A chain condition for operators from C(K)-spaces Quidquid latine dictum sit, altum videtur

K. P. Hart

Faculty EEMCS TU Delft

Warszawa, 19 kwietnia, 2013: 09:00 - 10:05

Outline

- Weakly compact operators
- 2 A chain condition
- 3 Spaces with and without uncountable \prec_{δ} -chains
- 4 Sources

Outline

- Weakly compact operators
- 2 A chain condition
- 3 Spaces with and without uncountable \prec_{δ} -chains
- 4 Sources

Pełczyński's Theorem

Confusingly (for a topologist):

- K generally denotes a compact space,
- X generally denotes a Banach space.

Pełczyński's Theorem

Confusingly (for a topologist):

- K generally denotes a compact space,
- X generally denotes a Banach space.

$\mathsf{Theorem}$

An operator $T:C(K)\to X$ is weakly compact iff there is no isomorphic copy of c_0 on which T is invertible.

An operator $T:C(K)\to X$ is *not* weakly compact iff there is a sequence $\langle f_n:n<\omega\rangle$ of continuous functions such that

An operator $T:C(K)\to X$ is *not* weakly compact iff there is a sequence $\langle f_n:n<\omega\rangle$ of continuous functions such that

• $||f_n|| \leqslant 1$ for all n

An operator $T:C(K)\to X$ is *not* weakly compact iff there is a sequence $\langle f_n:n<\omega\rangle$ of continuous functions such that

- $||f_n|| \leq 1$ for all n
- supp $f_m \cap \text{supp } f_n = \emptyset$ whenever $m \neq n$

An operator $T:C(K)\to X$ is *not* weakly compact iff there is a sequence $\langle f_n:n<\omega\rangle$ of continuous functions such that

- $||f_n|| \leq 1$ for all n
- supp $f_m \cap \text{supp } f_n = \emptyset$ whenever $m \neq n$
- $\inf_n ||Tf_n|| > 0$

Outline

- Weakly compact operators
- 2 A chain condition
- 3 Spaces with and without uncountable \prec_{δ} -chains
- 4 Sources

First: an order on C(K).

First: an order on C(K). We say $f \prec g$ if


```
First: an order on C(K).
We say f \prec g if
• f \neq g
```


First: an order on C(K). We say $f \prec g$ if

- $f \neq g$
- $g \upharpoonright \operatorname{supp} f = f \upharpoonright \operatorname{supp} f$

First: an order on C(K).

We say $f \prec g$ if

- $f \neq g$
- $g \upharpoonright \operatorname{supp} f = f \upharpoonright \operatorname{supp} f$

Second: another order on C(K).

First: an order on C(K). We say $f \prec g$ if

- $f \neq g$
- $g \upharpoonright \operatorname{supp} f = f \upharpoonright \operatorname{supp} f$

Second: another order on C(K). Let $\delta > 0$; we say $f \prec_{\delta} g$ if

First: an order on C(K).

We say $f \prec g$ if

- $f \neq g$
- $g \upharpoonright \operatorname{supp} f = f \upharpoonright \operatorname{supp} f$

Second: another order on C(K).

Let $\delta > 0$; we say $f \prec_{\delta} g$ if

•
$$\|g - f\| \geqslant \delta$$

First: an order on C(K).

We say $f \prec g$ if

- $f \neq g$
- $g \upharpoonright \operatorname{supp} f = f \upharpoonright \operatorname{supp} f$

Second: another order on C(K).

Let $\delta > 0$; we say $f \prec_{\delta} g$ if

- $\|g f\| \geqslant \delta$
- $g \upharpoonright \operatorname{supp} f = f \upharpoonright \operatorname{supp} f$

First: an order on C(K).

We say $f \prec g$ if

- $f \neq g$
- $g \upharpoonright \operatorname{supp} f = f \upharpoonright \operatorname{supp} f$

Second: another order on C(K).

