL is compact
- points are closed (wL is a T_1 -space): $\{u\} = \bigcap \{a^* : a \in u\}$
- $a\mapsto a^*$ is not always injective, e.g., if $L=[\sqrt{2},\pi]$ then wL consists of just one point
- isomorphism iff $a \nleq b$ implies there is c > 0 such that $c \leqslant a$ and $c \land b = 0$ (L is said to be separative)

The space wL is Hausdorff iff L is normal, i.e.,

The space wL is Hausdorff iff L is normal, i.e.,

The space wL is Hausdorff iff L is normal, i.e.,

$$a \wedge p = 0$$
,

The space wL is Hausdorff iff L is normal, i.e.,

$$a \wedge p = 0$$
, $b \wedge q = 0$

The space wL is Hausdorff iff L is normal, i.e.,

$$a \wedge p = 0$$
, $b \wedge q = 0$, and $p \vee q = 1$

The space wL is Hausdorff iff L is normal, i.e.,

 $a \wedge b = 0$ implies there are p and q such that

$$a \wedge p = 0$$
, $b \wedge q = 0$, and $p \vee q = 1$

Think of normality for topological spaces formulated in terms of closed sets only

The space wL is Hausdorff iff L is normal, i.e.,

 $a \wedge b = 0$ implies there are p and q such that

$$a \wedge p = 0$$
, $b \wedge q = 0$, and $p \vee q = 1$

Think of normality for topological spaces formulated in terms of closed sets only (the complements of p and q are disjoint neighbourhoods of a and b respectively).

The space wL is Hausdorff iff L is normal, i.e.,

 $a \wedge b = 0$ implies there are p and q such that

$$a \wedge p = 0$$
, $b \wedge q = 0$, and $p \vee q = 1$

Think of normality for topological spaces formulated in terms of closed sets only (the complements of p and q are disjoint neighbourhoods of a and b respectively).

From now on: all spaces compact Hausdorff and

Hausdorff

The space wL is Hausdorff iff L is normal, i.e.,

 $a \wedge b = 0$ implies there are p and q such that

$$a \wedge p = 0$$
, $b \wedge q = 0$, and $p \vee q = 1$

Think of normality for topological spaces formulated in terms of closed sets only (the complements of p and q are disjoint neighbourhoods of a and b respectively).

From now on: all spaces compact Hausdorff and all lattices distributive, separative, normal and with o and 1.

Outline

- Duality for compact Hausdorff spaces and lattices
 - Wallman's construction
 - Duality
- 2 What's the use?
 - Homeomorphisms
 - Embeddings
 - Onto mappings
- Reflections on dimension
 - Dimension functions
 - Formulas
 - Bases
 - Reflections
- 4 Sources

Clearly
$$X = w(2^X)$$
:

Clearly
$$X = w(2^X)$$
:

X and $w(2^X)$ both correspond to the set of atoms of 2^X .

Clearly
$$X = w(2^X)$$
:

X and $w(2^X)$ both correspond to the set of atoms of 2^X .

Also: a continuous $f: X \to Y$ determines a homomorphism $2^f: 2^Y \to 2^X$ by taking preimages: $2^f(a) = f^{-1}[a]$.

Clearly
$$X = w(2^X)$$
:

X and $w(2^X)$ both correspond to the set of atoms of 2^X .

Also: a continuous $f: X \to Y$ determines a homomorphism $2^f: 2^Y \to 2^X$ by taking preimages: $2^f(a) = f^{-1}[a]$.

If f is injective then 2^f is surjective

Clearly
$$X = w(2^X)$$
:

X and $w(2^X)$ both correspond to the set of atoms of 2^X .

Also: a continuous $f: X \to Y$ determines a homomorphism $2^f: 2^Y \to 2^X$ by taking preimages: $2^f(a) = f^{-1}[a]$.

If f is injective then 2^f is surjective

If f is surjective then 2^f is injective

Clearly,
$$L = 2^{wL}$$

Clearly,
$$L = 2^{wL}$$
, not!

Clearly,
$$L = 2^{wL}$$
, not!

L and
$$\{a^* : a \in L\}$$
 are isomorphic, but . . .

Clearly,
$$L = 2^{wL}$$
, not!

$$L$$
 and $\{a^* : a \in L\}$ are isomorphic, but . . .

 \dots $\{a^*: a \in L\}$ is hardly ever the full family of closed sets of wL.

Clearly,
$$L = 2^{wL}$$
, not!

L and $\{a^* : a \in L\}$ are isomorphic, but . . .

