A chain condition for operators from C(K)-spaces Quidquid latine dictum sit, altum videtur

K. P. Hart

Faculty EEMCS TU Delft

Warszawa, 19 kwietnia, 2013: 09:00 - 10:05

2 A chain condition

3 Spaces with and without uncountable \prec_{δ} -chains

Pełczyński's Theorem

Confusingly (for a topologist):

- K generally denotes a compact space,
- X generally denotes a Banach space.

Theorem

An operator $T : C(K) \rightarrow X$ is weakly compact iff there is no isomorphic copy of c_0 on which T is invertible.

$\begin{array}{c} \mbox{Weakly compact operators} \\ A \mbox{ chain condition} \\ \mbox{Spaces with and without uncountable} \\ \mbox{Sources} \\ \mbox{Sources} \end{array}$

Reformulation

An operator $T : C(K) \to X$ is *not* weakly compact iff there is a sequence $\langle f_n : n < \omega \rangle$ of continuous functions such that

- $\|f_n\| \leqslant 1$ for all n
- supp $f_m \cap$ supp $f_n = \emptyset$ whenever $m \neq n$
- $\inf_n \|Tf_n\| > 0$

Where's the chain?

First: an order on C(K). We say $f \prec g$ if

• $g \upharpoonright \operatorname{supp} f = f \upharpoonright \operatorname{supp} f$

Second: another order on C(K). Let $\delta > 0$; we say $f \prec_{\delta} g$ if

•
$$\|g - f\| \ge \delta$$

• $g \upharpoonright \operatorname{supp} f = f \upharpoonright \operatorname{supp} f$

The speaker draws an instructive picture.

Here's the chain

An operator $T : C(K) \to X$ is *not* weakly compact iff there is an infinite \prec -chain, C, such that

$$\inf \left\{ \| Tf - Tg \| : \{f,g\} \in [C]^2 \right\} > 0$$

Proof.

Given $\langle f_n : n < \omega \rangle$ let $g_n = \sum_{i \leq n} f_i$; then $\langle g_n : n < \omega \rangle$ is a (bad) chain. Given an infinite chain, C, take a monotone sequence $\langle g_n : n < \omega \rangle$ in C and let $f_n = g_{n+1} - g_n$ for all n.

Delft University of Technolog

Here is the chain condition

È

For every uncountable \prec -chain in C(K) we have

$$\inf \{ \|f - g\| : \{f, g\} \in [C]^2 \} = 0$$

In other words:

For every $\delta > 0$: every \prec_{δ} -chain is countable.

Why 'uncountable'?

Well, ...

Theorem

If K is extremally disconnected then $T:C(K)\to X$ is weakly compact iff

$$\inf\{\|Tf - Tg\| : \{f,g\} \in [C]^2\} = 0$$

for every uncountable \prec -chain C.

In fact if \mathcal{T} is not weakly compact then we can find a \prec -chain isomorphic to \mathbb{R} where the infimum is positive, that is, there are a $\delta > 0$ and a \prec_{δ} -chain isomorphic to \mathbb{R} .

TUDelft

Delft University of Technology

≺-chains are easy

Uncountable ≺-chains are quite ubiquitous:

Example

There is an uncountable \prec -chain in C([0,1]). Start with $f: x \mapsto d(x, \mathbb{C})$, where \mathbb{C} is the Cantor set. For $t \in \mathbb{C}$ let $f_t = f \cdot \chi_{[0,t]}$, then $\{f_t: t \in \mathbb{C}\}$ is a \prec -chain.

Do we need an instructive picture?

盒 is not an antichain condition

The *separable*(!) double-arrow space \mathbb{A} has a \prec_1 -chain that is isomorphic to \mathbb{R} .

Remember: we have $\mathbb{A} = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\})$ ordered lexicographically. For $t \in (0,1)$ let f_t be the characteristic function of the interval $[\langle 0,1 \rangle, \langle t,0 \rangle]$.

Time for another instructive picture.

A few observations

Let C be a \prec -chain; for $f \in C$ put

$$S(f, C) = \{x : f(x) \neq 0\} \setminus \bigcup \{\operatorname{supp} g : g \in C, g \prec f\}$$

Note: in the example in C([0,1]) there are f_t , e.g. $f_{\frac{1}{3}}$, with $S(f_t) = \emptyset$, whereas $S(f_{\frac{2}{3}}) = (\frac{1}{3}, \frac{2}{3})$. In the chain in $C(\mathbb{A})$ we have $S(f_t) = \{\langle t, 0 \rangle\}$ for all t.

A useful lemma

From now on all functions are positive.

Lemma

If C is a \prec_{δ} -chain for some $\delta > 0$ then $S(f, C) \neq \emptyset$ for all $f \in C$; in fact there is $x \in S(f, C)$ with $f(x) \ge \delta$.

Proof.

Clear if f has a direct predecessor. Otherwise let $\langle g_{\alpha} : \alpha < \theta \rangle$ be increasing and cofinal in $\{g \in C : g \prec f\}$. Pick $x_{\alpha} \in \operatorname{supp} g_{\alpha+1} \setminus \operatorname{supp} g_{\alpha}$ with $g_{\alpha+1}(x) \ge \delta$. Any cluster point, x, of $\langle g_{\alpha} : \alpha < \theta \rangle$ will satisfy $f(x) \ge \delta$ and g(x) = 0 for all $g \prec f$.