Let $\delta > 0$; we say $f \prec_{\delta} g$ if

- $\|g f\| \geqslant \delta$
- $g \upharpoonright \operatorname{supp} f = f \upharpoonright \operatorname{supp} f$

The speaker draws an instructive picture.

An operator $T: C(K) \to X$ is *not* weakly compact iff there is an infinite \prec -chain, C, such that

An operator $T: C(K) \to X$ is *not* weakly compact iff there is an infinite \prec -chain, C, such that

$$\inf \big\{ \| \mathit{Tf} - \mathit{Tg} \| : \{ f, g \} \in [C]^2 \big\} > 0$$

An operator $T: C(K) \to X$ is *not* weakly compact iff there is an infinite \prec -chain, C, such that

$$\inf\{\|Tf - Tg\| : \{f,g\} \in [C]^2\} > 0$$

Proof.

Given $\langle f_n : n < \omega \rangle$ let $g_n = \sum_{i \leq n} f_i$; then $\langle g_n : n < \omega \rangle$ is a (bad) chain.

An operator $T: C(K) \to X$ is *not* weakly compact iff there is an infinite \prec -chain, C, such that

$$\inf\{\|Tf - Tg\| : \{f,g\} \in [C]^2\} > 0$$

Proof.

Given $\langle f_n : n < \omega \rangle$ let $g_n = \sum_{i \leq n} f_i$; then $\langle g_n : n < \omega \rangle$ is a (bad) chain.

Given an infinite chain, C, take a monotone sequence $\langle g_n : n < \omega \rangle$ in C and let $f_n = g_{n+1} - g_n$ for all n.

Here is the chain condition

For every uncountable \prec -chain in C(K) we have

$$\inf\{\|f - g\| : \{f, g\} \in [C]^2\} = 0$$

Here is the chain condition

For every uncountable \prec -chain in C(K) we have

$$\inf\{\|f - g\| : \{f, g\} \in [C]^2\} = 0$$

In other words:

Here is the chain condition

For every uncountable \prec -chain in C(K) we have

$$\inf\{\|f - g\| : \{f, g\} \in [C]^2\} = 0$$

In other words:

For every $\delta > 0$: every \prec_{δ} -chain is countable.

Why 'uncountable'?

Well, ...

Why 'uncountable'?

Well, ...

Theorem

If K is extremally disconnected then $T:C(K)\to X$ is weakly compact iff

$$\inf\{\|Tf - Tg\| : \{f,g\} \in [C]^2\} = 0$$

for every uncountable \prec -chain C.

Why 'uncountable'?

Well, ...

Theorem

If K is extremally disconnected then $T:C(K)\to X$ is weakly compact iff

$$\inf\{\|Tf - Tg\| : \{f,g\} \in [C]^2\} = 0$$

for every uncountable \prec -chain C.

In fact if T is not weakly compact then we can find a \prec -chain isomorphic to $\mathbb R$ where the infimum is positive, that is, there are a $\delta>0$ and a \prec_{δ} -chain isomorphic to $\mathbb R$.

Uncountable ≺-chains are quite ubiquitous:

Uncountable ≺-chains are quite ubiquitous:

Example

There is an uncountable \prec -chain in C([0,1]).

Uncountable ≺-chains are quite ubiquitous:

Example

There is an uncountable \prec -chain in C([0,1]).

Start with $f: x \mapsto d(x, \mathbb{C})$, where \mathbb{C} is the Cantor set.

Uncountable ≺-chains are quite ubiquitous:

Example

There is an uncountable \prec -chain in C([0,1]).

Start with $f: x \mapsto d(x, \mathbb{C})$, where \mathbb{C} is the Cantor set.

For
$$t \in \mathbb{C}$$
 let $f_t = f \cdot \chi_{[0,t]}$

Uncountable ≺-chains are quite ubiquitous:

Example

There is an uncountable \prec -chain in C([0,1]).

Start with $f: x \mapsto d(x, \mathbb{C})$, where \mathbb{C} is the Cantor set.

