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Notation

Sets

N the set {1, 2, 3, . . .} of all natural numbers
Z the set {. . . ,−1, 0, 1, 2, 3, . . .} of all integers
Q the set of all rational numbers
R the set of all real numbers
C the set of all complex numbers
n! the product n(n− 1) · · · 1 pronounced as n factorial
{n} the set {1, 2, . . . , n}
∅ the empty set

a ∈ A a is an element of A
a 6∈ A a is no element of A
|A| the number of elements of the set A, the cardinality of A

A ⊆ B A is a subset of B
A ⊇ B the set A contains the set B, i.e. B ⊆ A

{x ∈ A : · · · } the set of all x ∈ A for which · · ·
{x : · · · } the set of all x for which · · ·
A ∪B the union of the sets A and B
A ∩B the intersection of the sets A and B⋃
i∈I Ai the elements in at least one set Ai⋂
i∈I Ai the elements which are in all sets Ai
A \B the set of elements in A which are not in B
P(A) the power set of A is the family of all subsets of A
[A]k the collection of all subsets of A with cardinality k

A×B the Cartesian product of A and B:

A×B = {(a, b) | a ∈ A and b ∈ B}
An the n-fold Cartesian product of A :

An = A×A · · · ×A = {(a1, . . . , an) | a1, . . . , an ∈ A}∑
x∈S f(x) the sum of all x ∈ S of the f(x)

iii
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Complex numbers

We noteren complexe getallen als z = a+ bi met a, b ∈ R.

Re z the real part of z (is equal to a)
Im z the imaginary part of z (is equal to b)
|z| the modulus of z (is equal to

√
a2 + b2)

Arg z the principal value of the argument of z
z the complex conjugate of z (is equal to a− bi)

Counting
(
n
k

)
the binomial coefficient

(
n
k

)
= n!

k!(n−k)! has to be pronounced as ‘n choose
k’∣∣n

k

∣∣ the number of surjections of {1, 2, . . . , n} to {1, 2, . . . , k}

Probability and Statistics

Ac the complement of A is the set {ω ∈ Ω : ω 6∈ A}
P (A) the probability of event A

P (A | B) de conditional probability A given B (is equal to P (A∩B)
P (B) )
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Graphs

Author: D. Gijswijt

Introduction

Graph theory is an important subfield of Discrete mathematics. Apart from being a
mathematical discipline in its own right, it is known for its many applications in a wide
range of disciplines including computer science, chemistry, physics, social and economic
sciences and, of course, in pure mathematics. The word graph was introduced in 1878 by
the English mathematician J. J. Sylvester as a shorthand for ‘graphic representation’.
He used these graphical representations to depict the structure of organic molecules.

Figure 1.1: Five different graphs

1.1 Graphs

Simply put, a graph consists of a number of objects and connections between these
objects. Examples are:

• road networks: pairs of cities are connected by roads,

• the World Wide Web: pairs of webpages are connected through hyperlinks,

• social networks: two people are connected if they are friends,

3



4 CHAPTER 1. GRAPHS

• Rubik’s Cube: two cube configurations are connected if they differ by a singe move.

The objects of a graph are called nodes (or vertices) and the connections are called
edges. The only information contained in a graph is the set of objects and which pairs of
objects form an edge1. All other information is ‘forgotten’. In this way, a road network
and a social network might be represented by the same abstract graph even though the
original meaning is completely different in the two cases. This abstraction allows one to
focus on the underlying logical structure without being distracted by irrelevant details.

Graphically, a graph is represented by drawing dots or small circles for the nodes,
and drawing lines or curves between pairs of nodes to denote the edges. Figure 1.1 shows
five examples of graphs.

After this informal introduction, we are ready to give a precise, mathematical definition
of graphs.

Definition 1.1. A graph G is a pair (V,E), where V is a finite set and E is a set of
unordered pairs from V . The elements of V are called the nodes of G and the elements
of E are the edges of G.

Example 1.2. Let G = (V,E) be the graph where

V = {a, b, c, d, e}
E = {{a, b}, {a, d}, {b, c}, {b, d}, {c, e}, {d, e}} .

This graph is graphically represented as follows.

e

a

b

c d

Exercise 1.1 Consider the graph (V,E) with V = {1, 2, 3, 4, 5, 6} represented by the
following drawing.

5

1

2

3

4

6

Write down the set of edges E.

Exercise 1.2 There are exactly 8 graphs with node set {1, 2, 3}:
1

2 33

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2

Determine the number of graphs with node set {1, 2, 3, 4, 5}.
1In some applications some additional data is preserved/added, for example the lengths of the roads

in the network or capacities of cables in an electrical grid.
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Variations on the notion of graph

In some situations, it is convenient to use a slightly more general notion of graph. In
multi graphs we allow multiple edges between a given pair of nodes and we may also
allow ‘loops’ (edges connecting a node to itself). If we want to consider directed edges,
we can use directed graphs (or digraphs for short). The edges are called arcs and are
specified by two nodes: the head and the tail. In Figure 1.2 you can see some examples.

Figure 1.2: A multi graph and a digraph.

In this chapter, we will only consider graphs that are simple (no loops and multiple
edges) and undirected, unless mentioned otherwise.

Degrees

If e = {u, v} is an edge of graph G, we say that e is incident to u and v. Conversely, we
also say that u and v are incident to e. The nodes u and v are called neighbours.

The degree d(v) of a node v is the number of edges incident to v. Since our graphs
are simple, d(v) is also equal to the number of neighbours of v. When all vertices of G
have the same degree, the graph is called regular. When all nodes have degree k, the
graph is said to be k-regular.

In Figure 1.3 two regular graphs are drawn. The graph on the left is C5, the cyclic
graph on 5 nodes. The graph on the right is K5, the complete graph on 5 nodes. The
word ‘complete’ refers to the fact that every pair of nodes is an edge.

Figure 1.3: The cyclic graph C5 is 2-regular and the complete graph K5 is 4-regular.

Exercise 1.3 Denote by Cn the cyclic graph on n nodes (n ≥ 3) and by Kn the
complete graph on n nodes (n ≥ 1). Determine the number of edges of Cn and Kn (as a
function of n).

Our first theoretical result links the degrees of the nodes to the total number of edges.
This simple but powerful statement is called the handshaking lemma.
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Lemma 1.3 (Handshaking lemma). Let G = (V,E) be a graph. Let m := |E| be the
number of edges of G. We have the following relation.

∑

v∈V
d(v) = 2m.

Proof. Every edge is incident to exactly two nodes. Therefore, every edge contributes 2
to the sum of the degrees of the nodes, which implies that this sum equals 2m. �

Exercise 1.4 The graph G has 14 nodes and 25 edges. Every node has degree 3 or
degree 5. How many nodes have degree 3?

Exercise 1.5 Let f(n) be the number of 2-regular graphs with node set {1, 2, . . . , n}.
Convince yourself of the fact that f(1) = f(2) = 0, f(3) = 1, and f(4) = 3. Determine
f(5).

Exercise 1.6 Draw a 3-regular graph on 17 nodes or show that such a graph does not
exist.

Exercise 1.7 Show that every graph has an even number of nodes of odd degree.

Exercise 1.8 Let G be a graph on n ≥ 2 nodes. Prove that G has two nodes of the
same degree.

Paths and walks

In this section, we consider ways of walking along the edges of a graph.

Definition 1.4. Let a and b be two nodes of a graph G. A walk from a to b is a sequence
W = (v0, v1, . . . , vk) of nodes of G, such that a = v0, b = vk, and {v0, v1}, {v1, v2}, . . . ,
{vk−1, vk} are edges of G.

We say that W traverses the nodes v0, v1, . . . vk and the edges {v0, v1}, {v1, v2}, . . . ,
{vk−1, vk}. The number k is called the length of the walk. When a = b, we say that W
is a closed walk.

We want to stress that the nodes in the walk need not be distinct and that edges
can be tranversed more than once. The case where alle nodes in the walk are distinct
deserves a special name.

Definition 1.5. Let W = (v0, v1, . . . , vk) be a walk. We say that W is a path if no two
of the nodes v0, v1, . . . , vk are the same. The walk W is called a cycle if v1, v2, . . . , vk are
distinct, v0 = vk, and k ≥ 3.

Example 1.6. Consider the following graph (a ‘cube’).

h

a

b c

d

e

f g
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Consider the following five walks in this graph.

(i) (c),

(ii) (e, a, d, c, g, h, e),

(iii) (h, d, c, b, a, e, f),

(iv) (b, c, b, f, b, c, d, a, b),

(v) (d, h, d).

Walks (i) and (iii) are paths and walk (ii) is a cycle. Walks (i), (iv), and (v) are closed
walks, but not a cycle.

Exercise 1.9 Let G be the complete graph with node set {1, 2, 3, 4, 5}.

(a) How many walks in G start in node 1 and have length 10?

(b) How many paths does G have?

Exercise 1.10 Let a and b be two nodes of a graph G. Prove that:

There is a walk in G from a to b ⇐⇒ there is a path in G from a to b.

The implication ‘⇐’ is clear, but the implication ‘⇒’ is less obvious.

Definition 1.7. A graph is said to be connected if there is a path from every node to
every other node.

Exercise 1.11 Let a, b, and c be nodes of a graph G = (V,E). Check the following
statements.

(i) There is a path from a to a.

(ii) If there is a path from a to b, then there is a path from b to a.

(iii) If there are paths from a to b and from b to c, then there is a path from a to c.

This exercise shows that the relation “there is a path from a to b” is an equivalence
relation2 on the nodes of a graph. It implies that the node set of the graph is partitioned
into a number of subsets V1, V2, . . . , Vk (equivalence classes) such that for any two nodes
a and b we have:

There is a path from a to b ⇐⇒ a and b are in the same subset Vi.

In other words, the graph G decomposes into a number of connected components
G1, . . . , Gk, where

Gi = (Vi, Ei),

Ei = {{u, v} ∈ E : u, v ∈ Vi} .
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Figure 1.4: A graph with five connected components.

In Figure 1.4, a graph having five connected components is drawn.

Exercise 1.12 Three wine glasses are placed on a table. One of the glasses is upside-
down. You are allowed to make the following move: choose two of the glasses and turn
them. The goal is to get all three glasses to be the right-side up3. Draw the graph in which
the nodes are the eight possible orientations of the three glasses (upside-down/correct)
and two nodes form an edge if the two situations differ by a single move. How many
connected components does this graph have? Can the goal be achieved?

?

Definition 1.8. Given nodes a and b of a graph, define their distance d(a, b) to be the
length of a shortest path from a to b. If a and b are in different connected components,
define the distance to be d(a, b) := +∞.

Exercise 1.13 In the graph of Figure 1.5, the nodes are Hollywood actors. Two actors
are connected by an edge if they have co-starred in a Hollywood movie4.

a) Determine the distance in this graph between Jennifer Aniston and Johnny Depp.

b) The diameter of a graph is the maximum distance between two nodes of the graph.
What is the diameter of this graph?

1.2 Eulerian graphs

We start by defining a special type of closed walk.

2The notion of equivalence relation is one that is ubiquitous in mathematics and you will encounter
it for example in the course ‘Mathematical structures’.

3This was used in the popular TV-show Mindf*ck in episode 2 of 2017.
4The distance in the full co-stardom graph from a given actor to Kevin Bacon is called their Bacon

number. Similarly, a mathematician’s Erdős number is the distance to the legendary Paul Erdős in
the graph where two mathematicians are connected by an edge if the have co-authored a paper. The
Bacon-number of Paul Erdős is 5, while the Erdős number of Kevin Bacon is +∞.
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Tom

Pattinson

Jolie

Charlize
Theron

Angelina

Nicole
Kidman

Cruise
Tom

Aniston
Jennifer

Depp
Johnny

Swank
Hilary

Winslet
Kate

Smith
Will

Berry
Halle

Washington
Denzel

Pitt
Brad

Roberts
Julia

Hanks

Scarlett
Johansson Robert

Figure 1.5: Part of the co-stardom graph

Definition 1.9. An Eulerian tour in a graph G is a closed walk in which every edge is
traversed exactly once.

The name refers to a solution found by Leonhard Euler to a problem concerning a
route through his town5, the well-known problem of the seven bridges of Königsberg. See
Exercise 18 and Figure 1.7).

Not every graph has an Eulerian tour. If it does, the graph is said to be Eulerian.
If (v0, v1, . . . , vm = v0) is one Eulerian tour, then one immediately has 2m Eulerian
tours. This is because you can simply start the tour in any position: (vi, vi+1, . . . , vm =
v0, v1, . . . , vi−1, vi), or take the tour in the opposite direction. We will consider these
2m Eulerian tours to be essentially the same. In general, a graph can have multiple,
essentially different, Eulerian tours.

Exercise 1.14 Show that K4 is not Eulerian. Show that K5 has two essentially different
Eulerian tours.

One may weaken the requirements in Definition 1.9 to demand that the walk traverses
every edge exactly once, but not require the walk to be closed. In that situation, the
walk is called an Eulerian trail. So an Eulerian tour is precisely the same as a closed
Eulerian trail. Een graaf that has an Eulerian trail, but no Eulerian tour is said to be
semi-Eulerian.

Exercise 1.15 Draw a semi-Eulerian graph with 5 nodes and 5 edges.

The existence of an Eulerian tour implies that one can draw the given graph in one
penstroke: without lifting your pen from the paper and without drawing any edges more
than once.

5Köningsberg is currently known as Kaliningrad.
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Figure 1.6: A semi-Eulerian graph

Exercise 1.16 Try to draw the graph in Figure 1.6 in a single stroke.

A graph that is Eulerian must clearly be connected (except for nodes of degree 0)
since the tour traverses all nodes that are incident to at least one edge. Now, let G be a
connected graph and suppose that G is Eulerian. If we consider following an Eulerian
tour W in G, then it becomes clear that every node v of G must have even degree.
Indeed, when traversing the d(v) edges incident to v, half of the time we are moving
towards v and half of the time we are moving away from v.

Have only even degree nodes is therefore a necessary conditions for a graph to be
Eulerian: if the condition does not hold, then the graph cannot be Eulerian. Surprisingly,
the condition is also sufficient : a connected graph with only even degree nodes is Eulerian.

Theorem 1.10. A connected graph G is Eulerian if and only if all nodes have even
degree and G is connected (except for nodes of degree 0).

Proof. We have already argued necessity of the condition. We will now show that it is
sufficient.

Let G = (V,E) be a connected graph in which every node has even degree. Our task
is to show that G has an Eulerian tour. Consider all possible walks in G that traverse
every edge at most once. Such walks exist: consider any walk of length 0 starting at
some node. Also, the length of such a walk can never exceed the total number of edges
in the graph since no edge is traversed more than once. This implies that we can take
among all these walks one of maximum length, say W = (v0, v1, . . . , vk). We will prove
that W is an Eulerian tour.

Claim 1: The walk W is closed. Indeed, suppose for contradiction that W were not
closed (i.e. v0 6= vk). Then W traverses an odd number of all edges incident to vk, since
each time W arrives at vk through some edge, it immediately leaves through another
edge, except for the last time it arrives at vk. Since vk has even degree by assumption, at
least one edge incident to vk is not traversed by W . But this implies that we can extent
W by traversing this edge, contradicting our assumption that W had maximum length.

Claim 2: For every node vi on the walk W it must be the case that W traverses all
edges incident to vi. Indeed, suppose for contradiction that some edge e = {vi, x} is not
traversed. Since W is a closed walk (Claim 1), we can start our walk in vi instead of v0 and
add one more step to the walk by traversing edge e: (vi, vi+1, . . . , vk = v0, v1, . . . , vi, x).
This again contradicts the fact we choose W to have maximum length.
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Claim 3: All nodes of G are traversed by W . Indeed, let u be a node. Since G is
connected by assumption, there is a path from v0 to u, say P = (v0 = u0, u1, . . . , ut = u).
Observe that Claim 2 implies that if a node is traversed by W , also its neighbours are
traversed by W . Since u0 = v0 is traversed by W , also its neighbour u1 is traversed by
W . But then also u2 is traversed by W , etc. We conclude that also u = ut is traversed
by W .

From Claim 3 and Claim 2 it follows that W traverses all edges, and hence is an
Eulerian tour. �

Exercise 1.17 For which values of n is Kn Eulerian?

In the more general situation of Euler trails we obtain the theorem below. This
theorem follows easily from Theorem 1.10, or by modifying its proof.

Theorem 1.11. A graph G has an Euler trail if and only if G has either zero or two
nodes of odd degree.

Exercise 1.18 In Figure 1.7 you can see a sketch of Königsberg. The two islands in
the river are connected to each other and to the two shores by a total of seven bridges.
The question is whether there exists a walk throug the city in which every bridge is
traversed exactly once.

Apply Theorem 1.11 to this problem.

Figure 1.7: The seven bridges of Köningsberg. From Euler’s paper Solutio problematis
ad geometriam situs pertinentis (The solution of a problem relating to the geometry of
position), 1741.

Applications

As a first application of Eulerian tours we consider the Chinese postman problem6. A
postman needs to traverse all streets in a certain area of town in order to deliver his mail.

6The preposition ‘Chinese’ refers to the nationality of the mathematician M.K. Kwan who studied
the problem, not to that of the postmen
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Naturally, he wants to take the most efficient route, and he has to start and end at the
postoffice. Preferably, he would traverse each street exactly once before returning to his
starting point. This is possible precisely when the street plan is an Eulerian graph.

If some nodes have odd degree, one may replace some edges by a pair of parallel edges
to obtain a (multi)graph in which all nodes have even degree (why is this always possible?)
These doubled edges will correspond to the streets traversed twice by the postman. In
the Chinese postman problem we want to minimise the number of added parallel edges
(or even the total length of the corresponding streets). There are efficient methods to
solve this problem based on matching theory. We will not pursue this beautiful theory in
this short introduction.

A modern variant of the Chinese postman problem in the Netherlands is that of
applying salt or brine to the roads in winter. The winter service vehicles need to traverse
all relevant roads but want to minimise the number of roads traversed twice. It will be
clear that the same graph theoretic methods apply here.

A classical puzzle derived form the game of dominoes in this context is the following.
The goal is to make a chain of dominoes in such a way that adjacent dominoes touch
in equal numbers of pips. In Figure 1.8, you can see a small example. The puzzle is to
make such a chain using all 28 dominoes.