 \dots $\{a^*: a \in L\}$ is hardly ever the full family of closed sets of wL.

Example

Let L be the lattice generated by the intervals in [0,1] with rational end points.

Clearly, $L = 2^{wL}$, not!

L and $\{a^* : a \in L\}$ are isomorphic, but . . .

 \dots $\{a^*: a \in L\}$ is hardly ever the full family of closed sets of wL.

Example

Let L be the lattice generated by the intervals in [0,1] with rational end points. Then wL = [0,1], but L is countable and $2^{[0,1]}$ is not.

In fact

In fact

Theorem

If \mathcal{B} is a sublattice of 2^X that is also a base for the closed sets of X then $X = w\mathcal{B}$.

In fact

Theorem

If \mathcal{B} is a sublattice of 2^X that is also a base for the closed sets of X then $X = w\mathcal{B}$.

So, every X generally corresponds to many lattices.

In fact

Theorem

If \mathcal{B} is a sublattice of 2^X that is also a base for the closed sets of X then $X = w\mathcal{B}$.

So, every X generally corresponds to many lattices.

E.g., if X is compact metric then X corresponds to 2^X but also to (various) countable lattices.

Consider the unit interval [0,1].

Consider the unit interval [0,1]. Here are three lattices for it:

Consider the unit interval [0,1]. Here are three lattices for it:

• 2^[0,1], full lattice of closed sets

Consider the unit interval [0,1]. Here are three lattices for it:

- 2^[0,1], full lattice of closed sets
- L, generated by intervals with rational end points

Consider the unit interval [0,1]. Here are three lattices for it:

- 2^[0,1], full lattice of closed sets
- L, generated by intervals with rational end points
- M, generated by $\{[0,q]: q \in \mathbb{Q} \cap (0,1]\}$ together with $\{[\pi q,1]: q \in \mathbb{Q} \cap [0,1/\pi)\}$.

Consider the unit interval [0,1]. Here are three lattices for it:

- 2^[0,1], full lattice of closed sets
- L, generated by intervals with rational end points
- M, generated by $\{[0,q]: q \in \mathbb{Q} \cap (0,1]\}$ together with $\{[\pi q,1]: q \in \mathbb{Q} \cap [0,1/\pi)\}$.

Spot the differences

Consider the unit interval [0,1]. Here are three lattices for it:

- 2^[0,1], full lattice of closed sets
- L, generated by intervals with rational end points
- M, generated by $\{[0,q]: q \in \mathbb{Q} \cap (0,1]\}$ together with $\{[\pi q,1]: q \in \mathbb{Q} \cap [0,1/\pi)\}$.

Spot the differences

Cardinalities, (non-)existence of atoms . . .

If $\varphi: L \to M$ is a homomorphism then it induces a continuous map $w\varphi: wM \to wL$:

If $\varphi: L \to M$ is a homomorphism then it induces a continuous map $w\varphi: wM \to wL$:

Let $u \in wM$, then $\{w\varphi(u)\} = \bigcap \{a^* : a \in L, \varphi(a) \in u\}$.

If $\varphi: L \to M$ is a homomorphism then it induces a continuous map $w\varphi: wM \to wL$:

Let
$$u \in wM$$
, then $\{w\varphi(u)\} = \bigcap \{a^* : a \in L, \varphi(a) \in u\}$.

If φ is surjective then $w\varphi$ is injective

If $\varphi: L \to M$ is a homomorphism then it induces a continuous map $w\varphi: wM \to wL$:

Let
$$u \in wM$$
, then $\{w\varphi(u)\} = \bigcap \{a^* : a \in L, \varphi(a) \in u\}$.

If φ is surjective then $w\varphi$ is injective

If φ is injective then $w\varphi$ is surjective

Outline

- Duality for compact Hausdorff spaces and lattices
 - Wallman's construction
 - Duality
- 2 What's the use?
 - Homeomorphisms
 - Embeddings
 - Onto mappings
- Reflections on dimension
 - Dimension functions
 - Formulas
 - Bases
 - Reflections
- Sources

To begin

To begin

$\mathsf{Theorem}$

If two spaces have isomorphic lattice-bases for the closed sets then they are homeomorphic.

To begin

Theorem

If two spaces have isomorphic lattice-bases for the closed sets then they are homeomorphic.

Why is this useful?

To begin

Theorem

If two spaces have isomorphic lattice-bases for the closed sets then they are homeomorphic.

Why is this useful?

Spaces have too many points ...

The Cantor set

Theorem (Brouwer)

The Cantor set is the only compact metric space that is zero-dimensional and perfect.

