$\omega^*\text{, }\omega_1^*$ and non-trivial autohomeomorphisms Quidquid latine dictum sit, altum videtur

K. P. Hart

Fakulta EMK TU Delft

Praha, 8. srpen 2011: 15:40-16:10

 $\begin{array}{l} \mbox{History}\\ \mbox{Working toward } 0=1\\ \mbox{A non-trivial autohomeomorphism} \end{array}$

Outline

▲□ ▶ ▲ □ ▶ ▲ □ ▶

 $\begin{array}{l} \mbox{History}\\ \mbox{Working toward 0} = 1\\ \mbox{A non-trivial autohomeomorphism} \end{array}$

A basic question

All cardinals carry the discrete topology.

K. P. Hart ω^* , ω_1^* and non-trivial autohomeomorphisms

All cardinals carry the discrete topology.

Question (The Katowice Problem)

Are there different infinite cardinals κ and λ such that κ^* and λ^* are homeomorphic?

All cardinals carry the discrete topology.

Question (The Katowice Problem)

Are there different infinite cardinals κ and λ such that κ^* and λ^* are homeomorphic? Equivalently: are there different infinite cardinals κ and λ such that the Boolean algebras $\mathcal{P}(\kappa)/fin$ and $\mathcal{P}(\lambda)/fin$ are isomorphic?

All cardinals carry the discrete topology.

Question (The Katowice Problem)

Are there different infinite cardinals κ and λ such that κ^* and λ^* are homeomorphic?

Equivalently: are there different infinite cardinals κ and λ such that the Boolean algebras $\mathcal{P}(\kappa)/\text{fin}$ and $\mathcal{P}(\lambda)/\text{fin}$ are isomorphic?

Gut reaction

Of course not!

All cardinals carry the discrete topology.

Question (The Katowice Problem)

Are there different infinite cardinals κ and λ such that κ^* and λ^* are homeomorphic? Equivalently: are there different infinite cardinals κ and λ such

that the Boolean algebras $\mathcal{P}(\kappa)/fin$ and $\mathcal{P}(\lambda)/fin$ are isomorphic?

Gut reaction

Of course not! That would be shocking.

 $\begin{array}{l} \mbox{History}\\ \mbox{Working toward } 0=1\\ \mbox{A non-trivial autohomeomorphism} \end{array}$

A word of warning

Remember: people thought that $\kappa < \lambda$ would imply $2^{\kappa} < 2^{\lambda}$.

A word of warning

Remember: people thought that $\kappa < \lambda$ would imply $2^{\kappa} < 2^{\lambda}$.

And had a hard time proving it.

同 ト イ ヨ ト イ ヨ ト

A word of warning

Remember: people thought that $\kappa < \lambda$ would imply $2^{\kappa} < 2^{\lambda}$.

And had a hard time proving it.

And then they learned that it was unprovable.

A word of warning

Remember: people thought that $\kappa < \lambda$ would imply $2^{\kappa} < 2^{\lambda}$.

And had a hard time proving it.

And then they learned that it was unprovable.

Very unprovable:

A word of warning

Remember: people thought that $\kappa < \lambda$ would imply $2^{\kappa} < 2^{\lambda}$.

And had a hard time proving it.

And then they learned that it was unprovable.

Very unprovable: one can specify regular cardinals at will and create a model in which their 2-powers are equal.

 $\begin{array}{l} \mbox{History}\\ \mbox{Working toward } 0=1\\ \mbox{A non-trivial autohomeomorphism} \end{array}$

A glimmer of hope

If $\kappa < \lambda$ then $\beta \kappa$ and $\beta \lambda$ are not homeomorphic

□ > < E > < E >

K. P. Hart ω^* , ω_1^* and non-trivial autohomeomorphisms

A glimmer of hope

If $\kappa < \lambda$ then $\beta \kappa$ and $\beta \lambda$ are not homeomorphic (or $\mathcal{P}(\kappa)$ and $\mathcal{P}(\lambda)$ are not isomorphic)

A glimmer of hope

If $\kappa < \lambda$ then $\beta \kappa$ and $\beta \lambda$ are not homeomorphic (or $\mathcal{P}(\kappa)$ and $\mathcal{P}(\lambda)$ are not isomorphic) even if $2^{\kappa} = 2^{\lambda}$.