Figure 1.8: A valid chain of dominoes

Exercise 1.19 Solve the domino puzzle. Is it true that both ends of the chain always
have the same number of pips? Suppose we had dominoes in which the number of pips
ran from 0 to 7. Could we make a chain using all 36 dominoes?

1.3 Hamiltonian graphs

After introducing Eulerian tours as closed walks traversing all edges, it is natural to
consider closed walks traversing all nodes.

Definition 1.12. A Hamiltonian cycle is a cycle traversing all nodes of the graph.

A graph having a Hamiltonian cycle is said to be Hamiltonian. The naming refers
to a puzzle that was marketed in 1859 and was invented by the Irish mathematician
and physisist W.R. Hamilton. The puzzle entailed a ‘journey around the world’, where
the world was represented by a dodecahedron and one traveled along the edges from
vertex to vertex. Each of the twenty vertices needed to be visited exactly once and one
had to return to the starting point to complete a tour. Figure 1.9 shows that this is
indeed possible. It should be clear from the picture that the proposed route can be seen
as a Hamiltonian cycle in the dodecahedral graph: the graph whose nodes and edges
correspond to the vertices and edges of the dodecahedron.
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Figure 1.9: A dodecahedron and a Hamiltonian cycle in the corresponding graph.

Exercise 1.20 Find out which of the graphs in Figure 1.10 are Hamiltonian.

Figure 1.10

Exercise 1.21 Show that Kn is Hamiltonian for every n ≥ 3.

Just as in the definition of Eulerian tour, one may remove the condition in Definition
1.12 that the walk needs to be closed. A Hamiltonian path is a path that traverses all
nodes of the graph.

In analogy to the situation for Eulerian graphs, one might expect a simple criterion
for determining whether a graph is Hamiltonian: a necessary and sufficient condition.
Surprisingly, this is not the case. More precisely: no such criterion has been discovered at
present. It is widely conjectured that there cannot be an efficient algorithm to determine
whether a given graph is Hamiltonian.

However, there do exist a number of necessary conditions for Hamiltonicity, as well
as a number of sufficient conditions. An example of a necessary condition is given in the
next theorem.

Theorem 1.13. Let G be a graph on n nodes and suppose that G is Hamiltonian. Let
k be an integer such that 1 ≤ k ≤ n. If we remove k nodes from G, then the remaining
graph has no more than k connected components.

Before proving this theorem, we will give two examples.

Example 1.14. In the figure below, two graphs are shown. In the graph on the left, 7
nodes are selected (in grey). When these nodes are removed from the graph (including
the edges incident to these nodes), we obtain 8 connected components (each consisting of
a single node). In the graph on the right, you can remove the 3 grey nodes to obtain
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a graph with 4 connected components. Therefore, the theorem implies that these two
graphs do not have a Hamiltonian cycle.

Proof. Let C be a Hamiltonian cycle in the graph G with n nodes. Let H be the graph
that results when we remove from G all edges that are not traversed by C. So H looks
like (is isomorphic to) Cn. Now we remove k nodes from H. Clearly, this results in at
most k components (each shaped like a path). Since G has the same nodes as H but
has additional edges, removing the same k nodes from G also yields at most k connected
components. �

This theorem is useful for showing that a given graph is not Hamiltonian as it gives
a necessary condition for being Hamiltonian. If the condition is not met, we can conlude
that the graph is not Hamiltonian. The theorem cannot be used to show that a given
graph is Hamiltonian. Indeed, even if the condition holds for every k and every set of k
nodes that we remove, this does not imply that the given graph is Hamiltonian.

Exercise 1.22 Consider the graph below. Show that this graph is not Hamiltonian.
Also show that when removing k nodes from this graph (1 ≤ k ≤ 7) the number of
connected components of the resulting graph is no more than k.

Exercise 1.23 Show that the graph in Figure 1.11 is not Hamiltonian.

Figure 1.11

We will now give a sufficient condition for Hamiltonicity.

Theorem 1.15 (Dirac). Let G be a graph on n nodes (n ≥ 3) in which all nodes have
degree at least n/2 (rounded up). Then G is Hamiltonian.
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Proof. We give a proof by contradiction. Suppose that the theorem is not true. Then for
some n there must be a non-Hamiltonian graph G on n nodes such that d(v) ≥ n/2 for
all v ∈ V . Add to G a maximum number of additional edges (between pairs of nodes
that do not yet for an edge). We do this under the additional restriction that we do not
create a Hamiltonian cycle. Call the resulting graph G′.

Since G′ has no Hamiltonian cycle, we know that G′ 6= Kn. Hence there exist two
nodes v and w that do not form an edge in G′. If we were to add the edge {v, w} to G′,
we would create a Hamiltonian cycle (since otherwise we would have already added this
edge in the construction of G′). This implies that there is a Hamiltonian path in G′ from
v to w, say (v = v1, v2, . . . , vn = w). We will use this path to show that G′ does have a
Hamiltonian cycle, contradicting the definition of G′.

First, define two subsets of the nodes of G′ as follows. Let

I := {i : vi is a neighbour of v1},
J := {i : vi−1 is a neighbour of vn}.

You may check that I ⊆ {2, . . . , n − 1} and J ⊆ {3, . . . , n} since v1 and vn are not
neighbours. Since v1 and vn both have degree at least n/2, we find that |I|+ |J | ≥ n.
Since I and J are both subsets of {2, . . . , n}, a set with fewer than n elements, we
conclude that I and J must have at least one element in common, say i ∈ I ∩ J .

But this leads to the following Hamiltonian cycle: (v1, . . . , vi−1, vn, vn−1, . . . , vi, v1).
See Figure 1.12.

v2 i −1v vi n −1v vnv
1

Figure 1.12

�
Exercise 1.24 Find an example of a graph that shows that the condition in Theo-
rem 1.15 is not a necessary condition for being Hamiltonian.

An application

In Figure 1.13 a disc is drawn containing 4 tracks. The disk is partitioned into 16 equal
sectors. Each part of a sector is covered by either an electrically conductive material or
by an insulator.

Let’s denote a conducting sector part by a 1 and a non-conducting part by a 0. This
way, the 16 sectors can be represented by the binary representations of the numbers 0 to
15. Using sensors, the sectors (binary codes) can be read, thus determining the rotational
position of the disk (up to a certain number of degrees).

The precision increases when we divide the disc into more sectors. In general, one
uses 2n sectors, representing the rotational position of the disc by binairy words of length
n. This is an example of analog-digital-conversion.
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Figure 1.13: A disk with 16 sectors that are labelled by a binary code.

Apart from the precision determined by the length n of the codes, there can be errors
in the decoding process, see Figure 1.13. The errors occur when a sensor is at the edge
between two sectors. There, it may read either the bit corresponding to one sector, or
the bit corresponding to the adjacent sector. In some situations, for instance in between
sectors 7 and 8, this problem may occur for any of the four bits independently, leading
to any of 24 possible outcomes (and hence no information on the rotational position).
The best situation occurs when two adjacent sectors differ in only one bit, as is the case
between sectors 2 (0010) and 3 (0011).

The obvious question is if there exists a binary encoding such that the codes for any
two adjacent sectors differ in only one bit. For 16 sectors, binary words of length 4, this
is indeed possible as demonstrated by Figure 1.14.

Figure 1.14: The 16 sectors are labelled according to a Gray code of length 4.

Such a labeling is called a Gray code, after its inventor Frank Gray at Bell labs. More
precisely, a sequence consisting of all 2n binary words of length n (each word occuring
once) is called a Gray code of length n if any two consecutive words differ in only 1 bit,
and also the first and last word differ in only 1 bit. The sequence

(000, 001, 011, 010, 110, 111, 101, 100)
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is an example of a Gray code of length 3.

Exercise 1.25 Gray codes correspond to Hamiltonian cycles in certain graphs. Which
graphs and what is the connection? Come up with a construction for Gray codes of
length n+ 1 starting from a Gray code of lengt n.

1.4 Additional exercises

Exercise 1.26 A connected graph containing no cycle is called a tree.

a) Show that a tree with more than one node has at least two nodes of degree 1 (the
leaves of the tree).

b) Draw some trees. What is the precise relation between the number of edges and
the number of nodes in a tree?

Exercise 1.27 How many Hamiltonian cycles does Kn have? How many ‘essentially
different’ Hamiltonian cycles? We call two Hamiltonian cycles ‘essentially different’ if
they do not traverse the same set of edges.

Exercise 1.28 A graph is called planar if it can be draw in the plane without any two
edges intersecting. In Figure 1.9, you can see that the dodecahedral graph is planar. Now
consider the graphs corresponding to the four other Platonic solids (tetrahedron, cube,
octahedron, icosaedron), see the figure below.

Draw the corresponding four graphs in the plane (without crossing edges) and show
that they are all Hamiltonian.

Figure 1.15: Four of the five Platonic solids.

Exercise 1.29 Only one of the Platonic solids has a corresponding graph that is Eulerian.
Which one is it?
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Complex Numbers

Author: A.T. Hensbergen

Introduction

The German mathematican Leopold Kronecker once remarked: “Die ganzen Zahlen hat
der liebe Gott gemacht, alles andere ist Menschenwerk”1.
Throughout your life/math career you must have come across the number systems
N ⊆ Z ⊆ Q ⊆ R ⊆ ??.
What’s the story behind this chain of sets, and does the real number system really mean
the end?

2.1 The number systems

N, the natural numbers

The natural numbers:
(0, )1, 2, 3, . . .

were probably introduced to you by your parents – without giving them their official name.
I put the zero between parentheses since different mathematicians (e.g. teachers ;-) think
differently about including or not including zero. Anyway, I will let the natural numbers
start at 0. At first these numbers were mainly meant for counting. To make counting
more efficient adding numbers comes up, and the next basic operation, multiplication, is
in fact iterated addition.
If one would build up the natural numbers in an axiomatic way addition and multiplication
could be defined in a recursive way. I will not do so here, but let me mention one way to
define the product of two natural numbers: First a·0 =

def
0 and further a·(n+1) =

def
a·n+a.

So for instance 5× 4 = 5× (3 + 1) = 5× 3 + 5 = 5× (2 + 1) + 5 = . . . = 5 + 5 + 5 + 5.

1Weber, H. (1893), “Leopold Kronecke”, Mathematische Annalen, Springer Berlin, Heidelberg, 43:
1 – 25.

19
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The following properties may then be deduced:

a+ b = b+ a (symmetry)
a+ (b+ c) = (a+ b) + c (associativity)
a+ 0 = a
a · b = b · a
a · (b · c) = (a · b) · c
a · (b+ c) = a · b+ a · c (distributivity)
a · 1 = a

et cetera

The inverse operations, subtraction and division are not always possible: 7− 5 = 2,
but 4−9 is not possible in the realm of the natural numbers. In other words: the equation
9 + x = 4 has no solution in N.
Likewise for the inverse operation of multiplication. E.g. consider 20/5 and 13/7.

The first extension: Z, the integers

To make sure that every equation a+ x = b does have a solution one can introduce new
symbols −1, −2, −3, . . . with the ‘convention’ that, for instance, −3 is a solution for the
equation 8 + x = 5.
Formally for each equation a+ x = b with b < a the solution/symbol/number −(a− b) is
introduced. As a result we get the set:

Z = {. . . ,−3, −2, −1, 0, 1, 2, . . . }

Addition and multiplication have to be defined for any two numbers in Z in such a
way that the properties of section 1.1 remain valid. By now you should know how this is
done.

The second extension: Q, the rational numbers

To make sure the equation a · x = b does have a solution for every a(6= 0) and b ∈ Z,
one can introduce new symbols p

q , p ∈ Z, q = 1, 2, 3, . . ., with the ‘convention’ that p
q is

the solution for the equation q · x = p. The set of all these ‘numbers’ is called the set of
rational numbers:

Q =

{
p

q

∣∣∣∣ p ∈ Z, q = 1, 2, 3, . . .

}

This is just one way to do it; one might also take q ∈ Z, q 6= 0 and p ∈ Z.
To see this, just note that, for instance,the equations (−2)x = 5 and 2x = −5 are
equivalent.

Some more terminology: for the rational number p
q the number p is called the

numerator, and the number q is called the denominator.

From the observation that if x = p
q , y = r

s , i.e. q · x = p and s · y = r, it follows that

(qs) · (xy) = (q · x) · (s · y) = p · r = pr, so that xy = pr
qs . Hence it makes sense to define

the product of p
q and r

s as pr
qs .
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In a slightly more involved way the following ‘consistent’ definition of addition may
be given support: p

q + r
s =

def

ps+qr
qs .

With consistent we mean that for the addition and multiplication of rational numbers
the properties of section 1.1 still hold.

Note that equality of numbers in Q has a minor complication:
the rational numbers 1

3 and 2
6 should be considered as the same rational number,

since they both satisfy the equation 6x = 2.

To take care of this ‘nuisance’ we may define p
q = r

s ⇐⇒def ps = qr.

Lastly, we may identify the integer k with the rational number k
1 , and then it can be

said that the set of integers is contained in the set of rational numbers.

For someone who has never been exposed to rational numbers the last two definitions
may look horrible, but once you grasped the idea of fractions your fear may disappear. If
you’ve never seen complex numbers (don’t be scared by the name) I hope the same will
happen to you: first you think ‘what’s going on here ...’, but soon you will get the hack
of them. And maybe even start to love them.

One step beyond: R, the real numbers

Why go further? Well, why not?! The first two extensions from N to Q had to do
with the algebraic operators + and ×. They sort of ‘closed’ these operators. There is
another important relation/operator giving structure to these number systems, namely
the inequality operator.
The extension from Q to R has to do with this ≤-operator: For each two numbers a and
b in either N, Z or Q, either a ≤ b or b ≤ a, and both hold if and only if a = b.
Together with the property if a ≤ b and b ≤ c then a ≤ c, this implies that all three
number systems can be visualized on a line. The rational numbers are ‘dense’ on the line
in the sense that for each two rational numbers a < b there is always a rational number c
for which a < c < b. However, the rational numbers still leave ‘holes’ on this line. For
instance, the cubes of the rational numbers, i.e. a3, somewhere between 2 and 3 pass the
value 10, but it can be shown that there is no rational number b for which b3 equals 10.
In other words: 3

√
10 is irrational. So there’s a ‘hole’ somewhere between 2 and 3, and

there are in fact infinitely many holes. Intuitively, R is the result of ‘filling up’ all these
holes. In the course “Mathematical Structures” you will learn a more rigorous approach.

Enough is enough?

Now what else could we wish for? Well, there is something a little unsatisfactory with
quadratic and higher order equations. Some do have solutions in R, some don’t. The
simplest equation where R ‘falls short’ is the equation x2 + 1 = 0. In the eighteenth
century mathematicians came up with the number system C, an even larger system than
the real number system, in which all n-th order equations do have solutions. The terms
‘complex number’ and ‘imaginary number’ do convey the scepticism people had with
regards to these ‘numbers’. Battles were fought over this (luckily without too much
bloodshed). Nowadays complex numbers are an important tool for mathematicians and
engineers.
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To quote the writer (ex math-student) John Derbyshire: “I tell you, with complex
numbers you can do anything.”2 The German philosopher/mathematician Gottfried
Leibniz went even further and in 1702 wrote: “Imaginary (read: complex) numbers are
a fine and wonderful refuge of the divine spirit almost an amphibian between being and
non-being.”3

2.2 The complex number system

The definition(s)

The amazing thing is that by introducing only one new symbol (‘number’) i with the
defining property i2 = −1, a new number system may be built in which as far as addition
and multiplication are concerned we can still do algebra as in all the above number
systems, and in which all algebraic equations do have solutions.

Definition 2.1. The complex numbers are defined as the set:

C = { a+ bi | a, b ∈ R }

For z = a + bi the number a is called the real part of z, and b is called the imaginary
part of z. In shorthand: a = Re z, b = Im z.

Note that Im z is a real number.

Definition 2.2. For two complex numbers the sum and the product are defined as
follows:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

and

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i

The logic behind this: (a+ bi) · (c+ di) = ac+ adi+ bic+ bidi
= ac+ bi · di+ adi+ bci
= ac+ bdi2 + adi+ bci (and i2 = −1 )
= (ac− bd) + (ad+ bc)i.

As with real numbers (a+ bi) · (c+ di) is often written as (a+ bi)(c+ di).

Definition 2.3. Thirdly, two complex numbers are equal, that is a+ bi = c+ di

if and only if a = c and b = d. (Easier than for rational numbers!)

It can be easily checked that the basic properties of subsection 1.1 (commutativity,
symmetry, . . . ) still hold for complex numbers.
Subtraction of complex numbers is immediate:

(a+ bi)− (c+ di) = (a− c) + (b− d)i.

2from “Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problems in Mathematics”.
3F. Klein, Elementary “Mathematics From an Advanced Standpoint (1932), Vol. 1”.
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For division of a complex number a+ bi by a complex number c+ di not equal to zero,
we use the same trick that helps to eliminate a square root from the denominator of a
fraction. Compare:

4 +
√

3

1 +
√

3
=

4 +
√

3

1 +
√

3
· 1−

√
3

1−
√

3
=

4− 4
√

3 +
√

3− 3

1− (
√

3)2
=

1−
√

3

−2
= 1

2

√
3− 1

2

with

a+ bi

c+ di
· c− di
c− di =

(a+ bi)(c− di)
(c+ di)(c− di) =

ac+ bd+ (bc− ad)i

c2 + d2
=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i

Note that c + di 6= 0 is equivalent to c2 + d2 6= 0, so we don’t get zero in the
denominators.

Lastly, by identifying the real number a and the complex number a + 0i we can
consider R as a subset of C. Which finally explains the title of the introduction.

Exercise 2.1 Compute (i.e. express in the form a+ bi (a, b ∈ R):

a) (1 + 2i)(3 + 1)(1− 2i) and (1 + 2i)(1− 2i)(3 + 1);

b) (1 + i)15;

c) (1− i)15;

Exercise 2.2 Compute

a)
1

1 + i
and

1

(1 + i)2
;

b)
2− i
1 + 2i

and
i− 2

1 + 2i
;

c)
10

4 + 3i
+

5

3− 4i
.