For $t \in \mathbb{C}$ let $f_t = f \cdot \chi_{[0,t]}$, then $\{f_t : t \in \mathbb{C}\}$ is a \prec -chain.

Uncountable ≺-chains are quite ubiquitous:

Example

There is an uncountable \prec -chain in C([0,1]).

Start with $f: x \mapsto d(x, \mathbb{C})$, where \mathbb{C} is the Cantor set.

For $t \in \mathbb{C}$ let $f_t = f \cdot \chi_{[0,t]}$, then $\{f_t : t \in \mathbb{C}\}$ is a \prec -chain.

Do we need an instructive picture?

Uncountable ≺-chains are quite ubiquitous:

Example

There is an uncountable \prec -chain in C([0,1]).

Start with $f: x \mapsto d(x, \mathbb{C})$, where \mathbb{C} is the Cantor set.

For $t \in \mathbb{C}$ let $f_t = f \cdot \chi_{[0,t]}$, then $\{f_t : t \in \mathbb{C}\}$ is a \prec -chain.

Do we need an instructive picture?

$$f_{\frac{2}{3}}$$
 \sim

Outline

- Weakly compact operators
- 2 A chain condition
- 3 Spaces with and without uncountable \prec_{δ} -chains
- 4 Sources

\& is not an antichain condition

The *separable*(!) double-arrow space \mathbb{A} has a \prec_1 -chain that is isomorphic to \mathbb{R} .

<u>**\$** is not</u> an antichain condition

The separable(!) double-arrow space A has a \prec_1 -chain that is isomorphic to \mathbb{R} .

Remember: we have $\mathbb{A} = \big((0,1] \times \{0\}\big) \cup \big([0,1) \times \{1\}\big)$ ordered lexicographically.

½ is not an antichain condition

The separable(!) double-arrow space A has a \prec_1 -chain that is isomorphic to \mathbb{R} .

Remember: we have $\mathbb{A} = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\})$ ordered lexicographically.

For $t \in (0,1)$ let f_t be the characteristic function of the interval $[\langle 0,1\rangle,\langle t,0\rangle].$

b is not an antichain condition

The separable(!) double-arrow space \mathbb{A} has a \prec_1 -chain that is isomorphic to \mathbb{R} .

Remember: we have $\mathbb{A} = ((0,1] \times \{0\}) \cup ([0,1) \times \{1\})$ ordered lexicographically.

For $t \in (0,1)$ let f_t be the characteristic function of the interval $[\langle 0,1\rangle,\langle t,0\rangle].$

Time for another instructive picture.

A few observations

Let C be a \prec -chain; for $f \in C$ put

$$S(f,C) = \{x : f(x) \neq 0\} \setminus \bigcup \{\operatorname{supp} g : g \in C, g \prec f\}$$

A few observations

Let C be a \prec -chain; for $f \in C$ put

$$S(f,C) = \{x : f(x) \neq 0\} \setminus \bigcup \{\operatorname{supp} g : g \in C, g \prec f\}$$

Note: in the example in $C\big([0,1]\big)$ there are f_t , e.g. $f_{\frac{1}{3}}$, with $S(f_t)=\emptyset$, whereas $S(f_{\frac{2}{3}})=(\frac{1}{3},\frac{2}{3})$.

A few observations

Let C be a \prec -chain; for $f \in C$ put

$$S(f,C) = \{x : f(x) \neq 0\} \setminus \bigcup \{\operatorname{supp} g : g \in C, g \prec f\}$$

Note: in the example in C([0,1]) there are f_t , e.g. $f_{\frac{1}{3}}$, with $S(f_t)=\emptyset$, whereas $S(f_{\frac{2}{3}})=(\frac{1}{3},\frac{2}{3})$.

In the chain in $C(\mathbb{A})$ we have $S(f_t) = \{\langle t, 0 \rangle\}$ for all t.

From now on all functions are positive.

From now on all functions are positive.