A glimmer of hope

If $\kappa < \lambda$ then $\beta \kappa$ and $\beta \lambda$ are not homeomorphic (or $\mathcal{P}(\kappa)$ and $\mathcal{P}(\lambda)$ are not isomorphic) even if $2^{\kappa} = 2^{\lambda}$.

Their sets of isolated points (atoms) have different cardinalities.

More hope

Theorem (Frankiewicz 1977)

The minimum cardinal κ (if any) such that κ^* is homeomorphic to λ^* for some $\lambda > \kappa$ must be ω .

白 ト イヨ ト イヨ ト

More hope

Theorem (Frankiewicz 1977)

The minimum cardinal κ (if any) such that κ^* is homeomorphic to λ^* for some $\lambda > \kappa$ must be ω .

Theorem (Balcar and Frankiewicz 1978)

 ω_1^* and ω_2^* are not homeomorphic.

 $\begin{array}{l} \mbox{History}\\ \mbox{Working toward } 0=1\\ \mbox{A non-trivial autohomeomorphism} \end{array}$

Our gut was not completely wrong

Corollary

If $\omega_1 \leqslant \kappa < \lambda$ then κ^* and λ^* are not homeomorphic

K. P. Hart ω^* , ω_1^* and non-trivial autohomeomorphisms

・ロン ・回と ・ヨン ・ヨン

History Working toward 0 = 1A non-trivial autohomeomorphism

Our gut was not completely wrong

Corollary

If $\omega_1 \leq \kappa < \lambda$ then κ^* and λ^* are not homeomorphic, and if $\omega_2 \leq \lambda$ then ω^* and λ^* are not homeomorphic.

| 4 回 🕨 🔺 国 🕨 🔺 国 🕨

History Working toward 0 = 1A non-trivial autohomeomorphism

Our gut was not completely wrong

Corollary

If $\omega_1 \leq \kappa < \lambda$ then κ^* and λ^* are not homeomorphic, and if $\omega_2 \leq \lambda$ then ω^* and λ^* are not homeomorphic.

So we are left with

同 ト イ ヨ ト イ ヨ ト

 $\begin{array}{l} \mbox{History}\\ \mbox{Working toward } 0=1\\ \mbox{A non-trivial autohomeomorphism} \end{array}$

Our gut was not completely wrong

Corollary

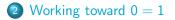
If $\omega_1 \leq \kappa < \lambda$ then κ^* and λ^* are not homeomorphic, and if $\omega_2 \leq \lambda$ then ω^* and λ^* are not homeomorphic.

So we are left with

Question Are ω^* and ω_1^* ever homeomorphic?

同 ト イ ヨ ト イ ヨ ト

Outline



白 ト イヨト イヨト

History Working toward 0 = 1 A non-trivial autohomeomorphism

Consequences of 'yes'

Easiest consequence: $2^{\aleph_0} = 2^{\aleph_1}$

< 同 > < 三 > < 三 >

K. P. Hart ω^* , ω_1^* and non-trivial autohomeomorphisms

Easiest consequence: $2^{\aleph_0} = 2^{\aleph_1}$;

those are the respective weights of ω^* and ω_1^*

Easiest consequence: $2^{\aleph_0} = 2^{\aleph_1}$;

those are the respective weights of ω^* and ω_1^*

(or cardinalities of $\mathcal{P}(\omega)/\text{fin}$ and $\mathcal{P}(\omega_1)/\text{fin}$).

Easiest consequence: $2^{\aleph_0} = 2^{\aleph_1}$;

those are the respective weights of ω^* and ω_1^*

(or cardinalities of $\mathcal{P}(\omega)/\text{fin}$ and $\mathcal{P}(\omega_1)/\text{fin}$).

So CH implies 'no'.

We consider the set $\omega \times \omega_1$.

We consider the set $\omega \times \omega_1$.

We put

We consider the set $\omega \times \omega_1$.

We put

- $V_n = \{n\} \times \omega_1$
- $H_{\alpha} = \omega \times \{\alpha\}$
- $B_{\alpha} = \omega \times \alpha$
- $E_{\alpha} = \omega \times [\alpha, \omega_1)$

We consider the set $\omega \times \omega_1$.

We put

- $V_n = \{n\} \times \omega_1$
- $H_{\alpha} = \omega \times \{\alpha\}$
- $B_{\alpha} = \omega \times \alpha$
- $E_{\alpha} = \omega \times [\alpha, \omega_1)$

Let $\gamma: (\omega \times \omega_1)^* \to (\omega \times \omega)^*$ be a homeomorphism.