Exercise 2.3 Check that the commutative law indeed holds for the addition and
multiplication of two complex numbers, i.e. z + w = w + z and z · w = w · z.

Exercise 2.4 For z = −1
2 + 1

2

√
3 find z2, z3, z4, z5 and z1000 and z1001. Also find

z + z2, z + z2 + z3, z + z2 + z3 + z4, and z + z2 + . . .+ z1001.

The complex plane

So far, the notions and operations for rational and real numbers could be extended to
the complex numbers. For the ordering (≤) this cannot be done in a way that preserves
all properties that hold for real (or rational) numbers. Two of these properties are: if for
three real numbers we have x ≤ y and a ≥ 0, then −y ≤ −x and ax ≤ ay.

The assumption that the ordering on R can be extended to C leads to a contradiction in
the following way: Either we would have i ≥ 0 or i ≤ 0.
Well, if i ≥ 0, then (since the rules of ≤ still apply) also i · i ≥ i · 0, but
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then −1 would be ≥ 0.
On the other hand if i ≤ 0, then (−i) ≥ 0, so then also (−i) · (−i) ≥ (−i) · 0, and again
we arrive at the absurdity −1 ≥ 0.

Since both the assumption i ≥ 0 and the assumption i ≤ 0 lead to a contradiction,
we conclude that comparing i and 0 does not make sense. Another way to put it: the
complex numbers do not fit in the real line anymore. But hey, informally it was already
mentioned that the real numbers do fill up all of the line. Is that a problem? Well,
no, for you perception it may be so, for a while, but basically it’s just something new.
Something interesting!
Since the image of a line sometimes does help to visualize matters about real numbers we
may ask ourselves: is there a suitable geometric representation for the complex numbers?
In fact, there is, and it is called the complex plane. We may identify the complex number
a+ bi with the point (a,b) in the plane. The x-axis contains the real numbers a = a+ 0i,
and for this reason is called the real axis, and the y-axis, containing the purely imaginary
numbers 0 + bi, is called the imaginary axis.
The addition of two complex numbers (a+ bi) and (c+ di) then nicely corresponds to
the addition of the two vectors starting at (0,0) and ending at (a, b) and (c, d). See
Figure 2.1.
What is the geometric interpretation of the product of (a+ bi) and (c+ di)?
To simplify matters we need a few more notions, which will be defined in the next section.

a

b
z = a+ bi

w = c+ di

z + w

Re

Im

Figure 2.1: Addition in the complex plane.

Exercise 2.5 Find w = iz for z = 1 + 2i, z = −3 + i, z = 5− 2i, and sketch these (six)
points in the complex plane. Which transformation is (or: seems to be) going on?

Exercise 2.6 For z = 1 + i, find z2, z3, z4, . . . , z8. Again: sketch these points in the
complex plane.

(Complex) conjugate, modulus and argument

Definition 2.4. The (complex) conjugate of z = a+ bi is defined as z̄ = a− bi.
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a

−b

b
z = a+ bi

z̄ = a− bi

|z|

argz
Re

Im

Figure 2.2: Conjugate, Modulus and Argument.

Above the complex conjugate was already used to define the quotient of two complex
numbers.

Definition 2.5. The modulus of z = a+ bi is defined as |z| =
√
a2 + b2 so this definition

is actually nothing more than applying Pythagorean Theorem to the vector(a, b).

In the complex plane: |a+ bi| is the distance from (0,0) to the point (a, b).

For real numbers a = a+ 0i, the modulus is just the absolute value (which can also be
interpreted as the distance from the point a on the line to the point 0). That is, there is
no ‘clash’ of notations.

Definition 2.6. An argument of z = a+ bi, denoted by arg z, is defined as the angle,
from the positive x-axis to the line segment connecting (0, 0) to (a, b) (see Figure 2.3).
This angle is defined up to a multiple of 2π. The picture tells the story. To make it
unique, an interval of length 2π may be chosen in advance, usually either the interval
[−π, π) or the interval [0, 2π), and the value of the argument that lies in this interval is
called its principal value.

Properties of conjugate and modulus

• z + w = z + w and z − w = z − w;

• zw = z · w and
z

w
=
z

w
;

• For z = a+ bi: z + z̄ = 2a = 2 Re z ∈ R, and zz̄ = a2 + b2 ∈ R;

• |z| =
√
zz̄;

• |zw| = |z||w| and
∣∣∣ z
w

∣∣∣ =
|z|
|w| .

These properties are all easily checked: just take z = a+ bi and w = c+ di, and see what
happens ...
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A

z = a+ bi

O

B

ϑ = argz

Re

Im

Figure 2.3: Computing arg z

To find the argument ϑ of the complex number z = a + bi 6= 0, first note that for
0 ≤ ϑ < π

2

cosϑ =
|OA|
|OB| =

Re z

|z| and

sinϑ =
|AB|
|OB| =

Im z

|z| (see Figure 2.3),

from which it follows that

z = Re z + i Im z = |z| cosϑ+ i|z| sinϑ = |z|(cosϑ+ i sinϑ)

We should take care of the signs if z does not lie in the first quadrant.

Check for yourself that the formulas cosϑ =
Re z

|z| and sinϑ =
Im z

|z| are true everywhere.

Conversely, it is quickly seen that if z = r(cosϕ+ i sinϕ), with r ∈ R≥0, then r = |z|
and ϕ = arg z (mod2π). If z = 0, when there is not really an angle, any value may be
taken as arg z.
The next calculation sheds geometric light onto the multiplication of two complex
numbers:

r1(cosϕ+ i sinϕ) · r2(cosψ + i sinψ) =

r1r2(cosϕ cosψ + i cosϕ sinψ + i sinϕ cosψ − sinϕ sinψ) =

. . . = r1r2(cos(ϕ+ ψ) + i sin(ϕ+ ψ))

From this we may again deduce that |zw| = |z| · |w|, but more importantly also the
following

Properties of the argument

Up to multiples of 2π the following identities hold (and make life a bit easier, sometimes):

• arg(zw) = arg z + argw;
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z

w

zw

|zw| = |z||w|

arg(zw) =
arg z + argw

Re

Im

Figure 2.4: Product in the complex plane

• arg
( z
w

)
= arg z − argw;

• arg(zn) = n (arg z).

Check for yourself how the second and the third properties follow from the first!

Geometric interpretation of the product

Above it was shown that each complex number can be written in the form z = r(cosϑ+
i sinϑ), namely by taking r = |z| and ϑ = arg z. This is sometimes called the polar form.
Multiplying two complex numbers in polar form boils down to multiplying their moduli
and adding their arguments.

Exercise 2.7 For an ‘arbitrary’ number z = a+ bi, find w1 = 1
2 (z + z), w2 = 1

2 (z − z)
and w3 = z + iz, and sketch the corresponding points in the complex plane.

Exercise 2.8 Find the polar form of the complex numbers −5i, −
√

6+
√

2i and −3−4i.
(For one of them you may use arcsin (or arccos or arctan) to specify the argument ϕ.)

Exercise 2.9 By using the fact that 1
12 = 1

3 − 1
4 , find cos( 1

12π) and sin( 1
12π).

Hint: Compute the quotient of two suitable complex numbers in two ways.

Exercise 2.10 Find wi =
10

zi
for z1 = 1+2i, z2 = −3+ i, z3 = −4−2i, and z4 = 7−4i.

And again: sketch. How would you describe the mapping z 7→ 10

z
?

(Complex) exponential function

Motivation

As shown in the previous section, the function g(t) = cos t + i sin t has the property
g(s)g(t) = g(s+ t). And it also satisfies g(0) = 1. These are the same as for the (real)
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functions f(t) = eat.
And there’s more: it can be shown (and it will be during the course differential equations)
that f(t) = eat is the unique function with the properties f(0) = 1 and f ′(t) = af(t).
Now if we define differentiation of a function g : R→ C in the most obvious way (i.e. just
differentiate the real part and the imaginary part), then it is easily seen that the function

g(t) = cos t+i sin t satisfies g(0) = cos 0+i sin 0 = 1 and also g′(t) = − sin t+i cos t
!!
= ig(t).

After these observations the next definition hopefully does not come as a big shock.

Definition 2.7. First, for real t, eit is defined as eit = cos t+ i sin t.

Second, for general complex numbers: ez = ea+bi =
def

eaebi = ea(cos b+ i sin b).

Exercise 2.11 Show that for any two complex numbers the following identity holds:
ezew = ez+w.

Example 2.8. Taking z = πi in the definition we get eπi = −1.
This formula, connecting three (or four, if you want) important numbers is called Euler’s
Formula, and there are quite a few mathematicians that consider it to be the most
beautiful formula of all.

Computations using the polar form

First of all note that we can now use the ‘abbreviation’ reiϑ for the complex number
r(cosϑ+ i sinϑ). A few examples show how certain computations can be simplified.

Example 2.9. Find

(
i+
√

3

2

)20

without doing so many multiplications as follows: First

we write z =
i+
√

3

2
in polar form:

|z| = 1, cos(arg z) =
Re z

|z| = 1
2

√
3 and 0 ≤ arg z ≤ 1

2π

(since z lies in the first quadrant), so arg z = 1
6π.

Then z = 1 · e 1
6
πi, and it follows that

z20 = 120e20·
1
6
πi = e

20
6
πi = e

10
3
πi = cos 10

3 π + i sin 10
3 π = −1

2 − 1
2 i
√

3

Example 2.10. Find all solutions of the equation z3 = 8i.

The ‘trick’ here is to write both terms in polar form and note that r1e
iϑ = r2e

iϕ,
with ri ≥ 0, is equivalent to r1 = r2 and ϑ− ϕ = 2kπ, for some integer k.

Following the hint: first note that |8i| = 8 and (arg 8i) = 1
2π, so that 8i = 8e

1
2
πi.

So we have to find z = reiϑ that satisfies (reiϑ)3 = r3e3iϑ = 8e
1
2
πi.

We deduce that r3 = 8 and 3ϑ = 1
2π + 2kπ, leading to r = 2, ϑ = 1

6π + 2
3kπ.

This gives the solutions zk = 2
(

cos
(
1
6π + 2

3kπ
)

+ i sin
(
1
6π + 2

3kπ
))

, k ∈ Z.

Now it may look like there are infinitely many solutions, but due to the periodicity of the
sine and the cosine, it follows that zk+3 = zk, so there are actually only three different
solutions. These three different solutions are found by taking, for instance, the values
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k = 0, 1, 2, which gives z0 = 2
(

cos
(
1
6π
)

+ i sin
(
1
6π
) )

=
√

3 + i,

z1 = 2
(

cos
(
1
6π + 2

3π
)

+ i sin
(
1
6π + 2

3π
) )

= −1 + i
√

3 and

z2 = 2
(

cos
(
1
6π + 4

3π
)

+ i sin
(
1
6π + 4

3π
) )

= −1− i
√

3.

Exercise 2.12 Find
(1− i)30

(2i
√

3− 2)7
, by using the polar form.

Exercise 2.13 Find all (five) solutions of the equation z5 = −4− 4i and write them in
the form a+ bi. (The answer may contain sines and cosines of ‘difficult’ angles.)

Sketch all solutions in the complex plane.

Concluding Exercises

Exercise 2.14 An easy starter

a. Check that
(
(3 + i)(4− i)

)
(3− i) = (3 + i)

(
(4− i)(3− i)

)
.

What would have been the quickest way to this (relatively simple) answer?

b. Compute (i.e. write in the form a+ bi, a, b ∈ R):

(1− 2i) + (1− 2i)2 + (1− 2i)4 and
11 + 13i

2 + 5i
.

c. Show that (a+ bi)(c+ di) = (a− bi)(c− di). (That is: zw = zw.)

d. Use c. and the fact that |z| =
√
zz to prove that |zw| = |z||w|. (Make sure that

you only consider the square roots of non-negative (real) numbers!

Exercise 2.15 Algebraic equations (= n-th order equations)

It can be proved that any algebraic equation

cnz
n + cn−1zn−1 + ....+ c1z + c0, ci ∈ C, i = 0, 1, . . . , n, cn 6= 0

has at least one solution in C.

This exercise sheds some light onto this theorem about complex numbers, also known as
the fundamental theorem of algebra.

a. Find all solutions of the equation z2 = 5− 12i.
(Hint: write z = a+ bi, a, b ∈ R.)

b. Using the fact that (1 + i)4 = −4, find all (four) solutions of the equation z4 = −4.

c. Find all solutions of the equation z4 + 2z2 + 2 = 0.
(It is possible to write the solutions in the form a+ bi. a and b are a bit awkward, but you

are urgently requested to suppress the urge to use your pocket calculator.)

d. Generalization of the abc-formula.
Consider the quadratic equation az2 + bz + c = 0 with real coefficients a, b, c.
Suppose the discriminant D = b2 − 4ac is negative.
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Show that z1,2 =
−b± i

√
−D

2a
are two solutions of the equation.

Note that, since D < 0, the square root
√
−D is ‘okay’.

As a ‘concrete’ example: take the equation 5z2 + 6z + 5 = 0.

e. The real equation x2 + 6x− 9 = 0 can be solved by ‘completing the square’:
x2 + 6x− 9 = (x+ 3)2 − 18, so:
x2 + 6x− 9 = 0⇔ (x+ 3)2 − 18 = 0⇔ ....⇔ x = −3±

√
18

Solve the equation z2 + (2 + 2i)z + 2 = 0, along a similar path.
That is, by rewriting in into the form (z − u)2 = v, with u, v ∈ C.

Would the abc-formula have worked here?

And: What is the connection between the ‘methods’ of c. and d.?

f. Show that for algebraic equations with real coefficients the non-real solutions come
in complex conjugate pairs, that is:

if z = a+ bi is a solution of the equation cnz
n + cn−1zn−1 + . . .+ c1z+ c0 = 0, with

all coefficients ci ∈ R, then so is z.

Check whether this indeed happened in questions b., c. and d.

Exercise 2.16 Exponential equations

a. Find all solutions of the equation ez = 1− i.
(Hint: put z = a+ bi, a, b ∈ R, and write both sides in polar form.)

b. As a generalization: show that the equation ez = c for any non-zero c ∈ C
has infinitely many solutions. (And why should we exclude c = 0?)

c. For real numbers α, show that

cosα =
eiα + e−iα

2
and sinα =

eiα − e−iα
2i

.

Using this, prove:

(cosα)3 = 1
4 cos(3α) + 3

4 cosα and (sinα)3 = −1
4 sin(3α) + 3

4 sinα.

d. With part b. in mind, define

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz
2i

, for all complex numbers z.

Find all z ∈ C for which cos z = 2.
(Hint: rewrite the equation as a quadratic equation in the variable w = eiz.)

Exercise 2.17 Complex numbers and plane geometry.
The modulus and the argument have the geometric interpretations length and angle.
Furthermore, note that |z − w| can be likewise interpreted as the distance between the
points z and w in the complex plane, and that arg (z/w) can be interpreted as the angle
between two line segments. (Make a picture yourself!) In this exercise you can either
work analytically (by putting z = x+ iy) or geometrically.
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a. Describe the set of all complex numbers z for which |z − 3 + 2i| = 4 and sketch it
in the complex plane.

b. Likewise for the set {z | |z − 2| = |z − 4|}.

c. The set {z | Im z = |z − 4i|} may be easier to describe analytically first. Unless
you already know a lot about quadratic curves. Which also applies to the next
question.

d. How to describe/sketch the set {z | |z + 2i|+ |z − 2i| = 6}?

e. Which angle is represented by the argument of the quotient
z − z0
z − z1

?
(Picture?!)

f. Sketch the set of all complex numbers z for which arg

(
z − 2i

z − 6

)
= 1

2π.

g. To conclude quite a hard geometric ‘puzzle’ which can be solved rather easily using
complex numbers: Suppose P and Q are two points in the plane, and let k be a
positive number not equal to 1.
Show that the points X for which |XP | = k · |XQ| lie on a circle.

Consider the ‘concrete’ example with the points P (5, 5), Q(2, 2), and the value
k = 2.
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Optimization in networks

Author: C. Roos,
translated by L.J.J. van Iersel

3.1 Introduction

Optimization is the part of mathematics that concerns the development and analysis
of algorithms for solving problems where some function f(x) needs to be optimized
(minimized or maximized) over all elements x in some set X. In the case of minimization,
such a problem can be written as

min{f(x) : x ∈ X}.
The function f is called the objective function and X the domain or feasible region.

An interesting special case is when f is a linear function while X ⊂ Rn and can be
described by linear (in)equalities. Such a problem is called a linear programming problem
and can be solved efficiently.

Many practical problems, in many application areas, can be modelled as optimization
problems (which are often not just linear programming problems). For example, think
about optimizing production processes in factories, finding optimal designs (e.g. of
airplanes), finding a most-likely explanation of certain biological data, optimizing traffic,
hospitals, airports, energy networks, etc.

During the second world war, optimization was applied for the first time at a large
scale, to model and solve logistical and operational problems. As a scientific discipline,
the field arose and flourished when the first computers were built. Since then, computers
have become faster and faster. However, the size of data sets have exploded even more
(eg. DNA data, the internet, the internet of things) and the problems that need to be
solved have become far more complex. Therefore, the development of fast algorithms has
become even more important.

Optimization in networks is one of the most important areas of optimization, since
many practical problems involve networks (graphs) and many other problems can be
modelled using graphs. In the 1930s and 1940s, pioneering work has been done in graph
theory [7] and resource allocation, including the work by the Dutch Tjalling Koopmans
who received the Nobel prize in Economics for this work in 1975 together with the
Russian economist Kantorovich. The field started flourishing in the 1950s when efficient
algorithms for graph problems were found, including the famous algorithms for the

33
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“minimum spanning tree” problem that were found in 1965 (Kruskal), 1957 (Prim) and
1959 (Dijkstra), although, in fact, the Czech mathematician Borøuvka already found an
efficient algorithm for “minimum spanning tree” problem in 1926. In the 1950s, also the
first efficient algorithms for the shortest path problem were found, including the famous
algorithm by Dijkstra (1959). Many of these early algorithms are still being used today.

In this lecture, we will discuss efficient algoritms for several optimization problems in
networks.

