What is . . . 'Finite'? Tá scéilín agam

K. P. Hart

Faculteit EWI TU Delft

Delft, 15 February 2017

Dutch Science Agenda

The words 'oneindig' and 'oneindigheid' together occur 25 times as keyword in a question for the Dutch Science Agenda.

The words 'eindig' and 'eindigheid' together occur 6 times.

They are antonyms, so why the imbalance?

Van Dale

De allereerste editie (1864):

- eindig: bn. en bijw. een einde hebbende.
- oneindig: bn. en bijw. zonder einde; (fig.) buitengemeen groot; oneindig groot: door geene maat te bepalen; oneindig klein: nul.

Chambers

13th Edition (2014):

finite *adj* having an end or limit; subject to limitations or conditions, opp to *infinite*. [I. *finitus*, pap of *finire* to limit]

infinite *adj* without end or limit; greater than any quantity that can be assigned [*maths*]; extending to infinity; vast; in vast numbers; inexhaustible; infinitated (*logic*)

infinitate vt to make infinite; to turn into a negative term (logic).

De wiskunde is wel gedefinieerd als de wetenschap van het oneindige, die dit met eindige middelen tracht te beheersen

Interesting

'finite' is opposite to 'infinite', yet ...

'infinite' generates many more words than 'finite'

again an imbalance

Simple relation

Mathematics keeps it simple:

'infinite' is not 'finite'

hence

'finite' is not 'infinite'

once you define one you define the other.

Without further ado

A set, X, is finite if there are a natural number n and a bijection $f: n \rightarrow X$.

In Set Theory we define natural numbers in such a way that $n = \{i \in \mathbb{N} : i < n\}$. So $0 = \emptyset$, $1 = \{0\}$, $2 = \{0, 1\}$, etc

So, ..., a set, X, is infinite if there is no natural number n with a bijection $f : n \to X$.

Basically, when you have an infinite set, you are empty-handed.

Or are you ...

Characterizations of finiteness

Do we need the external natural numbers to define finiteness?

Alfred Tarski: no.

A set, X, is finite iff every subfamily of $\mathcal{P}(X)$ has a *maximal* element (with respect to \subseteq).

(maximal: nothing bigger)

What does the dictionary say? What does mathematics say?

Characterizations of finiteness

Proof.

Only if: by induction. If: let $\mathcal{F} = \{F \in \mathcal{P}(X) : F \text{ is finite}\}.$

This is used a lot in Finite(!) Combinatorics.

So, with an infinite set X you get a subfamily \mathcal{F} of $\mathcal{P}(X)$ without a maximal element.

Well, that's something, but is it useful?

Dictionary to the rescue ...

From Chambers

- **infinite set** n (*maths*) a set that can be put into one-one correspondence with part of itself
- Actually: proper part (of course)
- This is actually Dedekind's definition of 'infinite'
- Thus, Dedekind-*finite* would mean: every injection from the set to itself is surjective.

What does the dictionary say? What does mathematics say?

Dedekind-infinite is better

Theorem

TFAE

- X is Dedekind-infinite
- **2** there is an injective map $f : \mathbb{N} \to X$.
- **()** X has as many elements as $X \cup \{p\}$ for (some) p not in X

Dedekind-infinite is better

Proof.

1)
$$\rightarrow$$
 2): take injective-not-surjective $g : X \rightarrow X$ and $x \in X \setminus g[X]$; define $f : \mathbb{N} \rightarrow X$ by $f(n) = g^n(x)$.
2) \rightarrow 3): take injective $f : \mathbb{N} \rightarrow X$ and define $g : X \cup \{p\} \rightarrow X$ by $g(p) = f(0), g(f(n)) = f(n+1)$, and $g(x) = x$ otherwise
3) \rightarrow 1) Take bijective $h : X \cup \{p\} \rightarrow X$ and let $g = h \upharpoonright X$

Yep, Dedekind-infinite rocks!

Relationship

'finite' implies 'Dedekind-finite'

and so, contrapositively: 'Dedekind-infinite' implies 'infinite'

How about the converse?

Unfortunately ...

The implications do not reverse, at least not without some form of the Axiom of Choice.

There's a Bachelor project available if you want to know why this is.

Dedekind had an other idea:

a set, X, is finite iff there is a map $f : X \to X$ such that \emptyset and X are the only f-invariant sets: if $f[A] \subseteq A$ then $A = \emptyset$ or A = X.

Such a map for $n \in \mathbb{N}$ is a permutation represented by an *n*-cycle.

This was a problem on my last Set Theory exam; have a go at it yourself.