We consider the set $\omega \times \omega_1$.

We put

- $V_n = \{n\} \times \omega_1$
- $H_{\alpha} = \omega \times \{\alpha\}$
- $B_{\alpha} = \omega \times \alpha$
- $E_{\alpha} = \omega \times [\alpha, \omega_1)$

Let $\gamma : (\omega \times \omega_1)^* \to (\omega \times \omega)^*$ be a homeomorphism. We can assume $\gamma[V_n^*] = (\{n\} \times \omega)^*$ for all n.

Choose e_{α} , for each α , such that $\gamma[E_{\alpha}^*] = e_{\alpha}^*$.

同 ト イ ヨ ト イ ヨ ト

K. P. Hart ω^* , ω_1^* and non-trivial autohomeomorphisms

Choose e_{α} , for each α , such that $\gamma[E_{\alpha}^*] = e_{\alpha}^*$. Define $f_{\alpha} : \omega \to \omega$ by

$$f_{\alpha}(m) = \min\{n : \langle m, n \rangle \in e_{\alpha}\}$$

< 同 > < 三 > < 三 >

Choose e_{α} , for each α , such that $\gamma[E_{\alpha}^*] = e_{\alpha}^*$. Define $f_{\alpha} : \omega \to \omega$ by

$$f_{lpha}(m) = \min\{n: \langle m, n
angle \in e_{lpha}\}$$

Verify that $f_{\alpha} \leq f_{\beta}$ when $\alpha < \beta$.

同 ト イ ヨ ト イ ヨ ト

Choose e_{α} , for each α , such that $\gamma[E_{\alpha}^*] = e_{\alpha}^*$. Define $f_{\alpha} : \omega \to \omega$ by

$$f_{lpha}(m) = \min\{n: \langle m, n
angle \in e_{lpha}\}$$

Verify that $f_{\alpha} \leq^* f_{\beta}$ when $\alpha < \beta$. If $f : \omega \to \omega$ then $e_{\alpha} \cap f$ is finite for many α and for those α we have $f <^* f_{\alpha}$.

An ω_1 -scale

Choose e_{α} , for each α , such that $\gamma[E_{\alpha}^*] = e_{\alpha}^*$. Define $f_{\alpha} : \omega \to \omega$ by

$$f_{lpha}(m) = \min\{n: \langle m, n
angle \in e_{lpha}\}$$

Verify that $f_{\alpha} \leq f_{\beta}$ when $\alpha < \beta$. If $f : \omega \to \omega$ then $e_{\alpha} \cap f$ is finite for many α and for those α we have $f < f_{\alpha}$. So $\langle f_{\alpha} : \alpha < \omega_1 \rangle$ is an ω_1 -scale.

An ω_1 -scale

Choose e_{α} , for each α , such that $\gamma[E_{\alpha}^*] = e_{\alpha}^*$. Define $f_{\alpha} : \omega \to \omega$ by

$$f_{lpha}(m) = \min\{n: \langle m, n
angle \in e_{lpha}\}$$

Verify that $f_{\alpha} \leq f_{\beta}$ when $\alpha < \beta$. If $f : \omega \to \omega$ then $e_{\alpha} \cap f$ is finite for many α and for those α we have $f < f_{\alpha}$. So $\langle f_{\alpha} : \alpha < \omega_1 \rangle$ is an ω_1 -scale.

And so $MA + \neg CH$ implies 'no'.

Choose h_{α} , for each α , such that $\gamma[H_{\alpha}^*] = h_{\alpha}^*$.

3 N

Choose h_{α} , for each α , such that $\gamma[H_{\alpha}^*] = h_{\alpha}^*$.

 $\{h_{\alpha}: \alpha < \omega_1\}$ is an almost disjoint family.

Choose h_{α} , for each α , such that $\gamma[H_{\alpha}^*] = h_{\alpha}^*$.

 $\{h_{\alpha} : \alpha < \omega_1\}$ is an almost disjoint family. And a very special one at that.

Choose h_{α} , for each α , such that $\gamma[H_{\alpha}^*] = h_{\alpha}^*$.

 $\{h_{\alpha} : \alpha < \omega_1\}$ is an almost disjoint family. And a very special one at that.