3.2 Shortest paths

Many people regularly use services like google maps to find a shortest route from one
location to another. To find your route, google maps needs to solve a variant of the
shortest path problem, one of the oldest and best studied problems in applied mathematics.
This problem can be easily modelled with a network, which is usually called a graph in
mathematics, see Figure 3.1 for a simple example. The vertices of the graph represent
for example street crossings while the streets between crossings are represented by edges
(which are undirected) or arcs (which are directed). Each edge or arc is labelled with a
positive number representing for example length or travel time (but we will always refer
to this label as the “length” of the edge).

In the network in Figure 3.1, there are multiple directed paths from vertex s to
vertex t. A shortest directed path is indicated in bold.

2 C. Roos

2. Theorie en opgaven voor zelfstudie

Kortste paden

Voor velen is het vinden van de snelste route van huis naar het werk een dagelijks
terugkerend probleem. In abstracte vorm is het een van de oudste en meest bestudeerde
problemen in de toegepaste wiskunde. Het staat bekend als het kortste-pad-probleem
en kan eenvoudig worden gemodelleerd met behulp van een graaf of netwerk. Figuur 1
toont hiervan een eenvoudig voorbeeld. De knopen stellen de kruispunten voor van
wegen en straten. Een weg tussen twee kruispunten wordt gerepresenteerd door een lijn
(of tak) die de corresponderende knopen verbindt. Aan elke tak kennen we een positieve
getalwaarde toe gelijk aan de lengte, of de reistijd van het betreffende weggedeelte. Ook
als deze getalwaarde een reistijd voorstelt, noemen we het de lengte van de tak.

In het netwerk van Figuur 1 zijn er meerdere paden van knoop s naar knoop t.
Een kortste pad is aangegeven door middel van dik getekende pijlen. Het is duidelijk
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Figuur 1. Voorbeeld van een kortste-pad-probleem

dat in de praktijk het aantal knopen veel groter kan zijn dan in dit simpele voorbeeld.
Een veel gebruikte digitale kaart van Nederland bijvoorbeeld telt 810.833 knopen en
1.087.420 takken (Tele-atlas, versie 2001)1. Het snel vinden van een kortste pad van een
vertrekpunt A naar een bestemming B vergt dan een efficiënt algoritme. Reisplanners
en navigatiesystemen zijn gebaseerd op dergelijke algoritmen. Gebruikers van zulke
systemen zullen een korte berekeningstijd op prijs stellen.

Kortste-pad-problemen hebben een veel groter toepassingsgebied dan men bij eerste
kennismaking zou verwachten:

• De meest voor de hand liggende toepassing is al genoemd: het vinden van
een kortste reisroute van A naar B. In communicatienetwerken (internet!)
doet zich het zelfde probleem voor: als we vanuit Delft een e-mail bericht
naar Tokyo sturen wordt in principe het bericht door routers in tussenliggende
schakelstations doorgestuurd naar een schakelstation dat ligt op een kortste
route naar Tokyo.

• Een cruciaal probleem bij spraakherkenning, het automatisch omzetten van ge-
sproken in geschreven tekst, is het onderscheiden van gelijkluidende woorden,
zoals voet, voed en voedt. Vorm een graaf met de mogelijke woorden in een zin

1Inmiddels zijn het er meer, zo’n 7 miljoen knopen

Figure 3.1: Example of a shortest-path problem.

It is clear that in practice the number of vertices and arcs will be much bigger than in
this simple example. In 1958, a network with 265 vertices was studied. At the Western
Joint Computer Conference in Los Angelos, it was proudly reported that all shortest
paths between vertices of this network had been found. Finding these shortes paths took
about three hours on an IBM 704 computer (an enormous device). Modern networks
contains millions of vertices and results are expected within seconds.

Shortest-path problems have a much larger application area than one would expect
at first sight:

• A crucial problem in speach recognition (automatically transforming spoken to
written language) is to distinguish similar-sounding words, like to, two and too.
Form a directed graph with possible words of some sentence as vertices and an
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arc between two vertices that could follow each other in the sentence. The length
of each arc is some measure of how likely the two words are to be together in
a sentence. Then a best possible interpretation of the sentence can be found by
searching for a shortest path from the first to the last word. See Figure 3.2.

Use the

flower

flour

floor

to

brake

break

bake

cake

1

Figure 3.2: Example of a sentence.

• Image segmentation is a different example. Consider the problem of distinguishing
two objects on a digital image (for example an MRI scan). This can be done by
finding a line between two points containing a minimum number of dark pixels.
The pixels are the vertices of the graph and the length of an edge is calculated
in such a way that light pixels are connected by short edges and darker pixels by
longer edges. A shortest path between the two points forms an optimal way to
divide the image. A similar technique is used to find the contour of, for example,
the heart in an X-ray image.

In many applications, large numbers of shortest paths need to be found, which makes
it even more important to have a fast algorithm. The afore-mentioned Dijkstra algorithm
is one of the best known and most used algorithms and will be described below.

Some definitions

A directed graph consists of a finite set of vertices V and a set of arcs A, where each arc
is an ordered pair of vertices. If a = (u, v) ∈ A, then u is the tail of a and v its head. A
(directed) path in a directed graph is a sequence of vertices P = (v1, v2, . . . , vk+1) such
that (vi, vi+1) ∈ A for all 1 ≤ i ≤ k. We assume that each arc has a non-negatie length.
The length of arc (u, v) is denoted cuv. The length `(P ) of path P is defined as the some
of the lengths of the arcs on the path:

`(P ) :=
k∑

i=1

cvivi+1

Exercise 3.1 Determine the number of paths from s to t in the directed graph in
Figure 3.1.
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Dijkstra’s algorithm

Dijkstra’s alorithm finds a shortest path from s to t, where s and t are two arbitrary
vertices in the graph. The algorithm labels each vertex with a number πv, which is always
greater or equal to the length of a shortes path from s to v. The value of πv at a certain
point in the execution of the algorithm is equal to the length of the shortest path from s
to v found so far. After finishing the execution of the algorithm, πt is equal to the length
of a shortest path from s to t.

In each iteration, a vertex is investigated and the algorithm keeps track of a set Q of
vertices that still need to be investigated. Initally, the set Q contains only vertex s, each
vertex v has label πv = ∞ (the mathematical symbol for infinity) except for vertex s,
which gets label 0 (the length of a shortest path from s to s).

A single iteration consists of choosing a vertex u from the set Q and investigating u.
We choose a vertex with smallest label πu, over all vertices in Q. This vertex is removed
from Q and investigated as follows.

When investigating vertex u, we update the label πv, if necessary. If the path from s
via u to v is shorter than πv, then we set πv to the length of this shorter path. Hence we
give v as new label the sum of πu and the length cuv of the arc from u to v. We also add
the vertex v to Q. Figure 3.3 describes the algoriithm in pseudocode.

Initialisation:
Q := {s};
πs := 0;
πv :=∞, ∀v ∈ V \ {s};

while Q is not empty:
Choose u ∈ Q such that πu ≤ πv for all v ∈ Q;
Investigate(u)

endwhile

Figure 3.3: Algorithm of Dijkstra.

The procedure Investigate(u) is give in Figure 3.4.

begin
for all a = (u, v) ∈ A do the following:
if πv > πu + cuv then

πv := πu + cuv;
add v to Q

end;
remove u from Q

end

Figure 3.4: Procedure Investigate(u).

As an example we apply the algorithm to the directed graph from Figure 3.1. The
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result is summarized in Figure 3.5. Each row of the table in this figure is one iteration,
and the table entries contain the values of πv. The elements of Q are given by a circle
around the value of πv. The element that is chosen to be investigated has a square
instead of a circle.

iteraties

vertex 1 2 3 4 5 6 7 8 9 10 11 12

s 0 0 0 0 0 0 0 0 0 0 0 0

1 ∞ 3 3 3 3 3 3 3 3 3 3 3

2 ∞ ∞ ∞ 6 6 6 6 6 6 6 6 6

3 ∞ ∞ ∞ ∞ ∞ 9 9 9 9 9 9 9

4 ∞ 2 2 2 2 2 2 2 2 2 2 2

5 ∞ 5 5 5 5 5 5 5 5 5 5 5

6 ∞ ∞ ∞ ∞ 6 6 6 6 6 6 6 6

7 ∞ ∞ ∞ ∞ ∞ ∞ 9 9 9 9 9 9

8 ∞ ∞ 8 8 7 7 7 7 7 7 7 7

9 ∞ ∞ ∞ ∞ ∞ ∞ 9 9 9 9 9 9

t ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 12 10 10

Figure 3.5: Execution of Dijkstra’s algorithm.

We conclude from the table that the length of a shortest path is equal to 10. We can
also use the table to find a shortest path by “backtracking”. The label 10 of vertex t
first appeared when investigating vertex 9, which had label 9 at that time. This label
first appeared when investigating vertex 6, etc. Continuing this way we find out that
P = (s, 5, 6, 9, t) is a shortest path from s to t.

Exercise 3.2 Prove that the label πv of a vertex v is never smaller than the length of
a shortest path from s to v.

Exercise 3.3 When a vertex is investigated, it is removed from Q. Prove that it will
never be added to Q again.

Exercise 3.4 When a vertex u is investigated, then the label of this vertex becomes
permanent (i.e. it will not be changed any more). Prove this. Then use this to show
that the label of this vertex is then equal to the length of a shortest path from s. naar
die knoop.

Exercise 3.5 If the algorithm terminates, then the label πv of each vertex v is equal
to the length of a shortest path from s to v (unless no such path exists, in which case
πv =∞). Prove this.

From Exercise 3.5 follows that Dijkstra’s algorithm does not only find the lengths of
a shortest path from s to t, but the length of a shortest path from s to each other vertex.
Therefore, we call it an one-to-all shortest path algorithm.
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If we only want to know a shortest path from s to t, then we can terminate the
algorithm when vertex t is ready to be investigated. A shotest path from s to t has then
be found, according to Exercise 4. This variant of Dijkstra’s algorithm is a one-to-one
shortest-path algorithm.

Also note that we can also find a shortest path in an undirected graph using Dijkstra’s
algorithm. We just replace each undirected edge {u, v} by two arcs (u, v), (v, u) both
having the same length as {u, v} and then apply Dijkstra’s algorithm to the obtained
directed graph.

The efficiency of an algorithm is determined by the number of elemental steps
that the algorithm needs in the worst case, where elemental steps are for example
adding/multiplying/dividing/subtracting two numbers, comparing two numbers, adding
an element to a set, etc. To describe the efficiency of the algorithm, we need to bound the
number of elemental steps that the algorithm needs for a network with n vertices and m
arcs. Since we are mostly interested in the behaviour of the algorithm for large values
of n and m, we usually simplify the expression using “Big-O” notation. For example, if
the expression is 7n2m+ 8n+ 5 then we are mostly interested in the term 7n2m, which
tells us that when n becomes twice as large, the running time of the algorithm becomes
roughly four times as large. This conclusion is independent from the constant 7 in the
expression. Therefore, we omit also the 7 and write that the algorithm has running time
O(n2m), where the symbol O indicates that we only describe the order of magnitude of
the running time.

Exercise 3.6 Verify that the number of elemental steps in Dijkstra’s algorithm is
O(n2).

For now we assume that there exists a path from s to each other vertex. After
executing Dijkstra’s (one-to-all) algorithm the labels πv satisfy:

πs = 0, πv − πu ≤ cuv, ∀(u, v) ∈ A. (3.1)

Exercise 3.7 Prove (3.1).

Now let P = (s = v0, v1, v2, . . . , vk−1, t = vk) be an arbitrary path from s to t. Then
we may write

`(P ) =

k−1∑

i=0

cvivi+1 ≥
k−1∑

i=0

(πvi+1 − πvi) = πvk − πv0 = πt − πs = πt.

In other words, if P is an arbitrary path from s to t, and π satisfies (3.1), then `(P ) ≥ πt.
Dijkstra’s algorithm finds a path P as well as a labelling π satisfying `(P ) = πt. The
following theorem is a consequence of this.

Theorem 3.1. The length of a shortest path from s to t is equal to

max{πt : πs = 0, πv − πu ≤ cuv, ∀(u, v) ∈ A}.

This is the duality theorem for the shortest-path problem. The importance of this
(and every) duality theorem is the following. Once we have found a shortest path P , we
can use the labels πv to vertify that P is indeed a shortest path. If the labels satisfy (3.1)
and `(P ) = πt, then this proves non-algorithmically that P is a shortest path.
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Maximum flow

We consider again a directed graph D = (V,A), with vertex set V and arc set A. For
each arc (u, v), again a positive number cuv is given, which now describes the capacity of
the arc. Two special vertices are called s (the source) and t (the sink), and we are asked
to find a maximum flow from s to t. A flow is an assignment of a value xuv ∈ R≥0 to
each arc (u, v) such that in every vertex other than s and t the flow is preserved (total
inflow equals total outflow) and xuv ≤ cuv (the flow does not exceed the capacity) on
each arc (u, v).

In other words, x needs to satisfy the following balance equations:
∑

(u,v)∈A
xuv =

∑

(v,w)∈A
xvw, for all v ∈ V \ {s, t} (3.2)

and the capacity limitations:

0 ≤ xuv ≤ cuv, for all (u, v) ∈ A. (3.3)

The value of the s–t flow x is defined as

value(x) =
∑

(s,v)∈A
xsv −

∑

(v,s)∈A
xvs.

Exercise 3.8 Verify that the value of an s–t flow x is always equal to the net inflow
at t:

value(x) =
∑

(v,t)∈A
xvt −

∑

(t,v)∈A
xtv.

In Figure 3.6, an example of a max-flow problem is given.
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Figure 3.6: Maximum flow problem

Notice that xvw = 0, (v, w) ∈ A defines a valid flow with value 0. Flows with higher
values are easy to find: take an arbitrary path from s to t and send as much flow over
the path as possible. For example, over the path (s, a, f, t) in Figure 3.6, we can send a
flow of value 4 without violating the capacity constraints on this path.

In addition to that, we can send a flow of 13 over the path (s, d, e, b, c, t). Together,
this gives a flow of value 17. This flow is indicated in Figure 3.7.

At every arc (u, c) the flow value and the capacity are given as xuv|cuv.
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s

a b c

d e f

t

4|10

13|16

0|1

0|6

4|6

13|13

0|2 0|7

13|20

13|14

13|14

0|3

0|2

4|4

Figure 3.7: A flow with value 17.

The Ford-Fulkerson Algorithm

Given a flow, the Ford-Fulkerson Algorithm (1956) basically searches for a path from s
to t over which the flow can be increased or augmented. Somehow surprisingly, this
algorithm always finds a maximum flow. If there is no path from s to t over which the
flow can be augmented, then the flow has maximum possible value, which we will prove
below. Importantly, these augmenting paths may also traverse arcs in reverse direction,
in which case the flow is decreased, instead of increased, on those arcs.

First, we will describe a systematic method for finding an augmenting path. First,
given a certain flow x, we construct an auxiliary directed graph Dx. This directed graph
has the same vertices as D, but not the same arcs. Each arc (u, v) ∈ A also becomes an
arc of Dx if it is possible to send more flow over the arc, i.e. if xuv < cuv. In addition,
for each arc (u, v) ∈ A over which the flow can be decreased (i.e. if xuv > 0), the reverse
arc (v, u) is included in Dx. In other words, the set Ax of arcs of Dx is

Ax = {(u, v) ∈ A : xuv < cuv} ∪ {(v, u) : (u, v) ∈ A, xuv > 0}.

If xuv < cuv then the arc (u, v) gets label cuv − xuv in Dx, and if xuv > 0 then
arc (v, u) gets label xuv in Dx.

We illustrate this using the flow in Figure 3.7. The auxiliary directed graph is depicted
in Figure 3.8.

In the directed graph in Figure 3.8, there is a directed path from s to t, indicated
in bold. Moreover, we see that over this path we can send at most 1 extra unit of flow.
Augmenting the flow by one over this path, we get the new flow given in Figure 3.9.

To find out whether it is possible to further improve the flow, we construct the new
auxiliary directed graph depicted in Figure 3.10.

We now find a new augmenting path (s, a, b, e, c, t). This path traverses the arc (e, b)
(from the original directed graph, see Figure 3.9) in reverse direction. Therefore, the
flow is not increased but decreased on this arc. Therefore, we can augment the flow by
min(6, 6, 13, 2, 6) = 2. This way we get the new flow depicted in Figure 3.11.

To determine whether more improvements are possible, we construct the new auxiliary
directed graph, see Figure 3.12.
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Figure 3.8: Auxiliary directed graph for the flow in Figure 3.7.
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Figure 3.9: A flow with value 8.
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Figure 3.10: Auxiliary directed graph for the flow in Figure 3.9.

At first sight, it seems that no more improvement is possible. To check this systemat-
ically, we label all vertices reachable from s with a ∗. We can do this using a simplified
version of Dijkstra’s algorithm. We first label s with a ∗ and define Q = {s}. Then
we choose a vertex u ∈ Q and investigate vertex u, i.e. all unlabelled vertices that are
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Figure 3.11: A flow with value 20.
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Figure 3.12: Auxiliary directed graph for the flow in Figure 3.11.

reachable from u by traversing a single arc are labelled with a ∗ and added to Q. Then
we remove u from Q. We repeat this untill Q is empty. It is clear that after this process
all vertices reachable from s are labelled ∗ while all vertices not reachable from s are
unlabelled. Hence, there exists an augmenting path if and only if vertex t is labelled.

Since we get the labelling given in Figure 3.12, there is no augmenting path. We will
now prove that it follows that the flow in Figure 3.11 has maximum value. We do this as
follows.

We define a vertex set S as follows:

S = {v ∈ V : v is labelled ∗}.

It is clear that s ∈ S and, since there is no augmenting path, t 6∈ S. The set of arcs with
tail in S and head not in S is denoted as δ+(S), i.e.

δ+(S) := {(u, v) ∈ A : u ∈ S, v 6∈ S}.

A sketch of this situation can be found in Figure 3.13.
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als δ+(S). Dus

δ+(S) := {(v, w) ∈ E : v ∈ S, w ̸∈ S}.