Lemma

If C is a \prec_{δ} -chain for some $\delta > 0$ then $S(f, C) \neq \emptyset$ for all $f \in C$

From now on all functions are positive.

Lemma

If C is a \prec_{δ} -chain for some $\delta > 0$ then $S(f, C) \neq \emptyset$ for all $f \in C$; in fact there is $x \in S(f, C)$ with $f(x) \geqslant \delta$.

From now on all functions are positive.

Lemma

If C is a \prec_{δ} -chain for some $\delta > 0$ then $S(f, C) \neq \emptyset$ for all $f \in C$; in fact there is $x \in S(f, C)$ with $f(x) \geqslant \delta$.

Proof.

Clear if *f* has a direct predecessor.

From now on all functions are positive.

Lemma

If C is a \prec_{δ} -chain for some $\delta > 0$ then $S(f, C) \neq \emptyset$ for all $f \in C$; in fact there is $x \in S(f, C)$ with $f(x) \ge \delta$.

Proof.

Clear if f has a direct predecessor.

Otherwise let $\langle g_{\alpha} : \alpha < \theta \rangle$ be increasing and cofinal in

$$\{g \in C : g \prec f\}.$$

From now on all functions are positive.

Lemma

If C is a \prec_{δ} -chain for some $\delta > 0$ then $S(f, C) \neq \emptyset$ for all $f \in C$; in fact there is $x \in S(f, C)$ with $f(x) \geqslant \delta$.

Proof.

Clear if f has a direct predecessor.

Otherwise let $\langle g_{\alpha} : \alpha < \theta \rangle$ be increasing and cofinal in $\{g \in C : g \prec f\}$.

Pick $x_{\alpha} \in \operatorname{supp} g_{\alpha+1} \setminus \operatorname{supp} g_{\alpha}$ with $g_{\alpha+1}(x) \geqslant \delta$.

ft

From now on all functions are positive.

Lemma

If C is a \prec_{δ} -chain for some $\delta > 0$ then $S(f, C) \neq \emptyset$ for all $f \in C$; in fact there is $x \in S(f, C)$ with $f(x) \geqslant \delta$.

Proof.

Clear if f has a direct predecessor.

Otherwise let $\langle g_{\alpha} : \alpha < \theta \rangle$ be increasing and cofinal in $\{g \in C : g \prec f\}$.

Pick $x_{\alpha} \in \operatorname{supp} g_{\alpha+1} \setminus \operatorname{supp} g_{\alpha}$ with $g_{\alpha+1}(x) \geqslant \delta$.

Any cluster point, x, of $\langle g_{\alpha} : \alpha < \theta \rangle$ will satisfy $f(x) \geqslant \delta$

Ħt

From now on all functions are positive.

Lemma

If C is a \prec_{δ} -chain for some $\delta > 0$ then $S(f, C) \neq \emptyset$ for all $f \in C$; in fact there is $x \in S(f, C)$ with $f(x) \geqslant \delta$.

Proof.

Clear if f has a direct predecessor.

Otherwise let $\langle g_{\alpha} : \alpha < \theta \rangle$ be increasing and cofinal in

$$\{g \in C : g \prec f\}.$$

Pick $x_{\alpha} \in \text{supp } g_{\alpha+1} \setminus \text{supp } g_{\alpha} \text{ with } g_{\alpha+1}(x) \geqslant \delta$.

Any cluster point, x, of $\langle g_{\alpha} : \alpha < \theta \rangle$ will satisfy $f(x) \geqslant \delta$ and

$$g(x) = 0$$
 for all $g \prec f$.

The convergent sequence

 $C(\omega+1)$ has an uncountable \prec -chain.