Given $x_{\alpha} \subseteq h_{\alpha}$ for each α there is x such that $x \cap h_{\alpha} =^{*} x_{\alpha}$ for all α .

Choose h_{α} , for each α , such that $\gamma[H_{\alpha}^*] = h_{\alpha}^*$.

 $\{h_{\alpha} : \alpha < \omega_1\}$ is an almost disjoint family. And a very special one at that.

Given $x_{\alpha} \subseteq h_{\alpha}$ for each α there is x such that $x \cap h_{\alpha} =^{*} x_{\alpha}$ for all α .

Basically $x^* = h[X^*]$, where X is such that $(X \cap H_{\alpha})^* = \gamma^{\leftarrow}[x_{\alpha}^*]$ for all α .

Choose h_{α} , for each α , such that $\gamma[H_{\alpha}^*] = h_{\alpha}^*$.

 $\{h_{\alpha} : \alpha < \omega_1\}$ is an almost disjoint family. And a very special one at that.

Given $x_{\alpha} \subseteq h_{\alpha}$ for each α there is x such that $x \cap h_{\alpha} =^{*} x_{\alpha}$ for all α .

Basically $x^* = h[X^*]$, where X is such that $(X \cap H_{\alpha})^* = \gamma^{\leftarrow}[x_{\alpha}^*]$ for all α .

Such strong Q-sequences exist consistently (Steprans).

Even better (or worse?)

It is consistent to have

K. P. Hart ω^* , ω_1^* and non-trivial autohomeomorphisms

Even better (or worse?)

It is consistent to have

• $\mathfrak{d} = \omega_1$

Even better (or worse?)

It is consistent to have

- $\mathfrak{d} = \omega_1$
- a strong Q-sequence

Even better (or worse?)

It is consistent to have

- $\mathfrak{d} = \omega_1$
- a strong *Q*-sequence

•
$$2^{\aleph_0} = 2^{\aleph_1}$$

Even better (or worse?)

It is consistent to have

- $\mathfrak{d} = \omega_1$
- a strong Q-sequence
- $2^{\aleph_0} = 2^{\aleph_1}$

simultaneously (Chodounsky).

Even better (or worse?)

It is consistent to have

- $\mathfrak{d} = \omega_1$
- a strong *Q*-sequence
- $2^{\aleph_0} = 2^{\aleph_1}$

simultaneously (Chodounsky).

(Actually second implies third.)

Outline

A non-trivial autohomeomorphism

白 ト イヨト イヨト

Work with the set $D = \mathbb{Z} \times \omega_1$ — so now $\gamma : D^* \to \omega^*$.

白 と く ヨ と く

Work with the set $D = \mathbb{Z} \times \omega_1$ — so now $\gamma : D^* \to \omega^*$.

Define $\Sigma : D \to D$ by $\Sigma(n, \alpha) = \langle n+1, \alpha \rangle$.

Work with the set $D = \mathbb{Z} \times \omega_1$ — so now $\gamma : D^* \to \omega^*$.

Define $\Sigma : D \to D$ by $\Sigma(n, \alpha) = \langle n+1, \alpha \rangle$.

Then $\tau = \gamma \circ \Sigma^* \circ \gamma^{-1}$ is an autohomeomorphism of ω^* .

Work with the set $D = \mathbb{Z} \times \omega_1$ — so now $\gamma : D^* \to \omega^*$.

Define $\Sigma : D \to D$ by $\Sigma(n, \alpha) = \langle n+1, \alpha \rangle$.

Then $\tau = \gamma \circ \Sigma^* \circ \gamma^{-1}$ is an autohomeomorphism of ω^* .

In fact, τ is non-trivial, i.e., there is no bijection $\sigma : a \to b$ between cofinite sets such that $\tau[x^*] = \sigma[x \cap a]^*$ for all subsets x of ω

{H^{*}_α : α < ω₁} is a maximal disjoint family of Σ*-invariant clopen sets.

白 ト イヨ ト イヨ ト

{H^{*}_α : α < ω₁} is a maximal disjoint family of Σ*-invariant clopen sets.