De situatie is schetsmatig weer gegeven in Figuur 11. Als we de takken in δ+(S) uit E

s t

S V \ Sδ+(S)

Figuur 11. De s-t snede δ+(S).

verwijderen, dan is er geen pad meer van s naar t. We noemen δ+(S) daarom een s-t
snede, en we definiëren de capaciteit c(δ+(S)) van deze snede als volgt:

c(δ+(S)) :=
∑

(v,w)∈δ+(S)

cvw =
∑

{cvw : v ∈ S, w /∈ S}.

In het onderhavige geval bestaat δ+(S) uit de takken (b, c), (e, c) en (f, t), en er geldt
c(δ+(S)) = 3+1+4 = 8. Dit is precies de waarde van de gevonden stroom x in Figuur 9
en dit is niet toevallig zoals we nu zullen laten zien. Met andere woorden, we zullen
bewijzen dat als x een stroom is waarvoor geen doorbraak meer mogelijk is, en S de
verzameling van de gelabelde knopen, dan geldt

waarde(x) = c(δ+(S)).

Zij U een willekeurige verzameling van knopen met s ∈ U en t /∈ U . Dan is δ+(U) de
bijbehorende s-t snede. Zij verder y een willekeurige stroom op het netwerk. Omdat na
verwijdering van de takken in δ+(U) er geen pad meer bestaat van s naar t is er dan
ook geen stroom meer mogelijk van s naar t. Hieruit concluderen we dat alle stroom
door de takken in δ+(U) moet gaan. Er zal dus moeten gelden

waarde(y) ! c(δ+(U)).

In het bijzonder geldt waarde(x) ! c(δ+(S)). Anderzijds, voor een tak (v, w) ∈ δ+(S)
is knoop v gelabeld en w niet. Dit betekent dat deze tak niet in het hulpnetwerk
voorkomt, want anders zou ook knoop w gelabeld zijn. Hieruit concluderen we dat
deze tak verzadigd is, ofwel xvw = cvw. De takken in (v, w) ∈ δ−(S), dit zijn de
takken met het beginpunt buiten en het eindpunt binnen S, zijn om de zelfde reden
noodzakelijkerwijs stroomloos, want anders zou ook knoop v gelabeld zijn. Dus volgt
inderdaad dat waarde(x) = c(δ+(S)). Het bovenstaande bewijst de dualiteitsstelling
voor het maximale-stroom-probleem.

Figure 3.13: The s–t cut δ+(S).

If we delete the arcs of δ+(S) from A, then there is no more path from s to t. Hence
we call δ+(S) an s-t cut and define the capacity c(δ+(S)) of this cut as follows:

c(δ+(S)) :=
∑

(u,v)∈δ+(S)

cuv =
∑
{cuv : u ∈ S, v /∈ S}.

In the example, δ+(S) contains the arcs (b, c), (e, c) and (f, t), and we have c(δ+(S)) =
13 + 3 + 4 = 20. This is exactly the value of the current flow x, which is not a coincidence,
as we will show now. In other words, we will show that if x is a flow for which there
exists no augmenting path, and S is the set of vertices labelled ∗, then

value(x) = c(δ+(S)).

For an arbitraty set of vertices U with s ∈ U and t /∈ U is δ+(U) the corresponding
s-t cut. Let y be an arbitrary flow. From the observation that each path from s to t
contains at least one arc from δ+(U), it follows that

value(y) ≤ c(δ+(U)).

In particular, value(x) ≤ c(δ+(S)). Conversely, for each arc (u, v) ∈ δ+(S), vertex u is
labelled and v is not. This means that this arc is not contained in the auxiliary directed
graph, since otherwise vertex v would also be labelled. From this we conclude that the
arc is saturated, i.e. xvw = cvw.

Now consider the arcs (u, v) ∈ δ−(S), which have their tail u /∈ S and their head v ∈ S.
These arcs have no flow, since otherwise vertex u would also be labelled. Hence it follows
indeed that value(x) = c(δ+(S)).

The above proves the max-flow min-cut theorem, the duality theorem for the maximum
flow problem.

Theorem 3.2 (Max-flow min-cut theorem). The value of a maximum flow is equal to

min{c(δ+(U)) : U ⊆ V, s ∈ U, t /∈ U}.

We conclude that the flow x in Figure 3.9 has maximum value, which is proved by
the s-t cut formed by the arcs (b, c), (e, c) and (f, t).
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3.3 Exercises

Exercise 3.9 Use Dijkstra’s algorithm to solve the shortest path problem in the directed
graph below.

16 C. Roos

Opgave 15. Zij gegeven een graaf G = (V, E). Zoals bekend is er geen efficiënt algoritme voor
het vinden van een Hamiltoncircuit in G. Wat is er mis met de volgende aanpak?

Stel dat V = (v1, v2, . . . , vn). Vorm een huwelijksnetwerk N met links en rechts de knopen
vi (1 ! i ! n); om de knopen links en rechts van elkaar te onderscheiden, noemen we de
i-de knoop links vi en rechts v′

i. We verbinden vi en v′
j in N als tak (vi, vj) tot E behoort.

Merk op dat een Hamiltoncircuit in G direct aanleiding geeft tot een complete matching
in N .
Om uit te vinden of een complete matching bestaat, gaan we na of er n huwelijken mogelijk
zijn door het maximale aantal huwelijken te bepalen. Hiervoor hebben we immers een
efficiënt algoritme. Als n huwelijken mogelijk zijn, dan leveren de betreffende takken in G
een Hamiltoncircuit op.

4. Vraagstukken voor zelfstandig werk

Vraagstuk 1. Gegeven is het kortste-pad-probleem in onderstaande figuur. Los dit
probleem op met het algoritme van Dijkstra.

s 1 2 3

4 5 6 7

8 9 t

8

2
5

2

11

3

3

7
3

4

2

1

1

2

3

1

8

1

Vraagstuk 2. In deze opgave bekijken we een netwerk met knopenverzameling
{v1, . . . , vn} waarvan alle takken niet-negatieve lengte hebben. Het Floyd-Warshall al-
goritme (1962) is een all-to-all kortste-pad-algoritme. De input is een n × n afstands-
matrix A, waarin Aij de gegeven lengte van een (onbekend) pad voorstelt van punt vi

naar punt vj . De output is een n × n matrix B, waarin Bij de kortst mogelijke afstand
voorstelt van vi naar vj , die op basis van A te vinden is:

Initialisatie: Vervang alle niet-bekende afstanden in A door ∞ en maak alle dia-
gonaalelementen in A gelijk aan 0;

U = A;
for k = 1 : n,

for i = 1 : n,
for j = 1 : n,

Vij = min(Uij , Uik + Ukj);
end

end
U = V ;

end
B = U

Exercise 3.10 Consider the graph below.

14 C. Roos
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Figuur 16. Hulpnetwerk voor de stroom met waarde 3.

3. Opgaven voor het werkcollege

Opgave 10. Zie de gewogen graaf in de onderstaande figuur.

1 2 3 4

5 6 7 8

3
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2

1
3

3

3

2 52 2

3 1 4

(a) Bepaal met het algoritme van Dijkstra de lengtes van de kortste paden van knoop 1
naar al de andere knopen. Geef het zoekproces overzichtelijk weer in een tabel.

(b) Teken de kortste paden in de graaf.

Opgave 11. Als een of meer taklengten cvw negatief zijn in een kortste-pad-probleem dan
wordt het vinden van een kortste s-t pad veel moeilijker doordat er dan circuits met negatieve
lengte kunnen zijn. Als dat zo is, dan hoeft er geen kortste pad van s naar t te zijn. Laat dit
zien aan de hand van een voorbeeld.

Kunt u een methode bedenken om circuits met negatieve lengte op te sporen?

a) Use Dijkstra’s algorithm to determine the distance over a shortest path from vertex 1
to each other vertex.

b) Draw the shortest paths in the graph.

Exercise 3.11 If one or more arcs have negative lengths then it becomes more difficult
to find a shortest path, especially when there are circuits with negative total length. In
such a case, a shortest path may not exist (using the definition used here, where a path
may use a vertex multiple times). Give an example where this is the case.

Can you think of a method for finding negative-length circuits?
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Exercise 3.12 Let π : V → R. We call π a potential for directed graph D = (V,A) if

πv − πu ≤ cuv, ∀(u, v) ∈ A.

The Theorem of Gallai says

There exists a potential ⇐⇒ D has no negative-length circuit.

a) Prove the implication ‘=⇒’.

b) Prove the implication ‘⇐=’.
Hint: take for π(v) the length of a shortest path starting at v. Why does such a
shortest path exist and why is the resulting π a potential?

Exercise 3.13 Given is the directed graph below.

a) What is the capacity of the cut δ+(U) if U = {s, 1, 5}.

b) Improve the flow to a maximum flow. What is the value of the maximum flow?

c) Prove that your flow has maximum value by finding a cut with capacity equal to
the value of the flow. This cut has minimum capacity.

Optimaliseren in netwerken 15

Opgave 12. Zij π : V → R. We noemen π een potentiaal voor het netwerk G = (V, E) als

πw − πv ! cvw, ∀(v,w) ∈ E.

De Stelling van Gallai zegt:

Er bestaat een potentiaal ⇐⇒ G heeft geen circuit van negatieve lengte.

a) Bewijs de implicatie ‘=⇒’.

b) Bewijs de implicatie ‘⇐=’.
Hint: neem π(v) gelijk aan de lengte van een kortste pad vanuit punt v (voor elke
knoop v). Waarom bestaat er een kortste pad vanuit v en waarom is de resulterende
π een potentiaal?

Opgave 13. Gegeven is het onderstaande netwerk.

(a) Wat is de capaciteit van de snede δ+(U) als U = {s, 1, 5}.
(b) Verhoog de stroom tot een maximum stroom. Wat is de waarde van deze stroom?

(c) Laat zien dat dit ook werkelijk een maximum stroom is door een snede met capaciteit
gelijk aan de waarde van deze stroom te geven. Dit is dan een snede met minimale
capaciteit!

s 1 2

3 4 5 6

7 8 t

6|10

4|7
4|6

4|8

2|3 2|2
2|3
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2|2

3|3
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0|4

6|10
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4|4

Opgave 14. Een vliegmaatschappij beschikt over een vloot van 5 vliegtuigen, elk van een
verschillend type, en heeft 6 piloten in dienst. Het vliegbrevet van de piloten maakt het hen
mogelijk slechts in een beperkt aantal typen te vliegen, zoals met een + aangegeven in onder-
staande tabel.

a) Hoeveel vliegtuigen kan de maatschappij maximaal tegelijkertijd laten vliegen?

b) Wat wordt het maximale aantal vluchten (tegelijkertijd) als de maatschappij van elk
type een tweede vliegtuig aanschaft?

Type 1 Type 2 Type 3 Type 4 Type 5

piloot 1 + +
piloot 2 + + +
piloot 3 +
piloot 4 +
piloot 5 + +
piloot 6 +
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Differential Equations

Auteur: H.M. Schuttelaars

Introduction

Differential equations are equations that give a relation between the derivatives of a
function and the function value itself. For example, a differential equation for the velocity
of an object falling to the earth reads

dv

dt
= 9.8− v

5
, (4.1)

where the acceleration of the object dv/dt is related to its velocity v. The velocity v
will presumably change with time, so the solution(s) to the differential equation v are
function(s) of t. The variable t is called the independent variable and v is the dependent
variable. Equation (4.1) is called an ordinary differential equation, because the dependent
variable v only depends on one independent variable. If the dependent variable depends
on more than one independent variable (for example time t and position x), the dynamic
behavior of the dependent variable is usually described by a partial differential equation.

When studying differential equations, it is important to know if there are solutions
and, if solutions exist, whether there is only one solution or possibly more. In the example
above, it is easily seen that the constant (in time) solution v = 49 is a solution of the
differential equation. It turns out that this is not the only solution, the most general
solution reads v(t) = 49 + c exp(−t/5) with c ∈ R an unknown constant. By specifying
an initial condition (the velocity at t = 0) the unknown constant can be determined.

Equation (4.1) is an example of a differential equation following from a physical
conservation law. Many of the principles (or laws) underlying the behavior of the
natural world are expressed in terms of (partial) differential equations, other examples
are the motion of fluids, the flow of current in electric circuits, the dissipation of heat
in solid objects, the propagation of waves, and the increase or decrease of populations.
Differential equations that describe physical/biological/economical processes are often
called mathematical models. It is noteworthy that simple differential equations can
already provide useful models for important processes in physics, biology, economy,
engineering, etc.

In the following, we will restrict ourselves to the analysis of ordinary differential
equations. In section 4.1, we begin with two models leading to equations that are easy to
solve. In section 4.2 the geometrical interpretation of first order differential equations

47
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will be discussed. Solution methods for specific classes of differential equations will be
given in section 4.3. In section 5, some references are given.

4.1 Some Examples

Population Dynamics

In this section, we will develop a model for the evolution of a population (i.e. a collection
of individuals of a particular species) that lives within a well-defined area. The changes
in the number of individuals within this population is a result of reproduction, death or
migration of individual organisms. Ignoring migration, the population model reads in
words:

population change = births − deaths. (4.2)

This total number of individuals at a specific time t will be denoted by N(t). The change
in population size in a small time interval ∆t is the difference between N(t+ ∆t) and
N(t). The balance equation (4.2) can now be written as

N(t+ ∆t)−N(t) = number of births during ∆t
− number of deaths during ∆t,

(4.3)

where the number of births and deaths during the time interval ∆t can be a function of t
itself. A continuous–time version of the balance equation (4.3) is obtained by dividing
both sides of the equation by ∆t and taking the limit ∆t→ 0. The resulting equation
reads

dN

dt
= B(N)−D(N), (4.4)

with B(N) the population birth rate and D(N) the population death rate, that are explicit
functions of the total number of individuals N(t). Since all individuals in the population
are assumed to be identical, the population birth rate can be expressed in terms of
individual–level birth rate b(N) by

b(N) =
B(N)

N
.

Similarly the individual–level death rate is defined as

d(N) =
D(N)

N
.

Substituting these expressions in equation (4.4) results in the following general continuous–
time population balance equation:

N ′ = b(N)N − d(N)N, (4.5)

where N ′ is a shorthand notation for dN/dt. Equation (4.5) does not specify a complete
population dynamic model yet, as it only determines how the size of the population
changes in time. We still have to specify the size of the population at some particular
moment in time, i.e., we have to specify an initial condition. Often this initial condition
is prescribed at t = 0:

N(0) = N0,
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with N0 a given population size at time t = 0.
There are many possible choices for the individual–level birth and death rate. The

simplest choice is to assume that both rates are constant, and hence independent of the
population size N . The resulting population model reads

N ′ = rN, (4.6)

with the population growth rate r the difference between the constant birth and death
rate. The equation is called the exponential growth equation or “Malthus’ growth law”.

Exercise 4.1 Given the initial population size N(0) = N0, show that

N(t) = N0 exp(rt)

is a solution to equation (4.6). Later we will see that this is the only solution (see
Theorem 1). Malthus (1798) investigated the birth and death register of his parish and
concluded that the population of his parish doubled every 30 years. Give an estimate for
the parameter r (do not forget the unit of this parameter).

The exponential growth of the population size, predicted by this model, is not very
realistic because the population would quickly exhaust its natural resources. Hence the
model formulation has to be adjusted to account for the fact that the availability of
resources is limited. One way to account for this is by assuming that the individual–level
birth rate decreases linearly with an increasing population and reaches a value of 0 at
some prescribed population size N = Nmax. Assuming the individual–level death rate is
still independent of the population size N , the following expressions are found:

b(N) = β

(
1− N

Nmax

)
, d(N) = δ.

Inserting these expressions in equation (4.5) results in the logistic growth equation:

N ′ = rN (1−KN) . (4.7)

In section 4.3, we will show how to solve this ordinary differential equation.

Exercise 4.2 Exercise 2: Give explicit expressions for r and K in terms of β, δ and
Nmax, using the definitions for b(N) and d(N)
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Torricelli’s Law

y

Area a

A(y)

∆

∆v  t

y

Figure 4.1: Derivation of Torricelli’s
law.

Water from a water tank is draining through a hole
with area a at its bottom. The depth of water in the
tank at time t is denoted by y(t) and the volume of
water in the tank by V (t). Under ideal conditions
the velocity of the stream of water exiting through
the hole is

v =
√

2gy,

with g = 9.8 ms−2. The velocity v is the velocity a
drop of water would acquire in falling freely from
the water surface to the hole. This is Torricelli’s
law of draining. As indicated in Figure 4.1, the
amount of water that leaves through the bottom
hole during a short time interval ∆t amounts to a
cylinder with base area a and height v∆t. Hence
the resulting change ∆V in the volume of water in

the tank is given by
∆V = −av∆t = −a

√
2gy∆t.

If A(y) denotes the horizontal cross-sectional area of the tank at height y above the hole,
the change in volume can be written as

∆V = A(y)∆y,

resulting in a differential equation for y(t):

A(y)y′ = −a
√

2gy. (4.8)

Solutions to this equations will be studied in section 4.3.

Exercise 4.3

a) Consider a cylindrical tank, i.e., a tank with a constant cross–section A. Show that
equation (4.8) reduces to

y′ = −k√y,
with k a constant. Give an explicit expression for k.

b) Next consider a hemispherical tank (i.e., a half of a sphere) with a top radius of 4
m, and a hole at the bottom of 10 cm. Find an explicit expression for A(y) and
give an equation for the water depth in this tank.

Springs and Masses

Ordinary differential equations also arise in the study of mechanics. Consider a mass m
attached to the end of a spring, as shown in Figure 4.2. The displacement x(t) from its
equilibrium position is governed by Newton’s law:

mx′′ = m
d2x

dt2
= F (x, t), (4.9)
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where F (x, t) represents the forces acting on the mass. In the usual spring and mass
model, the net force acting on the mass is considered to be the sum of three terms. The
first term is a restoring force kx, which pulls the mass back toward the equilibrium
position. The second term describes the damping force (due to friction) cx′. The
constants k and c are assumed to be nonnegative. The last term is a time-dependent
force f(t) which is independent of the position or velocity of the mass. Given an initial
displacement x(0) = x0 and velocity x′(0) = v0, the linear spring model consists of a
differential equation with initial conditions

mx′′ + cx′ + kx = f(t), x(0) = x0 and x′(0) = v0. (4.10)

It can be shown that, for any continuous function f(t) on the interval [0, b), there is a
unique solution x(t) with two continuous derivatives on [0, b) that satisfies equation (4.10).