The Cantor set

Theorem (Brouwer)

The Cantor set is the only compact metric space that is zero-dimensional and perfect.

zero-dimensional: the clopen sets form a base

The Cantor set

Theorem (Brouwer)

The Cantor set is the only compact metric space that is zero-dimensional and perfect.

- zero-dimensional: the clopen sets form a base
- perfect: no isolated points

Theorem (Brouwer)

The Cantor set is the only compact metric space that is zero-dimensional and perfect.

- zero-dimensional: the clopen sets form a base
- perfect: no isolated points

Too many points: continuum is way too many.

The conditions imply that in any such space the clopen sets form a *countable* atomless Boolean algebra that is also a base for the closed sets.

The conditions imply that in any such space the clopen sets form a *countable* atomless Boolean algebra that is also a base for the closed sets.

Any two such Boolean algebras are isomorphic, hence the corresponding spaces are homeomorphic.

The conditions imply that in any such space the clopen sets form a *countable* atomless Boolean algebra that is also a base for the closed sets.

Any two such Boolean algebras are isomorphic, hence the corresponding spaces are homeomorphic.

The isomorphism can be constructed in a comfortably short recursion along the natural numbers.

Outline

- Duality for compact Hausdorff spaces and lattices
 - Wallman's construction
 - Duality
- 2 What's the use?
 - Homeomorphisms
 - Embeddings
 - Onto mappings
- Reflections on dimension
 - Dimension functions
 - Formulas
 - Bases
 - Reflections
- Sources

Theorem

Every compact metric space can be embedded into the Hilbert cube $[0,1]^{\mathbb{N}}$.

Theorem

Every compact metric space can be embedded into the Hilbert cube $[0,1]^{\mathbb{N}}$.

Let X be compact metrizable, with a countable base $\mathcal{B} = \{B_n : n \in \mathbb{N}\}$ for its closed sets. Take a metric d on X bounded by 1.

Theorem

Every compact metric space can be embedded into the Hilbert cube $[0,1]^{\mathbb{N}}$.

Let X be compact metrizable, with a countable base $\mathcal{B} = \{B_n : n \in \mathbb{N}\}$ for its closed sets. Take a metric d on X bounded by 1.

As a base for the closed sets of $[0,1]^{\mathbb{N}}$ we take the lattice \mathcal{L} generated by the strips $S_{n,q}=\pi_n^{-1}\big[[0,q]\big]$ and $T_{n,q}=\pi_n^{-1}\big[[q,1]\big]$, where $n\in\mathbb{N}$ and $q\in\mathbb{Q}$.

The strips are independent enough to ensure the existence of a homomorphism

$$\varphi:\mathcal{L}\to 2^X$$

that satisfies $\varphi: S_{n,q} \mapsto \{x: d(x,B_n) \leqslant q\}$ and

$$\varphi: T_{n,q} \mapsto \{x: d(x,B_n) \geqslant q\}.$$

The strips are independent enough to ensure the existence of a homomorphism

$$\varphi: \mathcal{L} \to 2^X$$

that satisfies $\varphi: S_{n,q} \mapsto \{x: d(x, B_n) \leqslant q\}$ and $\varphi: T_{n,q} \mapsto \{x: d(x, B_n) \geqslant q\}$.

Thus, $\varphi[\mathcal{L}]$ is a lattice-base for the closed sets of X.

The strips are independent enough to ensure the existence of a homomorphism

$$\varphi: \mathcal{L} \to 2^X$$

that satisfies $\varphi: S_{n,q} \mapsto \{x: d(x, B_n) \leqslant q\}$ and $\varphi: T_{n,q} \mapsto \{x: d(x, B_n) \geqslant q\}$.

Thus, $\varphi[\mathcal{L}]$ is a lattice-base for the closed sets of X.

Apply duality: $w\varphi:X\to [0,1]^\mathbb{N}$ is an embedding.

Outline

- 1 Duality for compact Hausdorff spaces and lattices
 - Wallman's construction
 - Duality
- 2 What's the use?
 - Homeomorphisms
 - Embeddings
 - Onto mappings
- Reflections on dimension
 - Dimension functions
 - Formulas
 - Bases
 - Reflections
- Sources

A recursion, similar to that in the case of homeomorphisms, will produce an injective homomorphism from a given countable lattice into the clopen algebra of the Cantor set.

A recursion, similar to that in the case of homeomorphisms, will produce an injective homomorphism from a given countable lattice into the clopen algebra of the Cantor set.