•
$$\Sigma^*[V_n^*] = V_{n+1}^*$$
 for all n

白 ト イヨ ト イヨ ト

- {H^{*}_α : α < ω₁} is a maximal disjoint family of Σ*-invariant clopen sets.
- $\Sigma^*[V_n^*] = V_{n+1}^*$ for all n
- if $V_n^* \subseteq C^*$ for all *n* then $E_\alpha \subseteq C$ for some α

- {H^{*}_α : α < ω₁} is a maximal disjoint family of Σ*-invariant clopen sets.
- $\Sigma^*[V_n^*] = V_{n+1}^*$ for all n
- if $V_n^* \subseteq C^*$ for all *n* then $E_\alpha \subseteq C$ for some α and hence $H_\alpha^* \subseteq C^*$ for all but countably many α .

How does that work?

In ω we have sets h_{α} , v_n , b_{α} and e_{α} that mirror this:

In ω we have sets h_{α} , v_n , b_{α} and e_{α} that mirror this:

• $\{h_{\alpha}^*: \alpha < \omega_1\}$ is a maximal disjoint family of τ -invariant clopen sets.

In ω we have sets h_{α} , v_n , b_{α} and e_{α} that mirror this:

• $\{h_{\alpha}^*: \alpha < \omega_1\}$ is a *maximal* disjoint family of τ -invariant clopen sets.

•
$$\tau[v_n^*] = v_{n+1}^*$$
 for all n

In ω we have sets h_{α} , v_n , b_{α} and e_{α} that mirror this:

- $\{h_{\alpha}^* : \alpha < \omega_1\}$ is a *maximal* disjoint family of τ -invariant clopen sets.
- $\tau[v_n^*] = v_{n+1}^*$ for all n
- if $v_n^* \subseteq c^*$ for all n then $e_\alpha^* \subseteq c^*$ for some α

In ω we have sets h_{α} , v_n , b_{α} and e_{α} that mirror this:

- $\{h_{\alpha}^*: \alpha < \omega_1\}$ is a maximal disjoint family of τ -invariant clopen sets.
- $\tau[v_n^*] = v_{n+1}^*$ for all n
- if $v_n^* \subseteq c^*$ for all *n* then $e_{\alpha}^* \subseteq c^*$ for some α and hence $h_{\alpha}^* \subseteq c^*$ for all but countably many α .

The assumption that $\tau = \sigma^*$ for some σ leads, via some bookkeeping, to a set c with the properties that

The assumption that $\tau = \sigma^*$ for some σ leads, via some bookkeeping, to a set c with the properties that

The assumption that $\tau = \sigma^*$ for some σ leads, via some bookkeeping, to a set c with the properties that

- $v_n \subseteq^* c$ for all n and
- h_α ⊈^{*} c for uncountably many α (in fact all but countably many).

The assumption that $\tau = \sigma^*$ for some σ leads, via some bookkeeping, to a set c with the properties that

- $v_n \subseteq^* c$ for all n and
- h_α ⊈* c for uncountably many α (in fact all but countably many).

which neatly contradicts what's on the previous slide

Assume we have a $\sigma : a \to b$ inducing the isomorphism (without loss of generality $a = \omega$).

同 ト イ ヨ ト イ ヨ ト

Assume we have a $\sigma : a \to b$ inducing the isomorphism (without loss of generality $a = \omega$).

Split ω into I and F — the unions of the Infinite and Finite orbits, respectively.

Assume we have a $\sigma : a \to b$ inducing the isomorphism (without loss of generality $a = \omega$).

Split ω into I and F — the unions of the Infinite and Finite orbits, respectively.

An infinite orbit must meet an h_{α} in an infinite set — and at most two of these.

Assume we have a $\sigma : a \to b$ inducing the isomorphism (without loss of generality $a = \omega$).

Split ω into I and F — the unions of the Infinite and Finite orbits, respectively.

An infinite orbit must meet an h_{α} in an infinite set — and at most two of these.

Why is 'two' even possible?

Assume we have a $\sigma : a \to b$ inducing the isomorphism (without loss of generality $a = \omega$).

Split ω into I and F — the unions of the Infinite and Finite orbits, respectively.

An infinite orbit must meet an h_{α} in an infinite set — and at most two of these.

Why is 'two' even possible?

If the orbit of *n* is two-sided infinite then both $\{\sigma^k(n) : k \leq 0\}^*$ and $\{\sigma^k(n) : k \geq 0\}^*$ are τ -invariant.

It follows that $h_{\alpha} \subseteq^* F$ for all but countably many α and hence $v_n \cap F$ is infinite for all n.

