The Katowice Problem Tá scéilín agam

K. P. Hart

Faculty EEMCS TU Delft

Amsterdam, 13 April, 2016: 16:00 - 17:00

Easy exercise one

Exercise

Let X and Y be two sets and $f : X \to Y$ a bijection. Make a bijection between $\mathcal{P}(X)$ and $\mathcal{P}(Y)$.

Solution: $A \mapsto f[A]$ does the trick.

The hard exercise

Exercise

Let X and Y be two sets and $F : \mathcal{P}(X) \to \mathcal{P}(Y)$ a bijection. Make a bijection between X and Y.

Solution: can't be done.

Really !?

How can that be?

But, if we have sets with the same number of subsets then they have the same number of points.

For if $2^m = 2^n$ then m = n. True, for natural numbers m and n.

But that was not (really) the question. The proof for m and n does not produce a bijection. It does not use bijections at all.

On to infinity

We have a scale to measure sets by: \aleph_0 , \aleph_1 , \aleph_2 , \aleph_3 ... \aleph_0 refers to countable. \aleph_1 refers to the 'next' infinity and so on ...

I teach this stuff every Friday afternoon in HG-10A33

On to infinity

Remember Cantor's Continuum Hypothesis? It says: $2^{\aleph_0} = \aleph_1$: the number of subsets of \mathbb{N} is the smallest possible uncountable infinity.

When Cohen showed that the Continuum Hypothesis is unprovable, his method actually showed that $2^{\aleph_0} = 2^{\aleph_1} = \aleph_2$ does not lead to contradictions.

This is a situation with a bijection between $\mathcal{P}(X)$ and $\mathcal{P}(Y)$ but no bijection between X and Y.

Easy exercise two

Exercise

Let X and Y be two sets and $F : \mathcal{P}(X) \to \mathcal{P}(Y)$ a bijection that is also an isomorphism for the relation \subseteq . Make a bijection between X and Y.

Solution: if $x \in X$ then $\{x\}$ is an atom (nothing between it and \emptyset), hence so is $F(\{x\})$. But then $F(\{x\}) = \{y\}$ for some (unique) $y \in Y$. There's your bijection.

Some algebra

We can consider $\mathcal{P}(X)$ as a group, or a ring.

Addition: symmetric difference Multiplication: intersection

A \subseteq -isomorphism is also a ring-isomorphism.

There is a nice ideal in the ring $\mathcal{P}(X)$: the ideal, *fin*, of finite sets.

You can see where this is going

The problem

The Katowice Problem

Let X and Y be sets and assume $\mathcal{P}(X)/\text{fin}$ and $\mathcal{P}(Y)/\text{fin}$ are ring-isomorphic. Is there a bijection between X and Y?

Equivalently ... If the Banach algebras $\ell^{\infty}(X)/c_0$ and $\ell^{\infty}(Y)/c_0$ are isomorphic must there be a bijection between X and Y?

Equivalently ...

... the original version

The problem

The Katowice Problem

If X^* and Y^* are homeomorphic must X and Y have the same cardinality.

Our sets carry the discrete topology and $X^* = \beta X \setminus X$, where βX is the Čech-Stone compactification.

Actually: X^* is also the structure space of $\ell^{\infty}(X)/c_0$ and the maximal-ideal space of $\mathcal{P}(X)/fin$. So it all hangs together.

A bit of notation

We consider cardinals only: $\omega_0, \omega_1, \omega_2, \ldots$

In general A^* denotes the coset (equivalence class) in the $\mathcal{P}(\kappa)/fin$ that we are interested in.

Note: $A^* = B^*$ iff A and B differ by a finite set $A^* \cdot B^* = 0$ iff $A \cap B$ is finite and so on

Two results

Some proofs Consequences Working toward 0 = 1

Theorem (Frankiewicz 1977)

The minimum cardinal κ (if any) such that $\mathcal{P}(\kappa)/\text{fin}$ is isomorphic to $\mathcal{P}(\lambda)/\text{fin}$ for some $\lambda > \kappa$ must be ω_0 .

Theorem (Balcar and Frankiewicz 1978)

 $\mathcal{P}(\omega_1)/\text{fin and } \mathcal{P}(\omega_2)/\text{fin are not isomorphic.}$

Assume there are κ and λ . . .

Let κ be minimal such that there is $\lambda > \kappa$ for which $\mathcal{P}(\kappa)/fin$ and $\mathcal{P}(\lambda)/fin$ are isomorphic.

Proposition

If $\kappa < \mu < \lambda$ then $\mathcal{P}(\kappa)/\text{fin}$ and $\mathcal{P}(\mu)/\text{fin}$ are isomorphic.

Proof.

Let $h: \mathcal{P}(\lambda)/fin \to \mathcal{P}(\kappa)/fin$ be a isomorphism and take $A \subseteq \kappa$ such that $A^* = h(\mu^*)$. Note: $|A| < \mu$, so by minimality of κ we must have $|A| = \kappa$.

Some proofs Consequences Working toward 0 = 1

Assume κ is the minimal . . .

Proposition

 $\kappa = \omega$

Proof.

Let $h: \mathcal{P}(\kappa)/fin \to \mathcal{P}(\kappa^+)/fin$ be a isomorphism. For $\alpha < \kappa$ take $A_{\alpha} \subseteq \kappa^+$ such that $A_{\alpha}^* = h(\alpha^*)$ and let $A = \bigcup_{\alpha < \kappa} A_{\alpha}$. Note: $|A_{\alpha}| = |\alpha| < \kappa$ for all α , by minimality of κ , so $|A| \leq \kappa$. \Box

Some proofs Consequences Norking toward 0 = 1

Assume κ is the minimal . . .

Proposition

 $\kappa = \omega$

Proof, continued.

