ω^* and ω_1^* Quidquid latine dictum sit, altum videtur

K. P. Hart

Faculty EEMCS TU Delft

Belfast, 16 August 2011: 12:05-12:50

K. P. Hart ω^* and ω_1^* 1 / 30

 $\begin{array}{c} \textbf{History} \\ \textbf{Some proofs} \\ \textbf{Working toward 0} = 1 \\ \textbf{A non-trivial autohomeomorphism} \end{array}$

A basic question

All cardinals carry the discrete topology.

Question (Marian Turzanski)

Are ω^* and ω_1^* homeomorphic?

Equivalently: are the Boolean algebras $\mathcal{P}(\omega)/\mathit{fin}$ and $\mathcal{P}(\omega_1)/\mathit{fin}$ are isomorphic?

He asked this when he was a graduate student after he was assigned Parovičenko's paper "A universal continuum of weight \(\cap \)".

K. P. Hart

A more general question

Question

Are there different infinite cardinals κ and λ such that κ^* and λ^* are homeomorphic?

Equivalently: are there different infinite cardinals κ and λ such that the Boolean algebras $\mathcal{P}(\kappa)/\mathit{fin}$ and $\mathcal{P}(\lambda)/\mathit{fin}$ are isomorphic?

It turns out that Turzanski's question forms the only interesting case of the general question.

K. P. Hart

 ω^* and ω_1^*

4 / 30

 $\begin{array}{c} \textbf{History} \\ \textbf{Some proofs} \\ \textbf{Working toward } 0 = 1 \\ \textbf{A non-trivial autohomeomorphism} \end{array}$

What we are talking about: topologically

We take the Čech-Stone compactification, $\beta \kappa$, of the discrete space κ .

Characterizing properties of $\beta \kappa$:

- it is compact Hausdorff
- \bullet κ is a dense subset
- for every $A \subseteq \kappa$ the closures of A and $\kappa \setminus A$ in $\beta \kappa$ are disjoint

$$\kappa^*$$
 is $\beta \kappa \setminus \kappa$ (generally we write $A^* = \overline{A} \setminus A$ for $A \subseteq \kappa$)

K. P. Hart

 ω^* and ω_1^*

What we are talking about: algebraically

Consider the power set, $\mathcal{P}(\kappa)$, of κ .

It is a Boolean algebra, with operations \cup , \cap and $\kappa \setminus \cdot$

The family fin, of finite sets, is an ideal in this algebra.

K. P. Hart

 ω^* and ω_1^*

6 / 30

History Some proofs Working toward 0=1 A non-trivial autohomeomorphism

What we are talking about: the connection

Stone duality connects these two types of structures.

The family of clopen subsets of $\beta \kappa$ is $\{\overline{A} : A \in \mathcal{P}(\kappa)\}$, which, by the characterizing properties, is isomorphic to $\mathcal{P}(\kappa)$.

The family of clopen subsets of κ is $\{A^* : A \in \mathcal{P}(\kappa)\}$, which, by the characterizing properties, is isomorphic to $\mathcal{P}(\kappa)/fin$.

For observe: $A^* = B^*$ iff A and B differ by a finite set.

K. P. Hart

 ω^* and ω_1^*

Two results

Theorem (Frankiewicz 1977)

The minimum cardinal κ (if any) such that κ^* is homeomorphic to λ^* for some $\lambda > \kappa$ must be ω .

Theorem (Balcar and Frankiewicz 1978)

 ω_1^* and ω_2^* are not homeomorphic.

K. P. Hart

 ω^* and ω_1^*

8 / 30

 $\begin{array}{c} {\sf History} \\ {\sf Some \ proofs} \\ {\sf Working \ toward \ } 0=1 \\ {\sf A \ non-trivial \ autohomeomorphism} \end{array}$

Assume there are κ and λ . . .

Let κ be minimal such that there is $\lambda > \kappa$ for which κ^* and λ^* are homeomorphic.

Proposition

If $\kappa < \mu < \lambda$ then κ^* and μ^* are homeomorphic.

Proof.

Let $h: \lambda^* \to \kappa^*$ be a homeomorphism and take $A \subseteq \kappa$ such that $A^* = h[\mu^*]$.

Note: $|A| < \mu$, so by minimality of κ we must have $|A| = \kappa$.

Assume κ is the minimal . . .

Proposition

 $\kappa = \omega$

Proof.

Let $h: \kappa^* \to (\kappa^+)^*$ be a homeomorphism.

