A class of invisible spaces Quidquid latine dictum sit, altum videtur

K. P. Hart

Faculty EEMCS TU Delft

Hejnice, 1. Unor, 2015: 10:00 - 10:45

Definition (Van Douwen, Hušek, Zhou)

A space, X, has a *small diagonal* if every uncountable subset of $X^2 \setminus \Delta(X)$ has an uncountable subset whose closure is disjoint from $\Delta(X)$.

Hušek defined the negation: X has an ω_1 -accessible diagonal is there if a sequence $\langle \langle x_{\alpha}, y_{\alpha} \rangle : \alpha \in \omega_1 \rangle$ that converges to $\Delta(X)$

If $\Delta(X)$ is a G_{δ} -set then X has a small diagonal. Hence, for example, metrizable spaces have small diagonals.

Theorem (Hušek, special case)

If $f : \prod_{i \in I} X_i \to X$ is continuous, X and all X_i are compact and X has a small diagonal then f depends on countably many coordinates.

Here is a heavy-handed proof. Assume not ... Contradiction.

Take a sequence $\langle M_{\alpha} : \alpha \in \omega_1 \rangle$ of countable elementary substructures of a suitable $H(\theta)$ such that $\langle X_i : i \in I \rangle$, f and X belong to M_0 , and also $\langle M_{\beta} : \beta \leq \alpha \rangle \in M_{\alpha+1}$ (all α) and $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ (limit α). Apply "Assume not" at each α : there are x_{α} and y_{α} that have the same coordinates in $I \cap M_{\alpha}$ but satisfy $f(x_{\alpha}) \neq f(y_{\alpha})$.

Take basic neighbourhoods V_{α} and W_{α} of x_{α} and y_{α} such that $f[V_{\alpha}] \cap f[W_{\alpha}] = \emptyset$.

Now redefine y_{α} so that it agrees with x_{α} outside the union, F_{α} , of the supports of V_{α} and W_{α} .

Then still $f(x_{\alpha}) \neq f(y_{\alpha})$ but now the points differ in finitely many places.

By elementarity x_{α} , y_{α} , V_{α} and W_{α} may be taken in $M_{\alpha+1}$, and so $F_{\alpha} \subseteq M_{\alpha+1} \setminus M_{\alpha}$.

Take an uncountable subset A of ω_1 such that $cl\{\langle f(x_\alpha), f(y_\alpha)\rangle : \alpha \in A\}$ is disjoint from $\Delta(X)$.

Take $x \in \prod_{i \in I} X_i$ such that $\{\alpha \in A : x_\alpha \in U\}$ is uncountable, for every neighbourhood U of x.

Take a basic neighbourhood U of x such that $f[U]^2$ is disjoint from the closure above.

Take $\alpha \in A$ such that F_{α} is disjoint from the support of U, yet $x_{\alpha} \in U$, then also $y_{\alpha} \in U$, and $\langle f(x_{\alpha}), f(y_{\alpha}) \rangle \in f[U]^2$.

Contradiction!

Many proofs of results on csD spaces (compact small Diagonal) work like this.

Let X be compact; a sequence $\langle M_{\alpha} : \alpha \in \omega_1 \rangle$ of countable elementary substructures, as above, with $X \in M_0$ is an *elementary* sequence for X.

We assume X to be embedded into $[0, 1]^{\kappa}$, say $\kappa = w(X)$, so the following makes sense.

An elementary sequence of pairs for X is a sequence $\langle \{x_{\alpha}, y_{\alpha}\} : \alpha \in \omega_{1} \rangle$ such that, always, $x_{\alpha} \upharpoonright M_{\alpha} = y_{\alpha} \upharpoonright M_{\alpha}$, $x_{\alpha} \neq y_{\alpha}$, and $\{x_{\alpha}, y_{\alpha}\} \in M_{\alpha+1}$.

One of the coordinate sequences may be constant.

Gruenhage: a compact space is csD iff every ω_1 -sequence of pairs *is* ω_1 -*separated*, i.e., there is an uncountable set A such that $cl\{x_{\alpha} : \alpha \in A\}$ and $cl\{y_{\alpha} : \alpha \in A\}$ are disjoint.

In fact: a compact space is csD iff every elementary sequence of pairs is ω_1 -separated.

In case the x_{α} are the same this means that $\langle y_{\alpha} : \alpha \in \omega_1 \rangle$ will have many complete accumulation points.

Now go back to the proof and recognize all these ingredients.

Remember: a compact space is metrizable iff its diagonal is a G_{δ} -set.

Also: a compact space is metrizable iff every elementary sequence of pairs does not exist.

We are lead to ask

Is every csD space metrizable?

I will discuss various positive consistency results.

There is as yet no consistent *negative* answer.