And so

A recursion, similar to that in the case of homeomorphisms, will produce an injective homomorphism from a given countable lattice into the clopen algebra of the Cantor set.

And so

Theorem (Alexandroff/Hausdorff)

Every compact metric space is a continuous image of the Cantor set.

Outline

- Duality for compact Hausdorff spaces and lattices
 - Wallman's construction
 - Duality
- 2 What's the use?
 - Homeomorphisms
 - Embeddings
 - Onto mappings
- Reflections on dimension
 - Dimension functions
 - Formulas
 - Bases
 - Reflections
- Sources

Definition (Lebesgue)

 $\dim X \leqslant n$ if every finite open cover has a (finite) open refinement of order at most n+1

Definition (Lebesgue)

 $\dim X \leq n$ if every finite open cover has a (finite) open refinement of order at most n+1 (i.e., every n+2-element subfamily has an empty intersection).

Definition (Lebesgue)

 $\dim X \leq n$ if every finite open cover has a (finite) open refinement of order at most n+1 (i.e., every n+2-element subfamily has an empty intersection).

There is a convenient characterization.

Definition (Lebesgue)

 $\dim X \leqslant n$ if every finite open cover has a (finite) open refinement of order at most n+1

(i.e., every n + 2-element subfamily has an empty intersection).

There is a convenient characterization.

Theorem (Hemmingsen)

 $\dim X \leqslant n$ iff every n+2-element open cover has a shrinking with an empty intersection.

We say dim X = n if dim $X \leqslant n$ but dim $X \nleq n - 1$

We say dim X = n if dim $X \le n$ but dim $X \nleq n - 1$; also, dim $X = \infty$ means dim $X \nleq n$ for all $n \in \mathbb{N}$.

We say dim X=n if dim $X\leqslant n$ but dim $X\nleq n-1$; also, dim $X=\infty$ means dim $X\nleq n$ for all $n\in\mathbb{N}$. dim X is the *covering dimension* of X.

We say dim X=n if dim $X\leqslant n$ but dim $X\nleq n-1$; also, dim $X=\infty$ means dim $X\nleq n$ for all $n\in\mathbb{N}$. dim X is the *covering dimension* of X.

Theorem

 $\dim[0,1]^n = n \text{ for all } n \in \mathbb{N} \cup \{\infty\}.$

We say dim X=n if dim $X\leqslant n$ but dim $X\nleq n-1$; also, dim $X=\infty$ means dim $X\nleq n$ for all $n\in\mathbb{N}$. dim X is the *covering dimension* of X.

$\mathsf{Theorem}$

$$\dim[0,1]^n = n \text{ for all } n \in \mathbb{N} \cup \{\infty\}.$$

Thus, dim helps in showing that all cubes are topologically distinct.

Definition (Čech)

Ind $X \le n$ if between every two disjoint closed sets A and B there is a partition L that satisfies $\operatorname{Ind} L \le n - 1$.

Definition (Čech)

Ind $X \le n$ if between every two disjoint closed sets A and B there is a partition L that satisfies Ind $L \le n - 1$.

The starting point: Ind $X \leq -1$ iff $X = \emptyset$.

Definition (Čech)

Ind $X \le n$ if between every two disjoint closed sets A and B there is a partition L that satisfies Ind $L \le n - 1$.

The starting point: Ind $X \leq -1$ iff $X = \emptyset$.

L is a partition between A and B means:

Definition (Čech)

Ind $X \le n$ if between every two disjoint closed sets A and B there is a partition L that satisfies Ind $L \le n - 1$.

The starting point: Ind $X \leq -1$ iff $X = \emptyset$.

L is a partition between *A* and *B* means: there are closed sets *F* and *G* that cover *X* and satisfy: $F \cap B = \emptyset$, $G \cap A = \emptyset$ and $F \cap G = L$.

We say $\operatorname{Ind} X = n$ if $\operatorname{Ind} X \leqslant n$ but $\operatorname{Ind} X \nleq n - 1$

We say $\operatorname{Ind} X = n$ if $\operatorname{Ind} X \leqslant n$ but $\operatorname{Ind} X \nleq n-1$; also, $\operatorname{Ind} X = \infty$ means $\operatorname{Ind} X \nleq n$ for all $n \in \mathbb{N}$.

We say $\operatorname{Ind} X = n$ if $\operatorname{Ind} X \leqslant n$ but $\operatorname{Ind} X \nleq n-1$; also, $\operatorname{Ind} X = \infty$ means $\operatorname{Ind} X \nleq n$ for all $n \in \mathbb{N}$. $\operatorname{Ind} X$ is the *large inductive dimension* of X.