• each $h_{\alpha} \cap F$ is a union of finite orbits

- each $h_{\alpha} \cap F$ is a union of finite orbits
- those finite orbits have arbitrarily large cardinality

- each $h_{\alpha} \cap F$ is a union of finite orbits
- those finite orbits have arbitrarily large cardinality better still, the cardinalities converge to ω.

- each $h_{\alpha} \cap F$ is a union of finite orbits
- those finite orbits have arbitrarily large cardinality better still, the cardinalities converge to ω .
- Our set c is the union of I and half of each finite orbit.

It follows that $h_{\alpha} \subseteq^* F$ for all but countably many α and hence $v_n \cap F$ is infinite for all n.

- each $h_{\alpha} \cap F$ is a union of finite orbits
- those finite orbits have arbitrarily large cardinality better still, the cardinalities converge to ω .
- Our set c is the union of I and half of each finite orbit.

Certainly $h_{\alpha} \setminus c$ is infinite for our co-countably many α .

Finer detail

• Write each finite orbit as $\{\sigma^k(n): -l \leq k \leq m\}$

Finer detail

- Write each finite orbit as $\{\sigma^k(n) : -l \leq k \leq m\}$
- with $n \in v_0$ and $|m l| \leqslant 1$

Finer detail

- Write each finite orbit as $\{\sigma^k(n) : -l \leq k \leq m\}$
- with $n \in v_0$ and $|m I| \leqslant 1$
- use $\{\sigma^k(n): -l/2 \leqslant k \leqslant m/2\}$ as a constituent of c.

This tells us that a homeomorphism between ω^* and ω_1^* must be quite complicated.

This tells us that a homeomorphism between ω^* and ω_1^* must be quite complicated.

At least as complicated as a non-trivial autohomeomorphism.

This tells us that a homeomorphism between ω^* and ω_1^* must be quite complicated.

At least as complicated as a non-trivial autohomeomorphism.

Veličković' analysis of autohomeomorphisms of ω^* shows that the ones that are remotely describable (by Borel maps say) are trivial.

This tells us that a homeomorphism between ω^* and ω_1^* must be quite complicated.

At least as complicated as a non-trivial autohomeomorphism.

Veličković' analysis of autohomeomorphisms of ω^* shows that the ones that are remotely describable (by Borel maps say) are trivial. Our Σ is very trivial, so it's the putative homeomorphism γ that is badly describable.

This feels tantalisingly close to a proof that ω^* and ω_1^* are not homeomorphic

This feels tantalisingly close to a proof that ω^* and ω_1^* are not homeomorphic, to me anyway

This feels tantalisingly close to a proof that ω^* and ω_1^* are not homeomorphic, to me anyway, because.

This feels tantalisingly close to a proof that ω^* and ω_1^* are not homeomorphic, to me anyway, because.

• it seems that τ should be trivial on all (but countably many) h_{α}

This feels tantalisingly close to a proof that ω^* and ω_1^* are not homeomorphic, to me anyway, because.

• it seems that τ should be trivial on all (but countably many) h_{α} ; reason: h_{α} should be (the graph of) a function and so τ should be induced by the shift on h_{α}

This feels tantalisingly close to a proof that ω^* and ω_1^* are not homeomorphic, to me anyway, because.

- it seems that τ should be trivial on all (but countably many) h_{α} ; reason: h_{α} should be (the graph of) a function and so τ should be induced by the shift on h_{α}
- an argument with complete accumulation points should then give enough triviality to make those shifts cohere

This feels tantalisingly close to a proof that ω^* and ω_1^* are not homeomorphic, to me anyway, because.

- it seems that τ should be trivial on all (but countably many) h_{α} ; reason: h_{α} should be (the graph of) a function and so τ should be induced by the shift on h_{α}
- an argument with complete accumulation points should then give enough triviality to make those shifts cohere
- which should then lead to a contradiction

This feels tantalisingly close to a proof that ω^* and ω_1^* are not homeomorphic, to me anyway, because.

- it seems that τ should be trivial on all (but countably many) h_{α} ; reason: h_{α} should be (the graph of) a function and so τ should be induced by the shift on h_{α}
- an argument with complete accumulation points should then give enough triviality to make those shifts cohere
- which should then lead to a contradiction

None of which I have been able to prove

More Info

Website: http://fa.its.tudelft.nl/~hart

K. P. Hart ω^* , ω_1^* and non-trivial autohomeomorphisms

.