The convergent sequence

 $C(\omega+1)$ has an uncountable \prec -chain. Let $b:\omega\to\mathbb{Q}$ be a bijection. For $t\in\mathbb{R}$ define f_t by

$$f_t(\alpha) = egin{cases} 2^{-lpha} & ext{if } b(lpha) < t \ 0 & ext{otherwise.} \end{cases}$$

The convergent sequence

 $C(\omega+1)$ has an uncountable \prec -chain. Let $b:\omega\to\mathbb{Q}$ be a bijection. For $t\in\mathbb{R}$ define f_t by

$$f_t(\alpha) = \begin{cases} 2^{-\alpha} & \text{if } b(\alpha) < t \\ 0 & \text{otherwise.} \end{cases}$$

If $\delta > 0$ then every \prec_{δ} -chain in $C(\omega + 1)$ is countable.

Another lemma

Lemma

If K is locally connected and if C is a \prec_{δ} -chain for some $\delta > 0$ then S(f, C) is (nonempty and) open.

Another lemma

Lemma

If K is locally connected and if C is a \prec_{δ} -chain for some $\delta > 0$ then S(f, C) is (nonempty and) open.

Proof.

Let $x \in S(f, C)$ and let U be a connected neighbourhood of x such that $f(y) > \frac{1}{2}f(x)$ for all $y \in U$. We claim $U \cap \operatorname{supp} g = \emptyset$ if $g \prec f$.

Another lemma

Lemma

If K is locally connected and if C is a \prec_{δ} -chain for some $\delta > 0$ then S(f, C) is (nonempty and) open.

Proof.

Let $x \in S(f, C)$ and let U be a connected neighbourhood of x such that $f(y) > \frac{1}{2}f(x)$ for all $y \in U$. We claim $U \cap \operatorname{supp} g = \emptyset$ if $g \prec f$.

Indeed if $U \cap \operatorname{supp} g \neq \emptyset$ then U meets the boundary of $\operatorname{supp} g$ and then we find $y \in U$ such that f(y) = g(y) = 0.

More small \prec_{δ} -chains

If K is locally connected then every \prec_{δ} -chain has cardinality at most c(K) (cellularity of K).

We assume K is locally connected (and that $\delta > 0$).

Lemma

There is no increasing \prec_{δ} -chain of order type $\omega + 1$.

We assume K is locally connected (and that $\delta > 0$).

Lemma

There is no increasing \prec_{δ} -chain of order type $\omega + 1$.

Proof.

Let $\langle f_n : n < \omega \rangle$ be increasing with respect to \prec_{δ} and assume f is a \prec_{δ} upper bound.

We assume K is locally connected (and that $\delta > 0$).

Lemma

There is no increasing \prec_{δ} -chain of order type $\omega + 1$.

Proof.

Let $\langle f_n : n < \omega \rangle$ be increasing with respect to \prec_{δ} and assume f is a \prec_{δ} upper bound.

For each n let $A_n = \{y : f_{n+1}(y) \ge \delta, f_n(y) = 0\}$ and let x be a cluster point of $\{A_n : n < \omega\}$.

We assume K is locally connected (and that $\delta > 0$).

Lemma

There is no increasing \prec_{δ} -chain of order type $\omega + 1$.

Proof.

Let $\langle f_n:n<\omega\rangle$ be increasing with respect to \prec_δ and assume f is a \prec_δ upper bound.

For each n let $A_n = \{y : f_{n+1}(y) \ge \delta, f_n(y) = 0\}$ and let x be a cluster point of $\{A_n : n < \omega\}$.

Because $f(y) = f_{n+1}(y) \ge \delta$ if $y \in A_n$ we find $f(x) \ge \delta$.

We assume K is locally connected (and that $\delta > 0$).

Lemma

There is no increasing \prec_{δ} -chain of order type $\omega + 1$.

We assume K is locally connected (and that $\delta > 0$).

Lemma

There is no increasing \prec_{δ} -chain of order type $\omega + 1$.

Proof: continued.

Let U be a neighbourhood of x such that $f(y) > \frac{1}{2}\delta$ for all $y \in U$.

We assume K is locally connected (and that $\delta > 0$).

Lemma

There is no increasing \prec_{δ} -chain of order type $\omega + 1$.

Proof: continued.