For $\alpha < \kappa$ take $A_{\alpha} \subseteq \kappa^+$ such that $A_{\alpha}^* = h[\alpha^*]$ and let

$$A = \bigcup_{\alpha < \kappa} A_{\alpha}$$
.

Note: $|A_{\alpha}| = |\alpha| < \kappa$ for all α , by minimality of κ , so $|A| \leqslant \kappa$.

K. P. Hart ω^* and ω_1^* 11 / 30

History me proofs

Assume κ is the minimal . . .

Proposition

 $\kappa = \omega$

Proof, continued.

Take $B \subseteq \kappa$ such that $A^* = h[B^*]$, and so $(\kappa^+ \setminus A)^* = h[(\kappa \setminus B)^*]$. This implies $|\kappa \setminus B| = \kappa$.

But $\alpha^* \subseteq B^*$, which means $\alpha \setminus B$ is finite, for all α .

And so $|\kappa \setminus B| \leq \omega$.

Scales

Let $\kappa > \omega$ and assume ω^* and κ^* are homeomorphic.

Consider $\omega \times \kappa$ instead of κ and let $\gamma : (\omega \times \kappa)^* \to \omega^*$ be a homeomorphism.

Let $V_n = \{n\} \times \kappa$ and choose $v_n \subseteq \omega$ such that $v_n^* = h[V_n^*]$. We may rearrange the v_n to make them disjoint and even assume $v_n = \{n\} \times \omega$ for all n.

K. P. Hart ω^* and ω_1^* 13 / 30

$\begin{array}{c} \text{History} \\ \text{Some proofs} \\ \text{Working toward } 0 = 1 \\ \text{A non-trivial autohomeomorphism} \end{array}$

Scales

For $\alpha < \kappa$ let $E_{\alpha} = \omega \times [\alpha, \kappa)$ and take $e_{\alpha} \subseteq \omega \times \omega$ such that $e_{\alpha}^* = h[E_{\alpha}^*]$.

Define $f_{\alpha}:\omega\to\omega$ by

$$f_{\alpha}(n) = \min\{k : \{n\} \times [k,\omega) \subseteq e_{\alpha}\}$$

Note: $f_{\alpha} \leqslant^* f_{\beta}$ if $\alpha < \beta$, i.e., $\{n : f_{\alpha}(n) > f_{\beta}(n)\}$ is finite. For every $f : \omega \to \omega$ there is an α such that $f \leqslant^* f_{\alpha}$. $\langle f_{\alpha} : \alpha < \kappa \rangle$ is a κ -scale.

Scales

Assume ω_1^* and ω_2^* are homeomorphic.

Then ω^* and ω_1^* must also be homeomorphic.

But then we'd have an ω_1 -scale and an ω_2 -scale and hence a contradiction.

K. P. Hart ω^* and ω_1^* 15 / 30

History Some proofs
Working toward 0=1A non-trivial autohomeomorphism

Consequences

Corollary

If $\omega_1 \leqslant \kappa < \lambda$ then κ^* and λ^* are not homeomorphic, and if $\omega_2 \leqslant \lambda$ then ω^* and λ^* are not homeomorphic.

So we are left with

Question

Are ω^* and ω_1^* ever homeomorphic?

So, what if they are homeomorphic?

Easiest consequence: $2^{\aleph_0} = 2^{\aleph_1}$;

those are the respective weights of ω^* and ω_1^*

(or cardinalities of $\mathcal{P}(\omega)/\text{fin}$ and $\mathcal{P}(\omega_1)/\text{fin}$).

So CH implies 'no'.

K. P. Hart ω^* and ω_1^* 18 / 30

 $\begin{array}{c} \text{History} \\ \text{Some proofs} \\ \text{Working toward 0} = 1 \\ \text{A non-trivial autohomeomorphism} \end{array}$

An ω_1 -scale

Using the scales we get

$$\mathfrak{d}=\omega_1$$

And so $MA + \neg CH$ implies 'no'.

 ω^*

A strong *Q*-sequence

In $\omega \times \omega_1$ let $H_\alpha = \omega \times \{\alpha\}$ and, for each α , choose $h_\alpha \subseteq \omega \times \omega$ such that $\gamma[H_\alpha^*] = h_\alpha^*$.

 $\{h_{\alpha}: \alpha < \omega_1\}$ is an almost disjoint family. And a very special one at that.

Given $x_{\alpha} \subseteq h_{\alpha}$ for each α there is x such that $x \cap h_{\alpha} =^* x_{\alpha}$ for all α .