We say $\operatorname{Ind} X = n$ if $\operatorname{Ind} X \leqslant n$ but $\operatorname{Ind} X \nleq n-1$; also, $\operatorname{Ind} X = \infty$ means $\operatorname{Ind} X \nleq n$ for all $n \in \mathbb{N}$. $\operatorname{Ind} X$ is the *large inductive dimension* of X.

Theorem

 $\operatorname{Ind}[0,1]^n = n \text{ for all } n \in \mathbb{N} \cup \{\infty\}.$

We say $\operatorname{Ind} X = n$ if $\operatorname{Ind} X \leqslant n$ but $\operatorname{Ind} X \nleq n-1$; also, $\operatorname{Ind} X = \infty$ means $\operatorname{Ind} X \nleq n$ for all $n \in \mathbb{N}$. $\operatorname{Ind} X$ is the *large inductive dimension* of X.

$\mathsf{Theorem}$

$$\operatorname{Ind}[0,1]^n = n \text{ for all } n \in \mathbb{N} \cup \{\infty\}.$$

Thus, Ind helps in showing that all cubes are topologically distinct.

Dimensionsgrad

Definition (Brouwer)

 $\operatorname{Dg} X \leqslant n$ if between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} C \leqslant n-1$.

Dimensionsgrad

Definition (Brouwer)

 $\operatorname{Dg} X \leqslant n$ if between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} C \leqslant n-1$.

The starting point: $\operatorname{Dg} X \leqslant -1$ iff $X = \emptyset$.

Definition (Brouwer)

 $\operatorname{Dg} X \leqslant n$ if between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} C \leqslant n-1$.

The starting point: $\operatorname{Dg} X \leqslant -1$ iff $X = \emptyset$.

C is a cut between A and B means:

Definition (Brouwer)

 $\operatorname{Dg} X \leqslant n$ if between every two disjoint closed sets A and B there is a cut C that satisfies $\operatorname{Dg} C \leqslant n-1$.

The starting point: $\operatorname{Dg} X \leqslant -1$ iff $X = \emptyset$.

C is a cut between A and B means: $C \cap K \neq \emptyset$ whenever K is a subcontinuum of X that meets both A and B.

We say
$$\operatorname{Dg} X = n$$
 if $\operatorname{Dg} X \leqslant n$ but $\operatorname{Dg} X \nleq n - 1$

We say $\operatorname{Dg} X = n$ if $\operatorname{Dg} X \leqslant n$ but $\operatorname{Dg} X \nleq n-1$; also, $\operatorname{Dg} X = \infty$ means $\operatorname{Dg} X \nleq n$ for all $n \in \mathbb{N}$.

We say $\operatorname{Dg} X = n$ if $\operatorname{Dg} X \leqslant n$ but $\operatorname{Dg} X \nleq n-1$; also, $\operatorname{Dg} X = \infty$ means $\operatorname{Dg} X \nleq n$ for all $n \in \mathbb{N}$. $\operatorname{Dg} X$ is the *Dimensionsgrad* of X.

We say $\operatorname{Dg} X = n$ if $\operatorname{Dg} X \leqslant n$ but $\operatorname{Dg} X \nleq n-1$; also, $\operatorname{Dg} X = \infty$ means $\operatorname{Dg} X \nleq n$ for all $n \in \mathbb{N}$. $\operatorname{Dg} X$ is the *Dimensionsgrad* of X.

Theorem

$$Dg[0,1]^n = n \text{ for all } n \in \mathbb{N} \cup \{\infty\}.$$

We say $\operatorname{Dg} X = n$ if $\operatorname{Dg} X \leqslant n$ but $\operatorname{Dg} X \nleq n-1$; also, $\operatorname{Dg} X = \infty$ means $\operatorname{Dg} X \nleq n$ for all $n \in \mathbb{N}$. $\operatorname{Dg} X$ is the *Dimensionsgrad* of X.

Theorem

$$Dg[0,1]^n = n \text{ for all } n \in \mathbb{N} \cup \{\infty\}.$$

Thus, Dg helps in showing that all cubes are topologically distinct.