This explains the title of this talk: there are no illuminating examples of csD spaces; for all we know they are all metrizable.

If X is csD and $w(X) \leq \aleph_1$ then X is metrizable, because X is not csD if $w(X) = \aleph_1$.

We assume $X \subseteq [0,1]^{\omega_1}$, we take an elementary sequence, and with it an elementary sequence of pairs.

Note:
$$\omega_1 \subseteq \bigcup_{\alpha} M_{\alpha}$$
.

Let $A \subseteq \omega_1$ be uncountable and let x be such that $\{\alpha \in A : x_\alpha \in V\}$ is uncountable, for every basic neighbourhood V of x.

Let V be such a neighbourhood and pick δ such that V is supported in M_{δ} .

```
Then x_{\alpha} \in V iff y_{\alpha} \in V for \alpha \ge \delta, hence x \in cl\{x_{\alpha} : \alpha \in A\} \cap cl\{y_{\alpha} : \alpha \in A\}.
```


Hušek: if X is csD then X is metrizable in each of the following cases

- X has countable tightness
- X is separable

Separable: $w(X) \leq 2^{\aleph_0} = \aleph_1$, so there Countable tightness: it implies separability in this case

Juhász and Szentmiklóssy: if X has uncountable tightness then there is a free ω_1 -sequence $\langle x_\alpha : \alpha \in \omega_1 \rangle$ that converges, to x say. Then $\langle \{x, x_\alpha\} : \alpha \in \omega_1 \rangle$ would not be ω_1 -separated.

Hence: csD spaces have countable tightness and the Continuum Hypothesis implies csD spaces are metrizable.

Dow and Pavlov: PFA implies csD spaces are metrizable.

I'm not even attempting to sketch the proof.

Gruenhage: If X is csD and hereditarily Lindelöf (equivalently, perfectly normal) then X is metrizable.

Take an elementary sequence of pairs and $A \subseteq \omega_1$ uncountable. Then $\{x_{\alpha} : \alpha \in A\}$ is Lindelöf. Pick $\delta \in A$ such that $\{\alpha \in A : x_{\alpha} \in V\}$ is uncountable, for every basic neighbourhood V of x_{δ} . $M_{\delta+1}$ contains a countable local base, \mathcal{B} , at x_{δ} . For each member B of \mathcal{B} and $\alpha > \delta$ we have $x_{\alpha} \in B$ iff $y_{\alpha} \in B$.

- Let us squeeze whatever we can out of that proof, put $M = \bigcup_{\alpha} M_{\alpha}.$
- It suffices that X be first-countable and $X \cap M$ be Lindelöf: we don't need x_{δ} , just an x in $X \cap M$.

For that Lindelöfness of $X \cap M$ is enough.

We do need a countable local base at x to make the last part work.

It suffices that $X \cap M$ be Lindelöf for just one elementary sequence. For then we can prove that our csD space X is first-countable.

If X is not then some $x \in X \cap M_0$ does not have a countable local base.

Hence we can choose $x_{\alpha} \in M_{\alpha+1}$ such that $x_{\alpha} \neq x$, but $x_{\alpha} \upharpoonright M_{\alpha} = x \upharpoonright M_{\alpha}$.

Let $A \subseteq \omega_1$ be uncountable and let $y \in M$ be a complete accumulation point of $\{x_\alpha : \alpha \in A\}$.

It follows that $y \upharpoonright M_{\alpha} = x \upharpoonright M_{\alpha}$ for all α and hence $x \upharpoonright M = y \upharpoonright M$.

By elementarity: x = y.

The sequence $\langle x_{\alpha} : \alpha \in \omega_1 \rangle$ converges to *x*.

Contradiction.

Hušek asked: does every compact Hausdorff space have either a convergent ω -sequence or a convergent ω_1 -sequence.

Call a space ω_1 -free of it contains no convergent ω_1 -sequences.

In particular csD spaces are ω_1 -free.

In any extension of a model of the Continuum Hypothesis by a property K forcing every ω_1 -free compact space is L-reflecting (there is an elementary sequence for it such that $X \cap M$ is Lindelöf) and (hence) first-countable.

In particular csD spaces are metrizable in these extensions.

The main question remains: are compact csD spaces metrizable.

(Many partial questions do not have answers yet either: somewhere/everywhere first-countable, what is the weight, ...)

I will be expecting solutions from you next year.

Website: fa.its.tudelft.nl/~hart

Alan Dow and Klaas Pieter Hart,

Elementary chains and compact spaces with a small diagonal, Indagationes Mathematicae, **23** (2012), 438–447.

Alan Dow and Klaas Pieter Hart,

Reflecting Lindelöf and converging ω_1 -sequences, Fundamenta Mathematicae, **224** (2014) 205–218.