Classification of Ordinary Differential Equations

The order of a differential equation is the order of the highest order derivative present in
the equation. In the examples above, equations (4.1), (4.6), (4.7) and (4.8) are first order
equations, and equation (4.10) is a second order ordinary differential equation (remember
that a differential equation is called ordinary if the dependent variable only depends on
one independent variable).

Differential equations are also classified as linear or non–linear. A first order ordinary
differential equation is linear if the differential equation can be written as

x′ = bx+ a, (4.11)

with the coefficients a and b independent of x. Note that a and b may involve the
independent variable t. Similarly, a second order differential equation is linear if it can
be written as

x′′ = cx′ + bx+ a, (4.12)

with the coefficients a, b and c independent of x. In the examples above, equations (4.1),
(4.6) and (4.10) are linear, while equations (4.7) and (4.8) are nonlinear.

Finally, it is important to distinguish between homogeneous and inhomogeneous
equations. An equation is called homogeneous if there are no terms in the equation that
do not depend on the dependent variable. If such a term is present, the equation is called
inhomogeneous. Hence equations (4.11) and (4.12) are homogeneous if a = 0. In the
explicit examples given in the previous sections, all equations are homogeneous, except
for the equation describing the motion of the forced mass–spring system.

x(t)

F(t)

Figure 4.2: The displacement x(t) for a mass–spring system.
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Exercise 4.4 It is often useful to write a higher order differential equation as a system
of first order differential equations (this will for example be used during the first year
modeling course). As an example, rewrite equation (4.10) as a system of (two) coupled
first order differential equations by introducing y(t) = x′(t).

4.2 Direction Fields

The behavior of solutions of first order ordinary differential equations can be studied from
a geometrical viewpoint. As an example, we consider equation (4.1), which is repeated
for convenience:

dv

dt
= 9.8− v

5
.

For a given value of the speed v, the right side of equation (4.1) can be evaluated, resulting
in a corresponding value of dv/dt. For instance, if v = 40, then dv/dt = 1.8. This means
that the slope of a solution v = v(t) has the value 1.8 at any point where v = 40. We
can display this information graphically in the tv–plane by drawing short line segments,
or arrows, with slope 1.8 at several points on the line v = 40. Similarly, if v = 50, then
dv/dt = −0.2, so we draw line segments with slope −0.2 at several points on the line
v = 50. By proceeding in the same way with other values of v, the left panel in Figure 4.3
is obtained. This is an example of what is called a direction or slope field. Each line
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Figure 4.3: Left panel: Direction field for equation (4.1). Right panel: same direction
field but now with solution curves for initial conditions v(0) = 40 (blue) and v(0) = 55
(yellow).

segment is a tangent line to the graph of a solution of equation (4.1). Drawing such a
direction field is often very time consuming, but can be done with the aid of computer
programs such as MAPLE, MATLAB, MAXIMA, PYTHON, etc.

If an initial condition is chosen, a solution curve can be constructed by drawing
the line that is tangent to the line segments in the direction field. In Figure 4.3, right
panel, the solution curves are plotted for two different initial conditions, v(0) = 40 and
v(0) = 55.
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Exercise 4.5 Even though we have not found any explicit solutions, we can nonetheless
draw some qualitative conclusions about the behavior of solutions. Indicate the equilibrium
solution in Figure 4.3, i.e., the solution v(t) that does not change in time. What happens
with initial velocities v greater than this equilibrium value? And smaller than this value?
Is the equilibrium solution (linearly) stable, i.e, does v(t) evolve back to the equilibrium
solution for initial velocities close to the equilibrium velocity?

Exercise 4.6 Construct the direction field for equation (4.7). Are there equilibrium
solutions? Are these solutions stable?

The analysis of the above example suggests that, given an initial condition, there is
only one unique solution. This raises the question of whether this is true of all initial value
problems for first order equations. In other words, does every initial value problem have
exactly one solution? The answer to this question is given by the following fundamental
theorem:

Theorem 4.1. Let the functions f(t, u) and ∂f(t, u)/∂u be continuous in some rectangle
α < t < β, γ < u < δ containing the point (t0,u0). Then, in some interval t0 − h < t <
t0 + h contained in α < t < β, there is a unique solution u = φ(t) of the initial value
problem

u′ = f(t, u), u(t0) = u0.

In this theorem, we require the functions f and its first partial derivative ∂f/∂u to
be continuous, concepts that will be defined in detail in later courses. Briefly, continuity
of f at (t0, u0) means that the value f(t0, u0) is defined and that the value f(t, u) is close
to f(t0, u0) if the point (t, u) is close to (t0, u0). The partial derivative ∂f/∂u denotes
the derivative of the expression f(t, u) with respect to the variable u, with t regarded as
a constant. For now it suffices that functions f defined by ’formulas’ (i.e., polynomials,
sine, cosine, etc) satisfy the requirements of Theorem 1, except possibly in some special
points.

Exercise 4.7 Consider the initial value problem

du

dt
= 2
√
u, u(0) = 0.

Verify that this initial value problem has two solutions for t > 0, namely u1(t) = t2 and
u2(t) = 0. Does this result contradict Theorem 1?

4.3 Solution Methods

In this section the solutions to three different types of ordinary differential equations will
be discussed. In section 4.3 separable first order differential equations will be introduced,
in section 4.3 first order linear differential equations will be discussed, and in section 4.3
the solution method for linear, second order ordinary differential equations with constant
coefficients will be presented.
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Separable Equations

Consider a differential equation of the form

du

dt
= g(t)h(u). (4.13)

An implicit solution of equation (4.13) reads

F (u) = G(t) + C, (4.14)

with C an integration constant, and F (u) and G(t) the antiderivatives of 1/h(u) and
g(t). To verify that F (u) is indeed an implicit solution, differentiate equation (4.14) with
respect to t. For the left hand side we have to use the chain rule,

dF (u(t))

dt
=
dF (u)

du

du

dt
=

1

h(u)

du

dt
,

and for the right hand side it immediately follows that

dG(t)

dt
= g(t).

Combining these results, it immediately follows that equation (4.14) is the solution of
equation (4.13).

Equation (4.13) is said to be separable because — upon formal multiplication of both
sides by dt and by 1/h(u) — it takes the symbolic form

1

h(u)
du = g(t)dt (4.15)

in which the variables t and u (and their respective differentials dt and du) are separated on
opposite sides of the equation. The process of rewriting equation (4.13) into equation (4.15)
is called separating the variables.

Now a solution to equation (4.13) is obtained by integrating each side in equation (4.15)
with respect to its “own” variable:

∫
1

h(u)
du =

∫
g(t) dt, (4.16)

which immediately gives solution (4.14).

Example 4.2. (taken from [1]): Find the solution of the initial value problem

du

dt
=
u cos(t)

1 + 2u2
, u(0) = 1. (4.17)

Observe that u = 0 is a solution of this differential equation. To find other solutions,
assume that u 6= 0 and write the differential equation in the form

1 + 2u2

u
du = cos(t) dt. (4.18)
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Integrating the left side with respect to u and the right side with respect to t, we obtain

ln |u|+ u2 = sin(t) + C. (4.19)

To satisfy the initial condition we substitute t = 0 and u = 1 in equation 1(4.19); this
gives C = 1. Hence the solution of the initial value problem (4.17) is given implicitly by

ln |u|+ u2 = sin(t) + 1. (4.20)

Exercise 4.8 The implicit solution (4.20) is not readily solved for u as a function of t.
To get some insight in the behavior of the solution show that

• no solution crosses the t-axis.

• for the initial value problem discussed above, the absolute value bars can be dropped
in the solution (4.20).

Exercise 4.9 Solve the following problems, using separation of variables:

• du/dt = −6ut, with u(0) = 7.

• du/dt = −6ut, with u(0) = −4.

• Plot the population size N(t) by solving equation (4.7), with r = 0.06, K = 1/150
and N(0) = 20. What does the solution curve look like for N(0) = 300?

• Consider Exercise 3b. At time t = 0, the water tank is full of water. How long will
it take for all the water to drain from the tank?

Linear First Order Differential Equations

A differential equation of the form

du

dt
+ f(t)u = g(t) (4.21)

is called a linear first order differential equation. If the function g(t) ≡ 0, the resulting
homogeneous equation is a separable equation that can be solved using the method
explained in section 4.3. The general solution to the homogeneous differential equation
reads

u(t) = C exp(−F (t)), (4.22)

with F (t) the antiderivative of f(t) and C an arbitrary constant.
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Exercise 4.10 Show that expression (4.22) is a solution to differential equation (4.21)
with g(t) ≡ 0.

To solve equation (4.21) for arbitrary g(t), a method called variation of parameters
will be employed. In this approach, the constant C in equation (4.22) is assumed to be a
function of t. A so–called particular solution up(t), defined by

up(t) = C(t) exp[−F (t)],

can now be found by substituting this expression in equation (4.21), resulting in

dC

dt
= g(t) exp[F (t)]. (4.23)

From this, a particular solution up(t) is obtained:

up(t) = exp[−F (t)]

∫
g(t) exp[F (t)] dt (4.24)

Exercise 4.11 Derive expressions (4.23) and (4.24). Is there only one possible particular
solution?

Since the problem is linear, the sum of a particular solution and an arbitrary constant
times the homogeneous solution is still a solution of the equation. Hence, the general
solution can be written as

u(t) = uhom(t) + up(t) = B exp[−F (t)] + exp[−F (t)]

∫ t

0
g(t′) exp[F (t′)] dt′,

with the lower integration boundary t′ = 0 and the upper boundary as t′ = t. The
unknown coefficient B follows from the initial condition.

Example 4.3. Find the solution of the initial value problem

du

dt
− cos(t)u = exp[sin(t)], u(π) = 0. (4.25)

First, we use separation of variables to get the homogeneous solution. This solution reads

uhom(t) = C exp

[∫
cos(t) dt

]
= C exp[sin(t)].

Next, we assume that C varies with t. Substituting the particular solution

up(t) = C(t) exp[sin(t)]

in equation (4.25) results in the following equation for C:

C ′(t) = 1.

Solving this equation, the general solution can be found. This solution reads

u(t) = B exp[sin(t)] + t exp[sin(t)].

Using that at t = π the solution u(0) = 0, it follows that B = −π.
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Exercise 4.12 Solve the following problems:

• du/dt = u+ 2t exp(2t)t, with u(0) = 1.

• t du/dt+ 2u = t2 − t+ 1, with u(1) = 1
2 , t > 0.

• Solve equation (4.1) with initial condition v(0) = 70.

Linear Second Order Differential Equations with Constant Coefficients

A linear second order differential equation is of the form

a
d2u

dt2
+ b

du

dt
+ cu = g(t), (4.26)

with a, b and c constant coefficients, i.e., these coefficients do not depend on the indepen-
dent variable t or the dependent variable u. If g(t) ≡ 0, the equation is homogeneous,
otherwise Eqnequation (4.26) is inhomogeneous. Since equation (4.26) is linear, the gen-
eral solution is again the sum of a particular and homogeneous solution (cf. Section 4.3).
In the following, we will focus on obtaining the homogeneous solution, particular solutions
can again be obtained by variation of parameters, or (if the forcing term g(t) has a nice
enough form) by guessing a trial solution.

To construct solutions to equation (4.26) with a 6= 0 and g(t) ≡ 0, we need to find
two independent solutions. The key to finding these solutions is to guess a plausible form
of these solutions. A possible solution would be that u′ and u′′ are constant multiples
of u, which implies that u′ ∼ u and u′′ ∼ u. We have already seen that such functions
are exponentials, so we try solutions of the form u(t) = exp(rt). Substituting this in
equation (4.26) results in (

ar2 + br + c
)

exp(rt) = 0,

which must be valid for all times t. We therefore have to require that

ar2 + br + c = 0. (4.27)

Equation (4.27) is called the characteristic equation, with solutions

r1, r2 =
−b±

√
b2 − 4ac

2a
.

Now we can distinguish three cases:

1. The characteristic equation has two real and distinct roots, resulting in the following
general solution:

u(t) = c1 exp(r1t) + c2 exp(r2t).

2. The characteristic equation has two real but equal roots. The general solution reads

u(t) = c1 exp(r1t) + c2 t exp(r1t).



58 CHAPTER 4. DIFFERENTIAL EQUATIONS

3. The characteristic equation has complex conjugate roots. After rewriting, the
following expression for u(t) can be found:

u(t) = exp(pt) [c1 cos(qt) + c2 sin(qt)] ,

with p the real part of the roots and q the imaginary part.

Again the unknown coefficients c1 and c2 follow from the initial conditions.

Exercise 4.13 Solve the following problems:

• (example of case 1)

3d2u/dt2 + 7du/dt+ 2u = 0. u(0) = 1 and u′(0) = 1

.

• (example of case 2)

4d2u/dt2 + 12du/dt+ 9u = 0. u(0) = 4 and u′(0) = −3.

Show for this example explicitly that t exp(r1t) is indeed a solution satisfying
equation (4.26).

• (example of case 3)

d2u/dt2 + 4u = 0. u(0) = 1 and u′(0) = −0.

Show for this example explicitly that t exp(r1t) is indeed a solution satisfying
equation (4.26).Clearly indicate how you get the solution, given in the list above
under item number 3, with p and q real, from the general solution

u(t) = c1 exp(r1t) + c2 exp(r2t),

with r1 and r2 the complex solutions of the characteristic equation. Verify the
expressions for p and q used in item 3 above.
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Counting

Author: K.P. Hart

Introduction

Everybody knows what it is to count. How many students in the lecture room? Let’s
count: one, two, three, . . . , fifty-one, . . .

What is happening here mathematically is the construction of a bijection1 between
two sets: the set that we are counting, and a standard set, one of the form {1, 2, 3, . . . , n}.
This is normally not a very exciting task and, if the set is rather large, there is a non-zero
chance of making errors.

If the set comes with a bit of structure then you can count it more efficiently by,
cleverly, dividing it into subsets, count each of those subsets and add the results. In a
lecture room it is usually better to count the number of students in each row and then
add those numbers.

In this lecture we will see some methods and formulas that will help us count a variety
of objects in a systematic way. We will derive formulas for, for example

1. the number of maps from {1, 2, . . . , k} to {1, 2, . . . , n}

2. the number of injective maps from {1, 2, . . . , k} to {1, 2, . . . , n}

3. the number of surjective from {1, 2, . . . , k} to {1, 2, . . . , n}

4. the number of bijective maps from {1, 2, . . . , k} to {1, 2, . . . , n}

5. the number of subsets of {1, 2, . . . , n} that have k elements

Many practical/mathematical problems can be reduced to one of the problems given
above or solved by the methods that we will develop

1. How many ways are there to fill in a lottery form?

2. How many different hands can you meet in a card game?

3. In how many ways can we divide a mentor group into two or three groups for the
homework?

1See the course TW1010, [2]*Definition 2.3.6

59
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4. At the drawing-of-names for Saint Nicholas: what is the probabilty that nobody
draws their own name?

Notation

Before we start: we need some notation to keep our formulations short and sweet.

We will denote the set {1, 2, . . . , n} by n.

The number of elements of a set X is written as |X|. The formal definition is given
by: |X| = n means there is a bijection f : X → n.

That this is a sound definition follows from the following exercise.

Exercise 5.1 Prove: if m and n are natural numbers and there is a bijection f : m→ n
then m = n. Hint : induction on m.

If X is a set then P(X) denotes the family of all subsets of X and we use [X]k

denotes the family of subsets that have exactly k elements.

Exercise 5.2 Write down all elements of [5]0, [5]1, and [5]2, respectively.

Also, quite often it is easier to count a set, X say, by making a bijection between X
and some set, Y , that we counted before.

5.1 Boxes and balls

In this section we describe a general model for counting things. That model is “boxes
and balls”. It turns out that very many problems can be (re)formulated as a problem
about dividing balls over boxes.

For example: how many solutions does the equation k + l +m = 10 have if we allow
only natural numbers in our solutions? Some people think that 0 is a natural number
and some people think it is not so we actually have two questions: one where we allow
zeroes and one where we do not. To formulate this into terms of balls and boxes take
three boxes, labeled k, l, and m. Also take ten balls that all look the same and divide
them over the boxes. Every distribution gives a solution and every solution determines a
distribution. For the people who don’t like 0 as a natural number we add the requirement
that there should be at least one ball in each box.

The problem of dividing the students in a mentor group into three subgroups looks
like this problem but not quite: the students are all different! To translate this problems
we use numbered balls and divide these over the three boxes. To ensure some balance
between the groups you can demand that each box gets a certain minimum number of
balls.

We will start with n boxes, these will be numbered. Next we will take k balls and
divide these over the boxes. We consider the following situations/demands:

1. the balls are indistinguishable (same size, colour, . . . ),

2. the balls are distinguishable, with numbers say.

and

1. at most one ball in each box,
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2. arbitrary distributions,

3. at least one ball in each box.

These six possibilities cover lots of situations, as we shall see later.

5.2 At most one ball in each Box

This is the easiest case and it gives rise to some formulas that will be of use in the other
situations as well.

To begin, if k > n then the number of good distributions is zero, so we shall assume
that k ≤ n.

Distinguishable balls, factorials

To illustrate that many situations can be translated to “boxes and balls” we show how
dealing cards at bridge can be seen as putting balls into boxes.

To simulate dealing we put 52 boxes on the floor and on each box we paste one card
from our deck of 52 cards. You are given 13 balls (numbered).

Instead of the dealer handing you a three-of-hearts as your first card he tells you to
put ball number 1 into the box with the three-of-hearts on it, and so on. Since you can
not get the same card twice you can put at most one ball into any box. This is not a
very useful way of dealing cards but it illustrates how one may translate one situation
into an other.

Whether you want to think of getting 13 out of 52 cards or of putting 13 balls into
52 boxes, counting the number of hands/distributions proceeds as follows.

You have 52 possibilities for the first card/ball, 51 for the second, . . . , and 40 for
the thirteenth. That means that there are 52× 51× · · · × 40 possible sequences of cards
that you can see during the dealing process or that there are 52× 51× · · · × 40 ways of
distributing thirteen distinguishable balls over 52 boxes. That number is fairly large:

52× 51× · · · × 40 = 3954242643911239680000

(that is 22 digits).
In general there are

n× (n− 1)× · · · × (n− k + 1) (∗)
ways to distribute k distinguishable balls over n boxes in such a way that every box
contains at most one ball.

