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Easy exercise one

Exercise

Let X and Y be two sets and f : X → Y a bijection.
Make a bijection between P(X ) and P(Y ).

Solution: A 7→ f [A] does the trick.

K. P. Hart The Katowice Problem 3 / 20



Two easy exercises and a hard one
The Katowice Problem

A non-trivial automorphism

The hard exercise

Exercise

Let X and Y be two sets and F : P(X )→ P(Y ) a bijection.
Make a bijection between X and Y .

Solution: can’t be done.

Really!?
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How can that be?

But, if we have sets with the same number of subsets then they
have the same number of points.

For if 2m = 2n then m = n.
True, for natural numbers m and n.

But that was not (really) the question.
The proof for m and n does not produce a bijection.
It does not use bijections at all.
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On to infinity

We have a scale to measure sets by: ℵ0, ℵ1, ℵ2, ℵ3, . . .
ℵ0 refers to countable.
ℵ1 refers to the ‘next’ infinity
and so on . . .

I teach this stuff every Friday afternoon in SP 904 (C1.112)
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On to infinity

Remember Cantor’s Continuum Hypothesis?
It says: 2ℵ0 = ℵ1: the number of subsets of N is the smallest
possible uncountable infinity.

When Cohen showed that the Continuum Hypothesis is
unprovable, his method actually showed that 2ℵ0 = 2ℵ1 = ℵ2 does
not lead to contradictions.

This is a situation with a bijection between P(X ) and P(Y ) but
no bijection between X and Y .
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Easy exercise two

Exercise

Let X and Y be two sets and F : P(X )→ P(Y ) a bijection that is
also an isomorphism for the relation ⊆.
Make a bijection between X and Y .

Solution: if x ∈ X then {x} is an atom (nothing between it
and ∅), hence so is F

(
{x}

)
.

But then F
(
{x}

)
= {y} for some (unique) y ∈ Y .

There’s your bijection.
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Some algebra

We can consider P(X ) as a group, or a ring.

Addition: symmetric difference
Multiplication: intersection

A ⊆-isomorphism is also a ring-isomorphism.

K. P. Hart The Katowice Problem 10 / 20



Two easy exercises and a hard one
The Katowice Problem

A non-trivial automorphism

There is a nice ideal in the ring P(X ):
the ideal, fin, of finite sets.

You can see where this is going . . .
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The problem

The Katowice Problem

Let X and Y be sets and assume P(X )/fin and P(Y )/fin are
ring-isomorphic.
Is there a bijection between X and Y ?

Equivalently . . .
If the Banach algebras `∞(X )/c0 and `∞(Y )/c0 are isomorphic
must there be a bijection between X and Y ?

Equivalently . . .
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The problem

. . . the original version

The Katowice Problem

If X ∗ and Y ∗ are homeomorphic must X and Y have the same
cardinality.

Our sets carry the discrete topology and X ∗ = βX \ X , where
βX is the Čech-Stone compactification.

Actually: X ∗ is also the structure space of `∞(X )/c0 and the
maximal-ideal space of P(X )/fin.
So it all hangs together.
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Two results

Theorem (Frankiewicz 1977)

The minimum cardinal κ (if any) such that P(κ)/fin is isomorphic
to P(λ)/fin for some λ > κ must be ω0.

Theorem (Balcar and Frankiewicz 1978)

P(ω1)/fin and P(ω2)/fin are not isomorphic.
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Consequences

Corollary

If ω1 6 κ < λ then P(κ)/fin and P(λ)/fin are not isomorphic, and
if ω2 6 λ then P(ω0)/fin and P(λ)/fin are not isomorphic.

So we are left with

Question

Are P(ω0)/fin and P(ω1)/fin ever isomorphic?
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Why ‘ever’?

The Continuum Hypothesis implies that P(ω0)/fin and P(ω1)/fin
are not isomorphic?

So, we can not prove that they are isomorphic.

But, can we prove they they are not isomorphic?

The “are they ever” translates to:
is there a model of Set Theory where P(ω0)/fin and P(ω1)/fin are
isomorphic?
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Consequences

We want “P(ω0)/fin and P(ω1)/fin are isomorphic” to be false.

We have many consequences.

But not yet 0 = 1.

Here’s a nice one . . .
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An automorphism of P(ω0)/fin

Work with the set D = Z× ω1 — so we assume
γ : P(D)/fin→ P(ω0)/fin is an isomorphism.

Define Σ : D → D by Σ(n, α) = 〈n + 1, α〉.

Then τ = γ ◦ Σ∗ ◦ γ−1 is an automorphism of P(ω0)/fin.

In fact, τ is non-trivial, i.e., there is no bijection σ : a→ b between
cofinite sets such that τ(x∗) = σ[x ∩ a]∗ for all subsets x of ω
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Light reading
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