Let U be a neighbourhood of x such that $f(y) > \frac{1}{2}\delta$ for all $y \in U$. This shows U has many clopen pieces

We assume K is locally connected (and that $\delta > 0$).

Lemma

There is no increasing \prec_{δ} -chain of order type $\omega + 1$.

Proof: continued.

Let U be a neighbourhood of x such that $f(y) > \frac{1}{2}\delta$ for all $y \in U$. This shows U has many clopen pieces: $B_n \cap U$, whenever

$$A_n \cap U \neq \emptyset$$
; here $B_n = \{y : f_{n+1}(y) > 0, f_n(y) = 0\}.$

We still assume K is locally connected (and that $\delta > 0$).

Lemma

There is no decreasing \prec_{δ} -chain of order type ω^{\star} .

We still assume K is locally connected (and that $\delta > 0$).

Lemma

There is no decreasing \prec_{δ} -chain of order type ω^{\star} .

More or less the same proof, with

We still assume K is locally connected (and that $\delta > 0$).

Lemma

There is no decreasing \prec_{δ} -chain of order type ω^* .

More or less the same proof, with

$$A_n = \{ y : f_n(y) \geqslant \delta, f_{n+1}(y) = 0 \}$$

We still assume K is locally connected (and that $\delta > 0$).

Lemma

There is no decreasing \prec_{δ} -chain of order type ω^{\star} .

More or less the same proof, with

$$A_n = \{ y : f_n(y) \geqslant \delta, f_{n+1}(y) = 0 \}$$

and

$$B_n = \{y : f_n(y) > 0, f_{n+1}(y) = 0\}$$

A structural result

If K is locally connected then \prec_{δ} is a well-founded relation.

A structural result

If K is locally connected then \prec_{δ} is a well-founded relation. All chains have order type (at most) ω .

Further examples

One-point compactifications of discrete spaces have property \underset.

Further examples

One-point compactifications of discrete spaces have property \uxilde{\mathbb{L}}.

One-point compactifications of ladder system spaces have property $\hat{\mathbf{x}}$.

My favourite continuum

$$\mathbb{H} = [0, \infty)$$
 and $\mathbb{H}^* = \beta \mathbb{H} \setminus \mathbb{H}$.

My favourite continuum

 $\mathbb{H} = [0, \infty)$ and $\mathbb{H}^* = \beta \mathbb{H} \setminus \mathbb{H}$.

 \mathbb{H}^* is a continuum that is indecomposable and hereditarily unicoherent.

My favourite continuum

 $\mathbb{H} = [0, \infty)$ and $\mathbb{H}^* = \beta \mathbb{H} \setminus \mathbb{H}$.

 \mathbb{H}^* is a continuum that is indecomposable and hereditarily unicoherent.

 $C(\mathbb{H}^*)$ does not have property $\mathring{\underline{a}}$.

Start with a sequence $\langle h_{\alpha} : \alpha < \omega_1 \rangle$ in $\prod_{n \in \omega} 2^n$ with the property that $\lim_{n \to \omega} h_{\beta}(n) - h_{\alpha}(n) = \infty$.

Start with a sequence $\langle h_{\alpha} : \alpha < \omega_1 \rangle$ in $\prod_{n \in \omega} 2^n$ with the property that $\lim_{n \to \omega} h_{\beta}(n) - h_{\alpha}(n) = \infty$.

Then make a sequence $\langle f_\alpha : \alpha < \omega_1 \rangle$ of continuous functions on $\mathbb{M} = \omega \times [0,1]$ such that:

Start with a sequence $\langle h_{\alpha} : \alpha < \omega_1 \rangle$ in $\prod_{n \in \omega} 2^n$ with the property that $\lim_{n \to \omega} h_{\beta}(n) - h_{\alpha}(n) = \infty$.