Exercise 5.3 Verify formula (∗), why does the product end at n− k + 1?

Notice that every distribution codes an injective map2 from k to n — let f(i) = j
mean that ball i goes into box j — and vice versa. So we have counted the number of
injective maps from k to n as well.

In the special case that k = n we have the number of bijective maps from n to itself
(the permutations of n); that number is

n× (n− 1)× · · · × 1

2See [2]*Definition 2.3.5
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That product is abbreviated as n! (pronounced: n-factorial). Note that the product in (∗)
kan be written as

n!

(n− k)!

These formulas can be used to calculate probabilities.

Exercise 5.4 Consider bridge hands. What is the probability of a hand with only red
cards (♥ and ♦)? What is the probabilty of getting all cards in one suit (♥, or ♦, or ♣,
or ♠)?

Exercise 5.5 What is the probability of having all six correct in a lotto drawing?

Exercise 5.6 At a (traditional) speed date event there are ten men and ten women.
The organisers decide there will be one-minute sessions where each man is coupled with
a woman and vice versa, and that all possible couplings of the ten men and ten women
should occur at least once. How long will that event last?

Indistinguishable balls, subsets, binomial coefficients

When playing bridge you are not really interested in the order in which you get your
cards; you will arrange them in some useful order yourself. It is the set of cards in your
hand that is important and we have just seen that that set can be ordered in 13! different
ways. The number of hands in bridge therefore is not equal to 52!

39! but to

52!

13!× 39!
= 635013559600

(still twelve digits).
The translation to “balls and boxes” comes down to erasing the numbers on the balls,

thus making them indistinguishable.
The argument about bridge hands shows what the relation is between the two ways

of distributing k balls over n boxes with at most one ball per box: divide the number for
distinguishable balls by k! to obtain the number for indistinguishable balls.

Exercise 5.7 What is the number of ways to fill out a lotto card?

The general formula for the number of ways to distribute k balls over n boxes with
at most one ball per box is the product (∗), divided by k!:

n!

k!(n− k)!
(∗∗)

this last quotient occurs in very many formulas and it has gotten its own abbreviation
(
n

k

)

This is usually pronounced as ‘n-choose-k’ or ‘n-above-k’ and it is called a binomial
coefficient.

An important observation is this: because the balls are indistinguishable a distribution
of balls corresponds to a choice of k out of the n boxes. This means that

(
n
k

)
is exactly

the number of subsets of n that have k elements; in formula
(
n

k

)
=
∣∣[n]k

∣∣
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5.3 Binomial Coefficients

Because the binomial coefficients occur in many places, in particular in the remaining
four cases that we still have to consider, we take some time to study them more closely.
We begin by calculating a few easy values of

(
n
k

)
.

Exercise 5.8 Verify that
(
n
0

)
=
(
n
n

)
= 1 and

(
n
1

)
=
(
n
n−1
)

= n. Do this in two ways: by

working with the formula and by actually counting the representing sets: [n]0 and [n]n,
and [n]1 and [n]n−1.

Theorem 5.1. If 0 ≤ k ≤ n then

(
n

k

)
=

(
n

n− k

)

Exercise 5.9 Prove this theorem, in two ways: by working with the formula and by

making a bijection between the families [n]k and [n]n−k.

An important equality is the following

Theorem 5.2. If n ≥ k ≥ 1 then

(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)

Exercise 5.10 Prove this theorem in two ways

(a) By adding the fractions

n!

(k − 1)!(n− k + 1)!
and

n!

k!(n− k)!

(b) By dividing [n + 1]k into two subfamilies: the sets that contain n+ 1 and the ones
that do not contain n+ 1.

This theorem enables us to put the binomial coefficients in a nice table, known as
Pascal’s Triangle, see Figure 5.1. Every number in the table is the sum of the two
numbers right above it.

Exercise 5.11 Divide P(n) into two families: the subsets with an even number of
elements, and the subsets with an odd number of elements. Make a bijection between
these two families. Hint : Define for A ⊆ n a set A′ as follows: A′ = A \ {1} if 1 ∈ A and
A′ = A ∪ {1} if 1 /∈ A.

Exercise 5.12 Prove, in two ways:
(
n+1
3

)
=
∑n

k=0

(
k
2

)
.

We can use Exercise 8 and Theorem 5.2 to prove formula (∗∗) in an alternative way.
For the moment we write the quotient in (∗∗) as B(n, k) and we write

∣∣[n]k
∣∣ as C(n, k).

Then you can interpret the exercise and the proof of the theorem as proofs of

• B(n, 0) = B(n, n) = 1 and B(n+ 1, k) = B(n, k − 1) +B(n, k), as well as
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0

)
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1
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1
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n
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k
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n
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n
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Figure 5.1: Pascal’s Triangle

• C(n, 0) = C(n, n) = 1 and C(n+ 1, k) = C(n, k − 1) + C(n, k).

Exercise 5.13 Prove, using the above, that B(n, k) = C(n, k) for all n and k. Hint :
Induction on n.

The binomial coefficients also occur in a formula for the powers of a+ b.

Theorem 5.3. For every n we have

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

You can prove this theorem in a various ways. You can expand (a+ b)n completely,
without simplifying; you will then see that you will get, for every k, exactly as many
products with k factors b as there are subsets of n that have k elements. Let us look at
(a+ b)2 and (a+ b)3:

(a+ b)(a+ b) = a(a+ b) + b(a+ b) = aa+ ab+ ba+ bb

and

(a+ b)3 = a(a+ b)2 + b(a+ b)2 = aaa+ aab+ aba+ abb+ baa+ bab+ bba+ bbb

In these special cases you can see by inspection that every subset of 2 and 3 is filled with
bs exactly once and that after simplification we get the formula in the theorem.

We base our proof on Exercise 8 and Theorem 5.2; we write

(a+ b)n =

n∑

k=0

N(n, k)an−kbk

and we prove that the numbers N(n, k) have exactly the same properties as B(n, k)
and C(n, k).

Start by writing (a+ b)n+1 as (a+ b)(a+ b)n:

(a+ b)

n∑

k=0

N(n, k)an−kbk
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and remove the parentheses to get

n∑

k=0

N(n, k)an+1−kbk +

n∑

k=0

N(n, k)an−kbk+1.

Now we rewrite the second sum:

n∑

k=0

N(n, k)an−kbk+1 = N(n, 0)anb+N(n, 1)an−1b2 + · · ·+N(n, n)a0bn+1

=
n+1∑

k=1

N(n, k − 1)an+1−kbk

Now we can combine both sums into one:

N(n, 0)an+1 +

n∑

k=1

(
N(n, k) +N(n, k − 1)

)
an+1−kbk +N(n, n)bn+1

From this we read off the following:

• N(n+ 1, 0) = N(n, 0);

• N(n+ 1, k) = N(n, k) +N(n, k − 1); en

• N(n+ 1, n+ 1) = N(n, n).

Now observe that N(1, 0) = N(1, 1) = 1 and, hence by induction it follows that N(n, 0) =
N(n, n) = 1 for all n. Now we use the second formula to prove that N(n, k) =

(
n
k

)
for

all n and k.
Using this theorem we can create all kinds of formulas, by making clever choices of a

and b.

Exercise 5.14 Show that
∑n

k=0

(
n
k

)
= 2n. (NB we will see this later by counting

subsets, see Exercise 28.)

Exercise 5.15 Show that
∑n

k=0(−1)k
(
n
k

)
= 0. (NB this we already knew, see Exer-

cise 11.)

Exercise 5.16 Show that
∑n

k=0

(
n
k

)2
=
(
2n
n

)
.

Exercise 5.17 Show that
(
n+m
k

)
=
∑k

i=0

(
n
i

)(
m
k−i
)
.

Exercise 5.18 Prove: if l < k ≤ n
2 then

(
n
l

)
<
(
n
k

)
.

Exercise 5.19 Prove that
(
2n
n

)
> 4n

2n+1 . Hint : What is the arithmetic mean of
(
2n
0

)
,(

2n
1

)
, . . . ,

(
2n
n

)
, . . . ,

(
2n
2n

)
?

5.4 Indistinguishable balls, arbitrary, at least one

We return to our balls and boxes and count the four remaing kinds of distributions. It
turns out that the two cases for indistinguishable balls have very similar answers.
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Arbitrary

First we do arbitrary distributions and we reduce it to the problem of counting subsets.
We do that as follows: put the boxes in a row, and glue (or staple) the boxes together.
Then when we put balls in (some of) the boxes we actually create a sequence of two
kinds of objects: balls and ‘walls’ (pairs of sides glued together’. Figure 5.2 shows the

Figure 5.2: Nine balls in five boxes

situation with nine balls and five boxes: the four lines show the sides between the boxes.
The dots represent the balls: one in box 1, two in box 2, zero in box 3, and three in each
of boxes 4 and 5.

So, if we have nine balls and five boxes then every distribution creates a sequence
of thirteen symbols and every such sequence creates a distribution. As soon as soon as
we have placed the four lines in four of the thirteen spots the sequence, and hence the
distribution of the balls over the boxes, is fixed. This means that we have

(
13
4

)
=
(
13
9

)

possible distributions of nine indistinguishable balls over five boxes.
The general formula is now easy to see: we must put k dots and n − 1 lines in a

sequence. So: choose n− 1 positions out of k+ n− 1 and put the lines there, that makes
(
k + n− 1

n− 1

)
or

(
k + n− 1

k

)

possible distributions.

Exercise 5.20 How many solutions does x+ y + z = 10 have (natural numbers, zero
included)?

Exercise 5.21 You have nineteen Euros. In how many ways can you divide this money
among five persons, if everybody should get a whole number of Euros?

At least one in each box

This situation appears to be new but it almost the same as the ‘arbitrary’ one. We need
at least n balls of course, so we assume k ≥ n. All we do is first put one ball in each box
and then distribute the remaining n− k balls arbitrarily. So the answer is

(
k − n+ n− 1

n− 1

)
=

(
k − 1

n− 1

)

possibilities.

Exercise 5.22 Find an other way of seeing this. Hint : How many lines are allowed
between two balls?

Exercise 5.23 How many solutions does x+ y + z = 10 have (natural numbers, zero
excluded)?

Exercise 5.24 You have nineteen Euros. In how many ways can you divide this money
among five persons, if everybody should get a whole and positive number of Euros?
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5.5 Distinguishable balls, arbitray, maps, powers

We now look at distinguishable balls, numbered 1 through k, say.

As on page 61 we can code our distributions by maps from k to n. Define f(i) = j if
ball i goes into box j. So we count the maps from k to n as well.

Definition 2.3.1 in Lay’s book [2] states that a map/function from k to n is a subset f
of the product k× n with the property that for every i ∈ k there is exactly one j ∈ n
such that (i, j) ∈ f , and that j is written f(i).

Counting these subsets is not difficult; you can choose for every i ∈ k the value f(i)
independently from the other values. In that way you make nk maps.

Exercise 5.25 How many differents strings of one hundred beads can you create if you
have sufficiently many beads of four colours?

The method also works if you have a different number of possible values for f(i).

Exercise 5.26 Take a sequence of natural numbers n1, n2, . . . , nk. Show that the
number of maps from k to N subject to f(i) ∈ ni for all i is equal to n1 × n2 × · · · × nk.

Exercise 5.27 How many possible (Dutch) licence plates (digit - three letters - two
digits) are possible?

Exercise 5.28 How many subsets does The set k have? Hint : Every subset determins
a map from k to 2. (We already knew this, see Exercise 14.)

This kind of counting problems occurs often in Probabilty theory. Flipping coins and
throwing dice will produce functions with values in 2 and 6 respectively.

Exercise 5.29 Flip a coin twenty times; what is the number of outcomes? What is the
number when you throw a die twenty times?

Exercise 5.30 You have nineteen Euro coins, one for each member of the Eurozone.
In how many ways can you divide these coins among five persons?

5.6 Distinguishable balls, at least one per box, surjections

We now come to the hardest of our six counting problems: distribute k distinguishable
balls over n boxes such that every box gets at least one ball.

As above this amounts to counting certain maps from k to n, in this case the surjective
maps (“every box gets a ball” is saying that the map that codes the distribution is
surjective: for every j there is an i such that f(i) = j).

We use the symbol
∣∣k
n

∣∣ to denote the number of surjections from k to n. In some cases

we can write down what
∣∣k
n

∣∣ without much effort. Of course
∣∣k
n

∣∣ = 0 if n = 0 of k < n.

Exercise 5.31 Verify that
∣∣k
1

∣∣ = 1 en
∣∣k
k

∣∣ = k!

Exercise 5.32 Show that
∣∣k
2

∣∣ = 2k − 2. Hint : How many non-surjective maps are
there?
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Exercise 5.33 Determine
∣∣k
3

∣∣ and
∣∣k
4

∣∣ for a few values of k.

We are going to determine
∣∣k
n

∣∣ by using the hint in Exercise 32: we count the maps
that are not surjective and subtract that number from nk, the number of all maps.

We divide the non-surjective maps into groups: for every j ∈ n let E(j) =
{
f : j /∈

f [k]
}

. All we have to do is count the union
⋃k
j=1E(j).

For example, if n = 2, as in Exercise 32 the groups E(1) and E(2) each have just one
element: the constant map with value 2 and 1 respectively. We see that E(1) ∪E(2) has
exactly two elements and so, indeed,

∣∣k
2

∣∣ = 2k − 2.

We turn to the case n = 3. We have three sets E(1), E(2) and E(3) and we want to
count their union. We do this a bit näıvely: add the individual numbers of elements:

∣∣E(1)
∣∣+
∣∣E(2)

∣∣+
∣∣E(3)

∣∣

This number is too large because we have counted the elements of the intersections
E(1) ∩ E(2), E(1) ∩ E(3) and E(2) ∩ E(3) twice. So we subtract those numbers:

∣∣E(1)
∣∣+
∣∣E(2)

∣∣+
∣∣E(3)

∣∣−
∣∣E(1) ∩ E(2)

∣∣−
∣∣E(1) ∩ E(3)

∣∣−
∣∣E(2) ∩ E(3)

∣∣

However, now we must look at the elements of E(1) ∩ E(2) ∩ E(3); those were counted
three times in the first sum and three times in the second sum, in total they were counted
zero times. To get the right total we must add their number to the sum:

∣∣E(1)
∣∣+
∣∣E(2)

∣∣+
∣∣E(3)

∣∣
−
∣∣E(1) ∩ E(2)

∣∣−
∣∣E(1) ∩ E(3)

∣∣−
∣∣E(2) ∩ E(3)

∣∣
+
∣∣E(1) ∩ E(2) ∩ E(3)

∣∣

Draw a picture (Venn diagram) of three sets to see how this adding and subtracting
works.

Now we calculate the total sum. To begin: all the E(j) have the same number of
elements, to wit 2k. Indeed: E(j) consists of all maps from k to the two-point set 3 \ {j}.
Likewise all intersections E(i) ∩E(j) have the same size: each has 1k = 1 element, and
the total intersection E(1) ∩ E(2) ∩ E(3) is empty. We find that

∣∣E(1) ∪ E(2) ∪ E(3)
∣∣ = 3 · 2k − 3 · 1k + 0k

We found this equality in a quite straightforward manner and it is also straightforward
to verify that we did not miss an element of the union nor that we counted one more
than once.

In the general situation we have to a bit more careful and really check that our
formula is correct. To show how that works we do the general verification for the special
case n = 3. We show that every element of E(1) ∪ E(2) ∪ E(3) is really counted exactly
once in the right-hand side. Take a non-surjective f : k→ 3 and look at the complement
of f [k]. If the complement consists of one point, 2 say, then f is counted only in

∣∣E(2)
∣∣,

it contributes zero to the other terms. If it consists of two points, say 1 and 2, then
f contributes 1 to

∣∣E(1)
∣∣ and

∣∣E(2)
∣∣ and to −

∣∣E(1) ∩ E(2)
∣∣. So the contribution to the

total sum is 1 + 1− 1 = 1.
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Now we subtract from 3k and obtain
∣∣∣∣
k

3

∣∣∣∣ = 3k − 3 · 2k + 3 · 1k − 0k

We have left in the factors 1k en 0k to foreshadow the structure of the general formula.
If you look closely you will see that we can also write

∣∣∣∣
k

3

∣∣∣∣ =

(
3

0

)
· 3k −

(
3

1

)
· 2k +

(
3

2

)
· 1k −

(
3

3

)
· 0k

or, in one summation: ∣∣∣∣
k

3

∣∣∣∣ =
3∑

i=0

(−1)i
(

3

i

)
(3− i)k

In this form the formula holds in general.

Theorem 5.4. If 0 < n ≤ k then

∣∣∣∣
k

n

∣∣∣∣ =

n∑

i=0

(−1)i
(
n

i

)
(n− i)k

Proof. We count the number of non-surjective maps, in other words we determine

∣∣E(1) ∪ E(2) ∪ · · · ∪ E(k)
∣∣

We start with
∣∣E(1)

∣∣+
∣∣E(2)

∣∣+ · · ·+
∣∣E(k)

∣∣; each of the E(j) has (n− 1)k elements; so
the sum is equal to n(n− 1)k.

Because of counting double we must subtract
∣∣E(j1) ∩ E(j2)

∣∣, for every pair {j1, j2}.
Every intersection has (n− 2)k elements and we have

(
n
2

)
pairs so after subtracting we

have
(
n
1

)
(n− 1)k −

(
n
2

)
(n− 2)k.

As above we have counted the members of the intersections E(j1) ∩ E(j2) ∩ E(j3)
zero times (three times positive, three times negative), so we add their numbers to our
total; there are

(
n
3

)
intersections and these have (n− 3)k elements each.

We have reached
(
n
1

)
(n− 1)k −

(
n
2

)
(n− 2)k +

(
n
3

)
(n− 3)k.