Basically $x^* = h[X^*]$, where X is such that $(X \cap H_\alpha)^* = \gamma^{\leftarrow}[x_\alpha^*]$ for all α .

Such strong Q-sequences exist consistently (Steprāns).

K. P. Hart

 ω^* and ω_1^*

20 / 30

History Some proofs Working toward 0=1 A non-trivial autohomeomorphism

Even better (or worse?)

It is consistent to have

- \bullet $\mathfrak{d} = \omega_1$
- a strong Q-sequence
- $2^{\aleph_0} = 2^{\aleph_1}$

simultaneously (Chodounsky).

(Actually second implies third.)

An autohomeomorphism of ω_1^*

Work with the set $D = \mathbb{Z} \times \omega_1$ — so now $\gamma : D^* \to \omega^*$.

Define $\Sigma: D \to D$ by $\Sigma(n, \alpha) = \langle n+1, \alpha \rangle$.

Then $\tau = \gamma \circ \Sigma^* \circ \gamma^{-1}$ is an autohomeomorphism of ω^* .

In fact, τ is non-trivial, i.e., there is no bijection $\sigma: a \to b$ between cofinite sets such that $\tau[x^*] = \sigma[x \cap a]^*$ for all subsets x of ω

K. P. Hart ω^* and ω_1^* 23 / 30

Some proofs Working toward 0=1 A non-trivial autohomeomorphism

How does that work?

- $\{H_{\alpha}^* : \alpha < \omega_1\}$ is a *maximal* disjoint family of Σ^* -invariant clopen sets.
- $\Sigma^*[V_n^*] = V_{n+1}^*$ for all n
- if $V_n^* \subseteq C^*$ for all n then $E_\alpha \subseteq C$ for some α and hence $H_\alpha^* \subseteq C^*$ for all but countably many α .

 ω^*

How does that work?

In ω we have sets h_{α} , v_n , b_{α} and e_{α} that mirror this:

- $\{h_{\alpha}^*: \alpha < \omega_1\}$ is a *maximal* disjoint family of τ -invariant clopen sets.
- $\tau[v_n^*] = v_{n+1}^*$ for all n
- if $v_n^* \subseteq c^*$ for all n then $e_\alpha^* \subseteq c^*$ for some α and hence $h_\alpha^* \subseteq c^*$ for all but countably many α .

K. P. Hart ω^* and ω_1^* 25 / 30

Some proofs Working toward 0=1 A non-trivial autohomeomorphism

How does that work?

The assumption that $\tau=\sigma^*$ for some σ leads, via some bookkeeping, to a set c with the properties that

- $v_n \subseteq^* c$ for all n and
- $h_{\alpha} \not\subseteq^* c$ for uncountably many α (in fact all but countably many).

which neatly contradicts what's on the previous slide ...

Some more details

Assume we have a $\sigma: a \to b$ inducing the isomorphism (without loss of generality $a = \omega$).

Split ω into I and F — the unions of the Infinite and Finite orbits, respectively.

An infinite orbit must meet an h_{α} in an infinite set — and at most two of these.

Why is 'two' even possible? If the orbit of n is two-sided infinite then both $\{\sigma^k(n): k \leq 0\}^*$ and $\{\sigma^k(n): k \geq 0\}^*$ are τ -invariant.

K. P. Hart ω^* and ω_1^* 27 / 30

 $\begin{array}{c} \text{History} \\ \text{Some proofs} \\ \text{Working toward } 0 = 1 \\ \text{A non-trivial autohomeomorphism} \end{array}$

Some more details

It follows that $h_{\alpha} \subseteq^* F$ for all but countably many α and hence $v_n \cap F$ is infinite for all n.

- each $h_{\alpha} \cap F$ is a union of finite orbits
- those finite orbits have arbitrarily large cardinality better still, the cardinalities converge to ω .
- Our set c is the union of I and half of each finite orbit.

Certainly $h_{\alpha} \setminus c$ is infinite for our co-countably many α .

K. P. Hart ω^* an

Finer detail

- Write each finite orbit as $\{\sigma^k(n): -l \leqslant k \leqslant m\}$
- with $n \in v_0$ and $|m-I| \leqslant 1$
- use $\{\sigma^k(n): -I/2 \leqslant k \leqslant m/2\}$ as a constituent of c.

K. P. Hart ω^* and ω_1^* 29 / 30

Some proofs Working toward 0=1 A non-trivial autohomeomorphism

Moral of the story

Don't be afraid to ask questions.

You may be asking the next very interesting one.