Take $B \subseteq \kappa$ such that $A^* = h(B^*)$, and so $(\kappa^+ \setminus A)^* = h((\kappa \setminus B)^*)$. This implies $|\kappa \setminus B| = \kappa$.

But $\alpha^* \subseteq B^*$, which means $\alpha \setminus B$ is finite, for all α . And so $|\kappa \setminus B| \leq \omega$.

Let $\kappa > \omega_0$ and assume $\mathcal{P}(\omega_0)/fin$ and $\mathcal{P}(\kappa)/fin$ are isomorphic. Consider $\omega_0 \times \kappa$ instead of κ and let $\gamma : \mathcal{P}(\omega_0 \times \kappa)/fin \to \mathcal{P}(\omega_0)/fin$ be a isomorphism. Let $V_n = \{n\} \times \kappa$ and choose $v_n \subseteq \omega_0$ such that $v_n^* = \gamma(V_n^*)$. We may rearrange the v_n to make them disjoint and even assume $v_n = \{n\} \times \omega_0$ for all n.

Scales

For $\alpha < \kappa$ let $E_{\alpha} = \omega_0 \times [\alpha, \kappa)$ and take $e_{\alpha} \subseteq \omega \times \omega$ such that $e_{\alpha}^* = \gamma(E_{\alpha}^*)$. Define $f_{\alpha} : \omega \to \omega$ by

$$f_{\alpha}(n) = \min\{k : \langle n, k \rangle \in e_{\alpha}\}$$

Note: $f_{\alpha} \leq f_{\beta}$ if $\alpha < \beta$, i.e., $\{n : f_{\alpha}(n) > f_{\beta}(n)\}$ is finite. For every $f : \omega \to \omega$ there is an α such that $f \leq f_{\alpha}$.

I.e., $\langle f_{\alpha} : \alpha < \kappa \rangle$ is a κ -scale.

Assume $\mathcal{P}(\omega_1)/\text{fin}$ and $\mathcal{P}(\omega_2)/\text{fin}$ are isomorphic.

Then $\mathcal{P}(\omega_0)/\text{fin}$ and $\mathcal{P}(\omega_1)/\text{fin}$ must also be isomorphic.

But then we'd have an ω_1 -scale and an ω_2 -scale and hence a contradiction.

Consequences

Some proofs Consequences Working toward 0 = 1

Corollary

If $\omega_1 \leq \kappa < \lambda$ then $\mathcal{P}(\kappa)/\text{fin}$ and $\mathcal{P}(\lambda)/\text{fin}$ are not isomorphic, and if $\omega_2 \leq \lambda$ then $\mathcal{P}(\omega_0)/\text{fin}$ and $\mathcal{P}(\lambda)/\text{fin}$ are not isomorphic.

So we are left with

Question

Are $\mathcal{P}(\omega_0)/\text{fin}$ and $\mathcal{P}(\omega_1)/\text{fin}$ ever isomorphic?

Some proofs Consequences Working toward 0 = 1

So, what if they are isomorphic?

Easiest consequence: $2^{\aleph_0} = 2^{\aleph_1}$;

those are the respective cardinalities of $\mathcal{P}(\omega_0)/\textit{fin}$ and $\mathcal{P}(\omega_1)/\textit{fin}$

So CH implies 'no'.

Some proofs Consequences Working toward 0 = 1

An ω_1 -scale

Using the scales we get

$$\mathfrak{d}=\omega_1$$

And so $MA + \neg CH$ implies 'no'.

A strong *Q*-sequence

In $\omega_0 \times \omega_1$ let $H_\alpha = \omega_0 \times \{\alpha\}$ and, for each α , choose $h_\alpha \subseteq \omega_0 \times \omega_0$ such that $\gamma(H_\alpha^*) = h_\alpha^*$.

 $\{h_{\alpha} : \alpha < \omega_1\}$ is an almost disjoint family. And a very special one at that.

Given $x_{\alpha} \subseteq h_{\alpha}$ for each α there is x such that $x \cap h_{\alpha} =^{*} x_{\alpha}$ for all α .

Basically $x^* = \gamma(X^*)$, where X is such that $(X \cap H_{\alpha})^* = \gamma^{\leftarrow}(x_{\alpha}^*)$ for all α .

Such *strong Q-sequences* exist consistently (Steprāns).

Some proofs Consequences Working toward 0 = 1

Even better (or worse?)

It is consistent to have

- $\mathfrak{d} = \omega_1$
- a strong *Q*-sequence
- $2^{\aleph_0} = 2^{\aleph_1}$

simultaneously (David Chodounsky).

(Actually second implies third.)

An automorphism of $\mathcal{P}(\omega_0)/fin$

Work with the set $D = \mathbb{Z} \times \omega_1$ — so now $\gamma : D^* \to \mathcal{P}(\omega_0)/\text{fin}$.

Define $\Sigma: D \to D$ by $\Sigma(n, \alpha) = \langle n+1, \alpha \rangle$.

Then $\tau = \gamma \circ \Sigma^* \circ \gamma^{-1}$ is an automorphism of $\mathcal{P}(\omega_0)/\text{fin}$.

In fact, τ is non-trivial, i.e., there is no bijection $\sigma : a \to b$ between cofinite sets such that $\tau(x^*) = \sigma[x \cap a]^*$ for all subsets x of ω

Light reading

Website: fa.its.tudelft.nl/~hart

🔋 K. P. Hart,

De ContinuumHypothese, Nieuw Archief voor Wiskunde, 10, nummer 1, (2009), 33–39

D. Chodounsky, A. Dow, K. P. Hart and H. de Vries The Katowice problem and autohomeomorphisms of ω^* , (arXiv e-print 1307.3930)