Theorem

For every compact metrizable space X we have

$$\dim X = \operatorname{Dg} X = \operatorname{Ind} X$$

Theorem

For every compact metrizable space X we have

$$\dim X = \operatorname{Dg} X = \operatorname{Ind} X$$

• $\dim X = \operatorname{Ind} X$ for all metrizable X

Theorem

For every compact metrizable space X we have

$$\dim X = \operatorname{Dg} X = \operatorname{Ind} X$$

- $\dim X = \operatorname{Ind} X$ for all metrizable X
- dim $X = \operatorname{Dg} X$ for all σ -compact metrizable $X \dots$

Theorem

For every compact metrizable space X we have

$$\dim X = \operatorname{Dg} X = \operatorname{Ind} X$$

- $\dim X = \operatorname{Ind} X$ for all metrizable X
- dim $X = \operatorname{Dg} X$ for all σ -compact metrizable $X \dots$
- ... but not for all separable metrizable X

For compact Hausdorff spaces:

For compact Hausdorff spaces:

• $\operatorname{Dg} X \leqslant \operatorname{Ind} X$ (each partition is a cut)

For compact Hausdorff spaces:

- $\operatorname{Dg} X \leqslant \operatorname{Ind} X$ (each partition is a cut)
- $\dim X \leqslant \operatorname{Ind} X$ (Vedenissof)

For compact Hausdorff spaces:

- $\operatorname{Dg} X \leqslant \operatorname{Ind} X$ (each partition is a cut)
- $\dim X \leqslant \operatorname{Ind} X$ (Vedenissof)
- $\dim X \leq \operatorname{Dg} X$ (Fedorchuk)

For compact Hausdorff spaces:

- $\operatorname{Dg} X \leqslant \operatorname{Ind} X$ (each partition is a cut)
- $\dim X \leq \operatorname{Ind} X$ (Vedenissof)
- dim $X \leq \operatorname{Dg} X$ (Fedorchuk)

We will (re)prove the last two inequalities algebraically.

Outline

- 1 Duality for compact Hausdorff spaces and lattices
 - Wallman's construction
 - Duality
- 2 What's the use?
 - Homeomorphisms
 - Embeddings
 - Onto mappings
- Reflections on dimension
 - Dimension functions
 - Formulas
 - Bases
 - Reflections
- 4 Sources

Here is Hemmingsen's characterization of dim $X \leqslant n$

Here is Hemmingsen's characterization of dim $X \leq n$ reformulated in terms of closed sets

Here is Hemmingsen's characterization of dim $X \leq n$ reformulated in terms of closed sets and cast as a formula, δ_n , in the language of lattices

Here is Hemmingsen's characterization of dim $X \leq n$ reformulated in terms of closed sets and cast as a formula, δ_n , in the language of lattices

$$(\forall x_1)(\forall x_2)\cdots(\forall x_{n+2})(\exists y_1)(\exists y_2)\cdots(\exists y_{n+2})$$

$$[(x_1 \cap x_2 \cap \cdots \cap x_{n+2} = 0) \rightarrow$$

$$((x_1 \leqslant y_1) \land (x_2 \leqslant y_2) \land \cdots \land (x_{n+2} \leqslant y_{n+2})$$

$$\land (y_1 \cap y_2 \cap \cdots \cap y_{n+2} = 0)$$

$$\land (y_1 \cup y_2 \cup \cdots \cup y_{n+2} = 1))].$$

We can express Ind $X \le n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

We can express Ind $X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u)$$
$$[(((x \leqslant a) \land (y \leqslant a) \land (x \cap y = o)) \rightarrow (\mathsf{partn}(u, x, y, a) \land I_{n-1}(u))]$$

We can express Ind $X \le n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u)$$
$$[(((x \leqslant a) \land (y \leqslant a) \land (x \cap y = o)) \rightarrow (\mathsf{partn}(u, x, y, a) \land I_{n-1}(u))]$$

where partn(u, x, y, a) says that u is a partition between x and y in the (sub)space a:

We can express Ind $X \le n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u)$$
$$[(((x \leqslant a) \land (y \leqslant a) \land (x \cap y = o)) \rightarrow (\mathsf{partn}(u, x, y, a) \land I_{n-1}(u))]$$

where partn(u, x, y, a) says that u is a partition between x and y in the (sub)space a:

$$(\exists f)(\exists g)\big((x\cap f=\mathfrak{0})\wedge(y\cap g=\mathfrak{0})\wedge(f\cup g=a)\wedge(f\cap g=u)\big).$$

We can express Ind $X \le n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u)$$
$$[(((x \leqslant a) \land (y \leqslant a) \land (x \cap y = o)) \rightarrow (\mathsf{partn}(u, x, y, a) \land I_{n-1}(u))]$$

where partn(u, x, y, a) says that u is a partition between x and y in the (sub)space a:

$$(\exists f)(\exists g)\big((x\cap f=o)\wedge(y\cap g=o)\wedge(f\cup g=a)\wedge(f\cap g=u)\big).$$