Then make a sequence $\langle f_{\alpha} : \alpha < \omega_1 \rangle$ of continuous functions on $\mathbb{M} = \omega \times [0,1]$ such that:

If $\beta < \alpha$ then there is an N such that for all $n \geqslant N$ the function $f_{\alpha}(n,x)$

Start with a sequence $\langle h_{\alpha} : \alpha < \omega_1 \rangle$ in $\prod_{n \in \omega} 2^n$ with the property that $\lim_{n \to \omega} h_{\beta}(n) - h_{\alpha}(n) = \infty$.

Then make a sequence $\langle f_{\alpha} : \alpha < \omega_1 \rangle$ of continuous functions on $\mathbb{M} = \omega \times [0,1]$ such that:

If $\beta < \alpha$ then there is an N such that for all $n \geqslant N$ the function $f_{\alpha}(n,x)$

• increases from 0 to 1 on $[h_{\beta}(n)2^{-n}, (h_{\beta}(n)+1)2^{-n}]$

Start with a sequence $\langle h_{\alpha} : \alpha < \omega_1 \rangle$ in $\prod_{n \in \omega} 2^n$ with the property that $\lim_{n \to \omega} h_{\beta}(n) - h_{\alpha}(n) = \infty$.

Then make a sequence $\langle f_{\alpha} : \alpha < \omega_1 \rangle$ of continuous functions on $\mathbb{M} = \omega \times [0,1]$ such that:

If $\beta < \alpha$ then there is an N such that for all $n \geqslant N$ the function $f_{\alpha}(n,x)$

- increases from 0 to 1 on $[h_{\beta}(n)2^{-n},(h_{\beta}(n)+1)2^{-n}]$
- is constant 1 on $[(h_{\beta}(n)+1)2^{-n},(h_{\beta}(n)+2)2^{-n}]$

Start with a sequence $\langle h_{\alpha} : \alpha < \omega_1 \rangle$ in $\prod_{n \in \omega} 2^n$ with the property that $\lim_{n \to \omega} h_{\beta}(n) - h_{\alpha}(n) = \infty$.

Then make a sequence $\langle f_{\alpha} : \alpha < \omega_1 \rangle$ of continuous functions on $\mathbb{M} = \omega \times [0,1]$ such that:

If $\beta < \alpha$ then there is an N such that for all $n \geqslant N$ the function $f_{\alpha}(n,x)$

- increases from 0 to 1 on $[h_{\beta}(n)2^{-n},(h_{\beta}(n)+1)2^{-n}]$
- is constant 1 on $[(h_{\beta}(n)+1)2^{-n},(h_{\beta}(n)+2)2^{-n}]$
- decreases from 1 to 0 on $[(h_{\beta}(n)+2)2^{-n},(h_{\beta}(n)+3)2^{-n}]$

Everywhere else f_{α} will be zero.

For every α we let $f^*\alpha = \beta f_\alpha \upharpoonright \mathbb{M}^*$.

For every α we let $f^*\alpha = \beta f_\alpha \upharpoonright \mathbb{M}^*$. Then $\langle f_\alpha^* : \alpha < \omega_1 \rangle$ is a \prec_1 -chain in $C(\mathbb{M}^*)$.


```
For every \alpha we let f^*\alpha = \beta f_\alpha \upharpoonright \mathbb{M}^*.
Then \langle f_\alpha^* : \alpha < \omega_1 \rangle is a \prec_1-chain in C(\mathbb{M}^*).
```

 \mathbb{H}^* is a simple quotient of \mathbb{M}^* and the chain is transferred painlessly to $C(\mathbb{H}^*)$.

Question

What (classes of) spaces have property \(\dagger)?

Outline

- Weakly compact operators
- 2 A chain condition
- 3 Spaces with and without uncountable \prec_{δ} -chains
- 4 Sources

Light reading

Website: fa.its.tudelft.nl/~hart

Klaas Pieter Hart, Tomasz Kania and Tomasz Kochanek.

A chain condition for operators from C(K)-spaces, The Quarterly Journal of Mathematics (2013), DOI:10.1093/gmath/hat006