Delft University of Technology

The convergent sequence

 $C(\omega + 1)$ has an uncountable \prec -chain. Let $b: \omega \rightarrow \mathbb{Q}$ be a bijection. For $t \in \mathbb{R}$ define f_t by

$$f_t(lpha) = egin{cases} 2^{-lpha} & ext{if } b(lpha) < t \ 0 & ext{otherwise.} \end{cases}$$

If $\delta > 0$ then every \prec_{δ} -chain in $C(\omega + 1)$ is countable.

Another lemma

Lemma

If K is locally connected and if C is a \prec_{δ} -chain for some $\delta > 0$ then S(f, C) is (nonempty and) open.

Proof.

Let $x \in S(f, C)$ and let U be a connected neighbourhood of xsuch that $f(y) > \frac{1}{2}f(x)$ for all $y \in U$. We claim $U \cap \operatorname{supp} g = \emptyset$ if $g \prec f$. Indeed if $U \cap \operatorname{supp} g \neq \emptyset$ then U meets the boundary of supp g and then we find $y \in U$ such that f(y) = g(y) = 0.

Delft University of Technology

More small \prec_{δ} -chains

If K is locally connected then every \prec_{δ} -chain has cardinality at most c(K) (cellularity of K).

A closer look at local connectivity

We assume K is locally connected (and that $\delta > 0$).

Lemma

There is no increasing \prec_{δ} -chain of order type $\omega + 1$.

Proof.

Let $\langle f_n : n < \omega \rangle$ be increasing with respect to \prec_{δ} and assume f is a \prec_{δ} upper bound. For each n let $A_n = \{y : f_{n+1}(y) \ge \delta, f_n(y) = 0\}$ and let x be a cluster point of $\{A_n : n < \omega\}$. Because $f(y) = f_{n+1}(y) \ge \delta$ if $y \in A_n$ we find $f(x) \ge \delta$.

A closer look at local connectivity

We assume K is locally connected (and that $\delta > 0$).

Lemma

There is no increasing \prec_{δ} -chain of order type $\omega + 1$.

Proof: continued.

Let *U* be a neighbourhood of *x* such that $f(y) > \frac{1}{2}\delta$ for all $y \in U$. This shows *U* has many clopen pieces: $B_n \cap U$, whenever $A_n \cap U \neq \emptyset$; here $B_n = \{y : f_{n+1}(y) > 0, f_n(y) = 0\}$.

A closer look at local connectivity

We still assume K is locally connected (and that $\delta > 0$).

Lemma

There is no decreasing \prec_{δ} -chain of order type ω^{\star} .

More or less the same proof, with

$$A_n = \{y : f_n(y) \ge \delta, f_{n+1}(y) = 0\}$$

and

$$B_n = \{y : f_n(y) > 0, f_{n+1}(y) = 0\}$$

A structural result

If K is locally connected then \prec_{δ} is a well-founded relation. All chains have order type (at most) ω .

Further examples

One-point compactifications of discrete spaces have property &.

One-point compactifications of ladder system spaces have property ${\ensuremath{\underline{&}}}$.

My favourite continuum

 $\mathbb{H} = [0,\infty)$ and $\mathbb{H}^* = \beta \mathbb{H} \setminus \mathbb{H}.$

 \mathbb{H}^* is a continuum that is indecomposable and hereditarily unicoherent.

 $C(\mathbb{H}^*)$ does not have property &.

How to make an uncountable \prec_{δ} -chain

Start with a sequence $\langle h_{\alpha} : \alpha < \omega_1 \rangle$ in $\prod_{n \in \omega} 2^n$ with the property that $\lim_{n \to \omega} h_{\beta}(n) - h_{\alpha}(n) = \infty$.

Then make a sequence $\langle f_{\alpha} : \alpha < \omega_1 \rangle$ of continuous functions on $\mathbb{M} = \omega \times [0, 1]$ such that:

If $\beta < \alpha$ then there is an N such that for all $n \ge N$ the function $f_{\alpha}(n, x)$

- increases from 0 to 1 on $[h_\beta(n)2^{-n}, (h_\beta(n)+1)2^{-n}]$
- is constant 1 on $[(h_{\beta}(n)+1)2^{-n}, (h_{\beta}(n)+2)2^{-n}]$
- decreases from 1 to 0 on $[(h_{\beta}(n)+2)2^{-n},(h_{\beta}(n)+3)2^{-n}]$

Everywhere else f_{α} will be zero.

How to make an uncountable \prec_{δ} -chain

For every α we let $f^*\alpha = \beta f_\alpha \upharpoonright \mathbb{M}^*$. Then $\langle f_\alpha^* : \alpha < \omega_1 \rangle$ is a \prec_1 -chain in $C(\mathbb{M}^*)$.

 \mathbb{H}^* is a simple quotient of \mathbb{M}^* and the chain is transferred painlessly to $C(\mathbb{H}^*)$.

What (classes of) spaces have property $\hat{\mathbb{R}}$?

Website: fa.its.tudelft.nl/~hart

Klaas Pieter Hart, Tomasz Kania and Tomasz Kochanek. A chain condition for operators from C(K)-spaces, The Quarterly Journal of Mathematics (2013), DOI:10.1093/qmath/hat006