We start with $I_{-1}(a)$, which denotes a = o

Here we have the recursive definition of a formula $\Delta_n(a)$:

Here we have the recursive definition of a formula $\Delta_n(a)$:

$$(\forall x)(\forall y)(\exists u) [((x \leqslant a) \land (y \leqslant a) \land (x \cap y = o)) \rightarrow (\operatorname{cut}(u, x, y, a) \land \Delta_{n-1}(u))],$$

Here we have the recursive definition of a formula $\Delta_n(a)$:

$$(\forall x)(\forall y)(\exists u)$$

 $[((x \leqslant a) \land (y \leqslant a) \land (x \cap y = o)) \rightarrow (\operatorname{cut}(u, x, y, a) \land \Delta_{n-1}(u))],$
and $\Delta_{-1}(a)$ denotes $a = o$.

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

$$(\forall v)\big[\big((v\leqslant a)\land \mathsf{conn}(v)\land (v\cap x\neq o)\land (v\cap y\neq o)\big)\rightarrow (v\cap u\neq o)\big],$$

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

$$(\forall v) \big[\big((v \leqslant a) \land \mathsf{conn}(v) \land (v \cap x \neq 0) \land (v \cap y \neq 0) \big) \rightarrow (v \cap u \neq 0) \big],$$

and conn(a) says that a is connected:

The formula cut(u, x, y, a) expresses that u is a cut between x and y in a:

$$(\forall v) \big[\big((v \leqslant a) \land \mathsf{conn}(v) \land (v \cap x \neq 0) \land (v \cap y \neq 0) \big) \rightarrow (v \cap u \neq 0) \big],$$

and conn(a) says that a is connected:

$$(\forall x)(\forall y)\big[\big((x\cap y=\mathfrak{o})\wedge(x\cup y=a)\big)\to\big((x=\mathfrak{o})\vee(x=a)\big)\big],$$

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate)

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate):

O Formulas, Formulas! — Wherefore useth thou Formulas?

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate):

O Formulas, Formulas! — Wherefore useth thou Formulas?

Forsooth! It giveth us an algebraic handle on these dimensions:

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate):

O Formulas, Formulas! — Wherefore useth thou Formulas?

Forsooth! It giveth us an algebraic handle on these dimensions:

• dim $X \leqslant n$ iff δ_n holds in 2^X

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate):

O Formulas, Formulas! — Wherefore useth thou Formulas?

Forsooth! It giveth us an algebraic handle on these dimensions:

- dim $X \leqslant n$ iff δ_n holds in 2^X
- Ind $X \leqslant n$ iff $I_n(X)$ holds in 2^X

Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate):

O Formulas, Formulas! — Wherefore useth thou Formulas?

Forsooth! It giveth us an algebraic handle on these dimensions:

- dim $X \leqslant n$ iff δ_n holds in 2^X
- Ind $X \leqslant n$ iff $I_n(X)$ holds in 2^X
- $\operatorname{Dg} X \leqslant n$ iff $\Delta_n(X)$ holds in 2^X

Outline

- Duality for compact Hausdorff spaces and lattices
 - Wallman's construction
 - Duality
- 2 What's the use?
 - Homeomorphisms
 - Embeddings
 - Onto mappings
- Reflections on dimension
 - Dimension functions
 - Formulas
 - Bases
 - Reflections
- Sources

Covering dimension

Theorem

Let X be compact. Then dim $X \le n$ iff some (every) lattice-base for its closed sets satisfies δ_n .

Proof: compactness and a shrinking-and-swelling argument.

Large inductive dimension

Theorem

Let X be compact. If some lattice-base, \mathcal{B} , for its closed sets satisfies $I_n(X)$ then $\operatorname{Ind} X \leqslant n$.

Large inductive dimension

Theorem

Let X be compact. If some lattice-base, \mathcal{B} , for its closed sets satisfies $I_n(X)$ then $\operatorname{Ind} X \leqslant n$.

Proof: induction and, again, a swelling-and-shrinking argument.

Large inductive dimension

Theorem

Let X be compact. If some lattice-base, \mathcal{B} , for its closed sets satisfies $I_n(X)$ then $\operatorname{Ind} X \leqslant n$.

Proof: induction and, again, a swelling-and-shrinking argument.

No equivalence, see later.

