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M3 and M2

Some 40 years ago: Maarten Maurice taught a course on
generalized metric spaces.

Naturally M1-, M2- and M3-spaces made their appearance.

And Maarten mentioned that someone named Gruenhage had
shown that M3 implies M2.

(The pronuciation of the ‘hage’ part of the name was a bit unclear
to us.)
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“Can I read that?”

I got a copy of Gary’s paper from Maarten and I read it.

And that lead to my first seminar talk ever.

One member of the audience then is in the audience now as well.
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Just one question . . .

How would you render this notation in TEX?

Would that be VFn, or VF n , or rather VF (n)?
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A common hobby

I occasionally send in solutions to Monthly problems.

In 2000, out of the blue, an email from Gary:
“Congratulations on getting a solution published.”
(It took Monthly issues longer to get to Europe than to Auburn,
I guess.)
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GCHQ

This is GCHQ (the UK’s NSA).

They have a file on Gary
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Gary’s problem

Here’s why.

Monthly: volume 107, No. 4 (April, 2000) p. 367
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Gary’s problem

One year later . . .

Monthly: volume 108, No. 3 (March, 2000) p. 278
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A recent solution

Almost a year ago:

Monthly: volume 123, No. 9 (November, 2016) p. 947
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About the solution

Gary’s treatment:

a commutative operation on ω1

cannot be associative

cannot be done on ω2

I was an also-ran
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Another problem

We have a new race on:

Monthly: volume 123, No. 10 (December, 2016) p. 1050
May the best solution win.
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Small diagonals

Definition (Van Douwen, Hušek, Zhou)

A space, X , has a small diagonal if every uncountable subset of
X 2 \∆(X ) has an uncountable subset whose closure is disjoint
from ∆(X ).

Hušek defined the negation: X has an ω1-accessible diagonal if
there is a sequence

〈
〈xα, yα〉 : α ∈ ω1

〉
that converges to ∆(X )

and always xα 6= yα of course.
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A sufficient condition

If ∆(X ) is a Gδ-set then X has a small diagonal.
Hence, for example, metrizable spaces have small diagonals.
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Elementary sequences

From now on Alan shares the blame for everything not attributed
to Gary.

Many proofs of results on csD spaces (compact small Diagonal)
work as follows.

Let X be compact; take a sequence 〈Mα : α ∈ ω1〉 of countable
elementary substructures with X ∈ M0 — an elementary sequence
for X .
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Elementary sequences of pairs

We assume X to be embedded into [0, 1]κ, say κ = w(X ), so the
following makes sense.

An elementary sequence of pairs for X is a sequence〈
{xα, yα} : α ∈ ω1

〉
such that, always,

xα �Mα = yα �Mα,

xα 6= yα, and

{xα, yα} ∈ Mα+1.

One of the coordinate sequences may be constant.
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Elementary sequences and small Diagonals

Gary: a compact space is csD iff every ω1-sequence of pairs is
ω1-separated, i.e., there is an uncountable set A such that
cl{xα : α ∈ A} and cl{yα : α ∈ A} are disjoint.

In fact: a compact space is csD iff every elementary sequence of
pairs is ω1-separated.
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small Diagonals and metrizability

Remember: a compact space is metrizable iff its diagonal is a
Gδ-set.

Also: a compact space is metrizable iff every elementary sequence
of pairs does not exist.

We are lead to ask

Is every csD space metrizable?
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A sufficient condition

Gary: If X is csD and hereditarily Lindelöf (equivalently, perfectly
normal) then X is metrizable.

Take an elementary sequence of pairs and A ⊆ ω1 uncountable.
Then {xα : α ∈ A} is Lindelöf.

Pick δ ∈ A such that {α ∈ A : xα ∈ V } is uncountable, for every
basic neighbourhood V of xδ.

Mδ+1 contains a countable local base, B, at xδ.

For each member B of B and α > δ we have xα ∈ B iff yα ∈ B.
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A sufficient condition

Let us squeeze whatever we can out of that proof, put
M =

⋃
αMα.

It suffices that X be first-countable and X ∩M be Lindelöf:
we don’t need xδ, just an x in X ∩M.

For the latter Lindelöfness of X ∩M is enough.

We do need a countable local base at x to make the last part work.
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A sufficient condition

It suffices that X ∩M be Lindelöf for just one elementary sequence.
For then we can prove that our csD space X is first-countable.

If X is not then some x ∈ X ∩M0 does not have a countable local
base.

Hence we can choose xα ∈ Mα+1 such that xα 6= x , but
xα �Mα = x �Mα.

Let A ⊆ ω1 be uncountable and let y ∈ M be a complete
accumulation point of {xα : α ∈ A}.
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A sufficient condition

It follows that y �Mα = x �Mα for all α and hence x �M = y �M.

By elementarity: x = y .

The sequence 〈xα : α ∈ ω1〉 converges to x .

Contradiction.
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Thanks

Thanks for the fun Gary.
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