Dimension(s) of compact *F*-spaces Quidquid latine dictum sit, altum videtur

K. P. Hart

Faculty EEMCS TU Delft

Hejnice, 1. Únor, 2012: 17:30 - 18:10

Outline

Hurewicz' theorem

Theorem

Let X be separable and metrizable and $n \in \mathbb{N}$. Then the dimension of X is at most n if and only if there are a zero-dimensional, separable and metrizable space Y and a closed continuous surjection $f: Y \to X$ such that $|f^{\leftarrow}(x)| \leq n+1$ for all $x \in X$.

One direction uses the large inductive dimension.

Theorem

If Y is normal and strongly zero-dimensional and $f: Y \to X$ is closed, continuous and onto with $\left|f^{\leftarrow}(x)\right| \leqslant n+1$ for all $x \in X$ then $\operatorname{Ind} X \leqslant n$.

Proof.

By induction (of course).

Given disjoint closed sets A and B in X find a closed set Z in Y such that f[Z] is a partition between and $f \upharpoonright Z$ has fibers of size at most n.

The speaker draws an instructive picture . . .

The other direction uses the covering dimension dimension. dim $X \leq n$ iff for every open cover \mathcal{U} of X of cardinality n+2 there is an open refinement $\mathcal{V} = \{V_U : U \in \mathcal{U}\}$ with $\bigcap \{\operatorname{cl} V : V \in \mathcal{V}\} = \emptyset$. Refinement: $V_U \subseteq U$ for all U and $\bigcup \mathcal{V} = X$.

Theorem

If X is compact and metrizable with $\dim X \leqslant n$ then there are a zero-dimensional, compact and metrizable space Y and a continuous surjection $F: Y \to X$ with $\left| f^{\leftarrow}(x) \right| \leqslant n+1$ for all $x \in X$.

Proof.

Idea of proof: make finite closed covers of order at most n+1; give these the discrete topology; take their product and let Y be a suitable subspace of that product.

What makes this work?

The reason we have an equivalence is the fundamental fact from dimension theory that $\dim X = \operatorname{Ind} X$ for all separable and metrizable X.

And the compactification theorem: a separable and metrizable space has a metric compactification with the same dimension(s).

F-spaces of weight $\mathfrak c$

Experience has taught us that compact F-spaces of weight $\mathfrak c$ behave in many ways like compact metrizable spaces, provided the Continuum Hypothesis holds

F-spaces of weight ¢

Remember: X is an F-space if every finitely generated ideal in $C^*(X)$ is principal.

Or, somewhat more topological: disjoint cozero sets are completely separated.

Or, for normal spaces: disjoint cozero sets have disjoint closures.

Equality of dimensions

Theorem (CH)

For every compact F-space, X, of weight $\mathfrak c$ we have

$$\dim X = \operatorname{ind} X = \operatorname{Ind} X$$

Proof

The inequalities dim $X \le \operatorname{ind} X \le \operatorname{Ind} X$ hold for *every* compact space.

Proof, continued

Proof

The interesting part is the proof of $\operatorname{Ind} X \leqslant \dim X$.

Given disjoint closed sets A and B we build a partition, L, between them with dim $L \leq \dim X - 1$.

How: we have \aleph_1 many potential basic open covers of L of size $\dim X + 1$; enumerate them: $\langle \mathcal{U}_\alpha : \alpha < \omega_1 \rangle$.

Build increasing sequences $\langle C_{\alpha} : \alpha < \omega_1 \rangle$ and $\langle D_{\alpha} : \alpha < \omega_1 \rangle$ of cozero sets, with $C_{\alpha} \cap D_{\alpha} = \emptyset$ for all α .

Proof, continued

Proof

At stage α , check if $C_{\alpha} \cup D_{\alpha} \cup \bigcup \mathcal{U}_{\alpha} = X$.

In that case take a refinement $\{O\} \cup \mathcal{V}_{\alpha}$ of $\{C_{\alpha} \cup D_{\alpha}\} \cup \mathcal{U}_{\alpha}$ whose closures have empty intersection.

Take $C_{\alpha+1}$ and $D_{\alpha+1}$ such that $C_{\alpha} \cup \bigcap_{U \in \mathcal{U}_{\alpha}} \operatorname{cl} V_U \subseteq C_{\alpha+1}$ and $D_{\alpha} \subseteq D_{\alpha+1}$.

Apart from some technicalities this works.

A very general theorem

Theorem (CH)

Let X be a compact F-space of weight $\mathfrak c$. Then X has a base $\{B_\alpha:\alpha<\omega_1\}$ with the following property: whenever F is a finite subset of ω_1 the intersection

$$\bigcap_{\alpha \in F} \operatorname{Fr} B_{\alpha}$$

has dimension at most dim Fr $B_{\min F} - |F| + 1$.

It uses a simultaneous version of the proof of $\operatorname{Ind} X \leqslant \dim X$. In the separable metric case one can build a partition, L, such that

$$\dim(L\cap D)\leqslant\dim D-1$$

for countably many closed sets *D* at once.

In the case of a compact F-space of weight \mathfrak{c} , assuming CH, you can do this in one go for \aleph_1 many closed sets.

A special case

Theorem (CH)

Let X be a compact F-space of weight $\mathfrak c$ and dimension n. Then X has a base $\{B_\alpha: \alpha<\omega_1\}$ with the following property:

$$\bigcap_{\alpha \in F} \operatorname{Fr} B_{\alpha} = \emptyset$$

whenever F is a subset of ω_1 with n+1 elements.

A finite-to-one map

We may assume our base consists of regular open sets $(B_{\alpha} = \operatorname{int} \operatorname{cl} B_{\alpha})$.

Take the Boolean subalgebra, B, of RO(X) generated by our base. Then the natural map from the Stone space of B onto X is (at most) 2^n -to-one.

A finite-to-one map

Bummer! $2^n > n+1$ (when $n \ge 2$).

We have an other proof, with the same result: 2^n .

An example

The first question that should occur to everyone has an answer:

There is a compact F-space of weight \mathfrak{c}^+ with non-coinciding dimensions (my student Jan van Mill).

This parallels the 'classic' case: there are compact spaces of weight \aleph_1 with non-coinciding dimensions.

The second question that should occur to everyone has no answer (yet).

One possibility: there are many compact spaces of weight $\mathfrak c$ with non-coinciding dimensions.

Take such a space, X, for example with dim X=1 and ind $X=\operatorname{Ind} X=2$.

Consider $Y = \omega \times X$ and $Y^* = \beta Y \setminus Y$.

By our first result we have dim $Y^* = \text{ind } Y^* = \text{Ind } Y^*$ if CH holds.

Last year's tutorial: $\dim C = \dim X = 1$ for every component C of Y^* .

Also dim $Y^* \leq \dim \beta Y = 1$, so dim $Y^* = 1$.

Hence(!): Ind $Y^* = 1 < 2 = \text{Ind } \beta Y$ (if CH).

What can be said if CH fails? In particular models where CH fails. Could it be that Ind $Y^*=2$ in some such model? There are many X to play with.

What with 2^n ?

```
The third question on everyone's lips: can 2^n be brought down to n + 1?
```

```
(As it should be.) We have no idea.
```


Light reading

Website: fa.its.tudelft.nl/~hart

Covering dimension and finite-to-one maps, Topology and its Applications, **158** (2011), 2512–2519.

J. van Mill,

A compact F-space with noncoinciding dimensions, Topology and its Applications **159** (2012), 1625–1633.