Dimension functions Formulas Bases

Dimensionsgrad

Theorem

Let X be compact. If some lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then

Dimension function Formulas Bases Reflections

Dimensionsgrad

Theorem

Let X be compact. If some lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about $\operatorname{Dg} X$.

Dimension function Formulas Bases

Dimensionsgrad

Theorem

Let X be compact. If some lattice-base, \mathcal{B} , for its closed sets satisfies $\Delta_n(X)$ then we can't say anything about Dg X.

Proof: we can cheat and create, for [0,1] say, a lattice base without connected elements; that base satisfies $\Delta_0(X)$ vacuously.

Outline

- Duality for compact Hausdorff spaces and lattices
 - Wallman's construction
 - Duality
- 2 What's the use?
 - Homeomorphisms
 - Embeddings
 - Onto mappings
- Reflections on dimension
 - Dimension functions
 - Formulas
 - Bases
 - Reflections
- 4 Sources

Dimension function Formulas Bases Reflections

Take a rich sublattice

Let X be compact Hausdorff and let \mathcal{B} be a countable sublattice of 2^X with exactly the same algebraic properties as 2^X .

Take a rich sublattice

Let X be compact Hausdorff and let \mathcal{B} be a countable sublattice of 2^X with exactly the same algebraic properties as 2^X .

If you know your model theory: apply the Löwenheim-Skolem theorem.

Take a rich sublattice

Let X be compact Hausdorff and let \mathcal{B} be a countable sublattice of 2^X with exactly the same algebraic properties as 2^X .

If you know your model theory: apply the Löwenheim-Skolem theorem.

If not: think of taking a countable algebraic subfield of \mathbb{C} , say.

The formula δ_n holds in \mathcal{B} iff it holds in 2^X , hence

The formula δ_n holds in \mathcal{B} iff it holds in 2^X , hence

 $\dim w\mathcal{B} = \dim X$.

The formula δ_n holds in \mathcal{B} iff it holds in 2^X , hence

$$\dim w\mathcal{B} = \dim X$$
.

The formula $I_n(X)$ holds in \mathcal{B} iff it holds in 2^X , hence

The formula δ_n holds in \mathcal{B} iff it holds in 2^X , hence

$$\dim w\mathcal{B} = \dim X$$
.

The formula $I_n(X)$ holds in \mathcal{B} iff it holds in 2^X , hence

Ind
$$w\mathcal{B} \leq \operatorname{Ind} X$$
.

The formula δ_n holds in \mathcal{B} iff it holds in 2^X , hence

$$\dim w\mathcal{B} = \dim X$$
.

The formula $I_n(X)$ holds in \mathcal{B} iff it holds in 2^X , hence

Ind
$$w\mathcal{B} \leq \operatorname{Ind} X$$
.

But wB is compact metrizable, so dim wB = Ind wB, hence

The formula δ_n holds in \mathcal{B} iff it holds in 2^X , hence

$$\dim w\mathcal{B} = \dim X$$
.

The formula $I_n(X)$ holds in \mathcal{B} iff it holds in 2^X , hence

Ind
$$w\mathcal{B} \leq \operatorname{Ind} X$$
.

But wB is compact metrizable, so dim wB = Ind wB, hence

$$\dim X \leq \operatorname{Ind} X$$
.

There are (many) compact Hausdorff spaces with non-coinciding dimensions, e.g., an early example of a compact L such that $\dim L = 1$ and $\operatorname{Ind} L = 2$ (Lokucievskii).

There are (many) compact Hausdorff spaces with non-coinciding dimensions, e.g., an early example of a compact L such that $\dim L = 1$ and $\operatorname{Ind} L = 2$ (Lokucievskii).

In that case Ind wB < Ind L for countable (rich) sublattices of 2^L .

The stronger inequality dim $X \leq \operatorname{Dg} X$ can be proved via $w\mathcal{B}$ as well.

The stronger inequality dim $X \leq \operatorname{Dg} X$ can be proved via $w\mathcal{B}$ as well.

The argument is more involved.

The stronger inequality dim $X \leq \operatorname{Dg} X$ can be proved via $w\mathcal{B}$ as well.

The argument is more involved.

It uses in an essential way that \mathcal{B} is a rich sublattice of 2^X .

The stronger inequality dim $X \leq \operatorname{Dg} X$ can be proved via $w\mathcal{B}$ as well.

The argument is more involved.

It uses in an essential way that \mathcal{B} is a rich sublattice of 2^X .

I'll spare you the details.

Light reading

Website: fa.its.tudelft.nl/~hart

K. P. Hart.

Elementarity and dimensions, Mathematical Notes, **78** (2005), 264–269.