At stage i we deal with maps that avoid at least i values; these belong to intersections
of the form E(j1) ∩ · · · ∩E(ji). There are

(
n
i

)
such intersections and each has (n− i)k

elements. When i is odd we add, when i is even we subtract; the contribution at this
stage is

(−1)i−1
(
n

i

)
(n− i)k

At the end we obtain the following formula for the number of non-surjective maps

n∑

i=1

(−1)i−1
(
n

i

)
(n− i)k (†)

and hence the expression

nk −
n∑

i=1

(−1)i−1
(
n

i

)
(n− i)k =

n∑

i=0

(−1)i
(
n

i

)
(n− i)k
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for the number of surjective maps.

Although, at least intuitively, it seems clear that formula (†) does indeed give the
number of non-surjective maps we verify that this is indeed the case by showing that
every non-surjective map f contributes exactly 1 to the sum.

Suppose that the complement, J , of f [k] has exactly j elements. Then f contributes
only to the first j terms of (†). Its contribution to the ith term is (−1)i−1

(
j
i

)
: it gives 1

for every subset of J that has i elements.

The total contribution of f is therefore

j∑

i=1

(−1)i−1
(
j

i

)

But now apply Exercise 15:
j∑

i=0

(−1)i
(
j

i

)
= 0

and hence

1 =

j∑

i=1

(−1)i−1
(
j

i

)

The total contribution of f to (†) is indeed equal to 1. �

Stirling numbers

A surjective map f : k → n determines a partition of k into n nonempty subsets: for
i ∈ n we let Ai = {j : f(j) = i}. This partition does not change if we permute the
numbers in n.

So, every partition corresponds to n! surjective maps. We conclude that the number
of ways to partition k into n nonempty subsets is equal to

1

n!

∣∣∣∣
k

n

∣∣∣∣

That number is denoted
{
k
n

}
; the nnumbers

{
k
n

}
are called Stirling numbers of the second

kind.

Exercise 5.34 In how many ways can we divide a mentor group of ten students into
three nonempty groups?

Exercise 5.35 In how many ways can we divide a mentor group of ten students into
three groups in a reasonably balanced way? We take ‘reasonably balanced’ to mean a
three-three-four division.

Exercise 5.36 You have nineteen Euro coins, one for each member of the Eurozone.
In how many ways can you divide these coins among five persons, if everybody should
get at least one coin?
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5.7 The Inclusion-Exclusion Principle

The proof of Theorem 5.4 contains an important principle that we will discuss now.
Take a n sets A1, A2, . . . , An. We want to determine |A1 ∪A2 ∪ · · · ∪An| and we do

that using the method from the above proof.
For this we need to introduce a few abbreviations:

1. for a subset I of n we write A(I) =
⋂
i∈AAi;

2. for k ≤ n we write T (k) =
∑{|A(I)| : I ∈ [n]k

}

So, for example: T (1) =
∑n

i=1|Ai| and T (2) =
∑

1≤i<j≤n|Ai ∩Aj |.

Theorem 5.5. We have the following equality

|A1 ∪A2 ∪ · · · ∪An| =
n∑

k=1

(−1)k−1T (k) (‡)

This theorem is called the Principle of Inclusion-Exclusion or Inclusion-Exclusion
Principle.

It is often convenient to define A(∅) = A1 ∪ A2 ∪ · · · ∪ An and then we can rewrite
formula (‡) as follows:

n∑

k=0

(−1)kT (k) = 0 (††)

The proof is just as in the proof of Theorem 5.4.
Proof.[Proof of Theorem 5.5] Every element of the union contributes 1 to the number of
elements of the union. Every element of the union also contributes 1 to the right-hand
side of (‡).

To prove that last sentence we assume that x belongs to exactly l of the sets Ai, say
Ai1 , . . . , Ail . We determine how much x contributes to every T (k).

The contribution to T (1) is l: we get 1 for every ij . The contribution to T (2) is
(
l
2

)
:

we get 1 for every pair {i, j} for which x ∈ Ai and x ∈ Aj . Likewise the contribution to

T (3) is equal to
(
l
3

)
and, in general, the contribution to T (k) is equal to

(
k
l

)
; for k > l

the contribution is of course 0.
So, the contribution of x to the sum

∑n
k=1(−1)k−1T (k) is equal to

∑l
k=1(−1)k−1

(
l
k

)
.

We apply Exercise 15:
∑l

k=0(−1)k
(
l
k

)
= 0; bring all terms, except the first to the

right-hand side, we get

1 =
l∑

k=1

(−1)k−1
(
l

k

)

So the element x is counted exactly once on the right-hand side of (‡). �
A typical application of the Inclusion-Exclusion Principle is the following

Exercise 5.37 How many numbers from 10000 are divisible by 3, by 5, but not by 7,
and also not by 11?

Occasionally you can use 5.5 to check data.
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Exercise 5.38 There are 35 math students who have made a choice of elective courses:
18 students want to take Logic (L), 23 want to do Numerical Mathematics (N), 21 choose
Set Theory (V), and 17 take Real Analysis (R). In addition we know that 9 students
want to do L and N, 7 L and V, 6 choose L and R, 12 take N and V, 9 follow N and R,
and 12 opt for V and R. There are also students that choose three courses: 4 do LNV, 3
go for LNR, 5 take LVR, and 7 pick NVR; there are three students who want to take all
courses. Is the administration in order?

Saint Nicholas

A well-known application of the Inclusion-Exclusion Principle is the following: count the
number of permutations of n without fixed points.

Exercise 5.39 Solve this problem.

Hint : count the permutations that do have a fixed point, take A(i) = {f : f(i) = i}
for i ∈ n.

Exercise 5.40 As an application of this: calculate the probability that at Saint Nicholas
when a group of ten friends draws lots with each other’s names on them nobody draws
themselves.

Speed-dating

Consider a speed-date session with a men and b women. At the end everybody writes
the name of the person from the other group that they like best. If two people choose
each other then we have a match.

The question is how many possibilities there are without matches.

Exercise 5.41 Investigate this for a few small values of a and b: a = b = 2, a = b = 3,
a = 2 and b = 3, a = 3 and b = 4, . . .

Exercise 5.42 Find a formula for the number of possibilities without matches for
arbitrary a and b.

Exercise 5.43 In case a = b determine the probability that no matches will occur; what
is the limit of this probability as a goes to infinity?

Exercise 5.44 Adapt your answer to the previous exercise to give a formula for the
number of possibilities with k matches (k ≤ min{a, b} of course).

Euler’s totient function

Euler’s totient function, also called Euler’s ϕ-function, is defined as

ϕ(n) = {i ∈ n : gcd(i, n) = 1}

Here gcd(i, n) denote the greatest common divisor of i and n.

For some numbers the value of ϕ is easy to find:
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Exercise 5.45 Verify that ϕ(p) = p− 1 if p is a prime number.

Exercise 5.46 Let n ∈ N be arbitrary and let p1, . . . , pm be its prime divisors. Prove

ϕ(n) = n×
m∏

i=1

(
1− 1

pi

)

You will encounter the function ϕ again in the course Algebra 1 and you may like to
explore the function a bit more.

Exercise 5.47 Let p be a prime number and i ≥ 1. Calculate ϕ(pi) directly.

Exercise 5.48 Let m and n be two natural numbers such that gcd(m,n) = 1. Prove
that ϕ(m · n) = ϕ(m) · ϕ(n).

5.8 More problems

Exercise 5.49 We still have n boxes and k balls. Write k = k1 + k2 + · · ·+ kn, with
each ki a nonnegative integer.

(a) In how many ways can we distribute k indistinguishable balls over the boxes in
such a way that box i receives ki balls?

(b) In how many ways can we do the same with distinguishable balls?

Exercise 5.50 There are twelve people and two round tables that each sit six people.
Investigate how many different table settings you can have. Note: this will depend on
your definition of ‘different’; try to find as many possibilities as you can.

The following is problem 4 from the International Mathematical Olympiad of 2011
held in Amsterdam.

Exercise 5.51 Let n > 0 be an integer. We are given a balance and n weights of
weight 20, 21, . . . , 2n−1. We are to place each of the n weights on the balance, one after
another, in such a way that the right pan is never heavier than the left pan. At each step
we choose one of the weights that has not yet been placed on the balance, and place it on
either the left pan or the right pan, until all of the weights have been placed. Determine
the number of ways in which this can be done.

Exercise 5.52 Let n be a natural number. What is the probability that gcd(i, j) = 1
when i and j are chosen at random from n?

Exercise 5.53 At a (traditional) party there are ten married couples. How many dances
can one have if men dance with women but nobody ever dances with their partner?

Exercise 5.54 At a (non-traditional) party there are ten married couples. How many
dances can one have if everyone can dance with everyone except with their partner?
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5.9 Other ways of counting

In the course Algebra 1 you will encounter a result known variously as Burnside’s Lemma,
the Orbit-counting Theorem, and the Cauchy-Frobenius lemma — in the lecture notes it
is called the ‘Banenformule’ [5]*5.7 on page 60.

This formula helps when counting the objects with symmetries, for example the
number of ‘different’ ways in which you can colour the faces of a cube with one, two,
three, . . . , six colours.

Yet another way of counting is via generating functions ; it provides a systematic way
of solving problems like counting solutions to equations. See [1] for more.

Literature

There are tons of books on Discrete Mathematics. We mention a few.
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Probability and Statistics

Author: H.P. Lopuhaä

Introduction

Is everything on this planet determined by randomness? This question is open to
philosophical debate. What is certain is that every day thousands and thousands of
engineers, scientists, business persons, manufacturers, and others are using tools from
probability and statistics.

The theory and practice of probability and statistics were developed during the last
century and are still actively being refined and extended. In this chapter we will introduce
some basic notions and computational rules from probability theory and discuss an often
used statistical method of estimation.1

6.1 Events, probabilities and Bayes’ rule

In early 2001 the European Commission introduced massive testing of cattle to determine
infection with the transmissible form of Bovine Spongiform Encephalopathy (BSE) or
“mad cow disease.” As no test is 100% accurate, most tests have the problem of false
positives and false negatives. A false positive means that according to the test the cow is
infected, but actuality it is not. A false negative means an infected cow is not detected
by the test.

Now suppose that the selected test has a small probability, say 1%, to produce a false
positive or false negative, i.e.,

1. there is a 1% chance that a healthy cow is infected according to the test;

2. there is a 1% chance that an infected cow is healthy according to the test.

The crucial question is of course, suppose my cow is infected according to the test,
then what is the probability that it really has BSE? To answer this question, we need
some formal concepts and computational rules from probability theory. These will be
introduced in the next section.

1These topics are based on Chapters 2, 3 and 21 from F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä
and L. Meester, A Modern Introduction to Probability and Statistics - Understanding Why and How,
Springer 2005.
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Events: notation and operations

The world around us is full of phenomena we perceive as random or unpredictable. We
aim to model these phenomena as outcomes of some experiment, where you should think
of experiment in a very general sense. The set of all possible outcomes is denoted by Ω,
called the sample space.

For example, one of the most basic experiments is the tossing of a coin. Assuming
that we will never see the coin land on its rim, there are two possible outcomes: heads
and tails. We therefore take as the sample space associated with this experiment the
set Ω = {H,T}. In another experiment we ask the next person we meet on the street in
which month her birthday falls. An obvious choice for the sample space is

Ω = {Jan,Feb,Mar,Apr,May, Jun, Jul,Aug,Sep,Oct,Nov,Dec} .

Subsets of the sample space are called events. We say that an event A occurs if the
outcome of the experiment is an element of the set A. For example, in the birthday
experiment we can ask for the outcomes that correspond to a long month, i.e., a month
with 31 days. This is the event

L = {Jan,Mar,May, Jul,Aug,Oct,Dec} .

When a person indicates to be born in the month of May, then we say that the event L
occurs.

Events may be combined according to the usual set operations. For example, if R is
the event that corresponds to the months that have the letter r in their (full) name, so

R = {Jan,Feb,Mar,Apr,Sep,Oct,Nov,Dec} ,

then the long months that contain the letter r are

L ∩R = {Jan,Mar,Oct,Dec} .

The set L ∩R is called the intersection of L and R and occurs if both L and R occur.
Similarly, we have the union A∪B of two sets A and B, which occurs if at least one of the
events A and B occurs. Another common operation is taking complements. The event
Ac = {ω ∈ Ω : ω /∈ A} is called the complement of A; it occurs if and only if A does not
occur. The complement of Ω is denoted ∅, the empty set, which represents the impossible
event. Figure 6.1 illustrates these three set operations by means of Venn diagrams. See
also Section 2.1 in the book of the course TW1010 Mathematical Structures.

We call events A and B disjoint or mutually exclusive if A and B have no outcomes
in common; in set terminology: A ∩B = ∅. For example, the event L “the birthday falls
in a long month” and the event {Feb} are disjoint. Finally, we say that event A implies
event B if the outcomes of A also lie in B. In set notation: A ⊂ B; see Figure 6.2.

Exercise 6.1 We toss a coin three times. For this experiment we choose the sample
space

Ω = {HHH,THH,HTH,HHT, TTH, THT,HTT, TTT}
where T stands for tails and H for heads.
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Figure 6.1: Set theoretical operations.
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Figure 6.2: Minimal and maximal intersection.

(a) Write down the set of outcomes corresponding to each of the following events:

A : “we throw tails exactly two times.”
B : “we throw tails at least two times.”
C : “tails did not appear before a head appeared.”
D : “the first throw results in tails.”

(b) Write down the set of outcomes corresponding to each of the following events: Ac,
A ∪ (C ∩D), and A ∩Dc.

Probabilities and computational rules

We want to express how likely it is that an event occurs. To do this we will assign a
probability to each event.

Definition 6.1. The probability of an event A is denoted by a number P (A) in [0, 1].
We assume that

1. P (Ω) = 1;

2. for disjoint events A and B, it holds that P (A ∪B) = P (A) + P (B).
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The number P (A) is called the probability that A occurs.

Note that some useful properties are immediate from this definition. To start with

if A ⊂ B, then P (A) ≤ P (B) (6.1)

Indeed, we can write B as B = A ∪ (B ∩Ac), where A and B ∩Ac are disjoint (make a
picture). Therefore, from Definition 6.1 it follows that P (B) = P (A)+P (B∩Ac) ≥ P (A).
Another useful rule is

P (Ac) = 1− P (A). (6.2)

Exercise 6.2 Provide a proof of (6.2) by means of Definition 6.1.

Consider the events L, “born in a long month,” and R, “born in a month with
the letter r.” If we suppose for convenience that all months are equally likely, their
probabilities are easy to compute: since L = {Jan, Mar, May, Jul, Aug, Oct, Dec} and
R = {Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec}, one finds

P (L) =
7

12
and P (R) =

8

12
.

Now suppose that it is known about the person we meet in the street that he was born
in a “long month,” and we wonder whether he was born in a “month with the letter
r.” The given information excludes five outcomes of our sample space: it cannot be
February, April, June, September, or November. Seven possible outcomes are left, of
which only four—those in R ∩ L = {Jan, Mar, Oct, Dec}—are favorable, so we reassess
the probability as 4/7. We call this the conditional probability of R given L, and we
write:

P (R | L) =
4

7
.

This is not the same as P (R ∩ L), which is 1/3. Also note that P (R | L) is the ratio of
P (R ∩ L) and P (L).

Exercise 6.3 Let N = Rc be the event “born in a month without r.” Compute the
conditional probability P (N | L).

In view of the example above, in general we define the conditional probability of an
event A given that an event C occurs, as follows.

Definition 6.2. The conditional probability of A given C is given by:

P (A | C) =
P (A ∩ C)

P (C)
,

provided P (C) > 0.

Note that P (A ∩ C), the probability that A and C occur simultaneously, is different
from P (A | C), the probability that A occurs, knowing that C occurs. Figuur 6.3
illustrates the difference between both probabilities. Whereas P (A∩C) can be represented
as the proportion of Ω that is contained in A ∩ C, the conditional probability P (A | C)
is the proportion of C that is contained in A ∩ C.
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P (A | C) =
P (A ∩ C)

P (C)
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Figure 6.3: Conditional probability and probability of intersection.

Exercise 6.4 Let P (C) > 0. Prove that P (A | C) + P (Ac | C) = 1.

The conditional probability P (A | C) can be computed by means of its definition.
However, in many applications one is well aware of the value of P (A | C) and Definition 6.2
is used to calculate other probabilities using the rule

P (A ∩ C) = P (A | C)× P (C). (6.3)

This is called the multiplication rule. This allows the computation of P (A ∩ C) to be
divided into two parts, computation of P (C) and of P (A | C), which is often easier than
direct calculation of P (A ∩ C). One can also use (6.3) in the following way

P (A ∩ C) = P (C | A)× P (A).

Both equalities are correct, but usually only one of P (A | C) and P (C | A) is easy to
determine and the other not.

For example, consider a pack of 52 cards from which we randomly draw two cards
and define the events

S1 = first card is ♠,
S2 = second card is ♠.

What is P (S1 ∩ S2)? By means of (6.3) we find

P (S1 ∩ S2) = P (S2 | S1)× P (S1) =
12

51
× 13

52
=

1

17
.

In this example, it also holds that

P (S1 ∩ S2) = P (S1 | S2)× P (S2),

but this formula is useless, because P (S1 | S2) is not so straightforward to compute in
contrast with P (S2 | S1).
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Law of total probability and Bayes’ rule

We return to the BSE example from the beginning of this chapter. Imagine we test a cow.
Let B denote the event “the cow has BSE” and T the event “the test comes up positive”
(this is test jargon for: according to the test we should believe the cow is infected with
BSE). One can “test the test” by analyzing samples from cows that are known to be
infected or known to be healthy and so determine the effectiveness of the test. The
European Commission had this done for four tests in 1999 and for several more later.2

The results for what the report calls Test A may be summarized as follows: an infected
cow has a 70% chance of testing positive, and a healthy cow just 10%; in formulas:

P (T | B) = 0.70,

P (T | Bc) = 0.10.

Law of total probability. Which percentage of cows will test positive with Test A,
what is P (T )? The tested cow is either infected or healthy: event T occurs in combination
with B or with Bc (there are no other options). In other words,

T = (T ∩B) ∪ (T ∩Bc),

so that

P (T ) = P (T ∩B) + P (T ∩Bc),

because T ∩B en T ∩Bc are disjoint. Then we apply (6.3) in such a way that the given
conditional probabilities can be used:

P (T ∩B) = P (T | B)× P (B),

P (T ∩Bc) = P (T | Bc)× P (Bc),

which leads to the following rule

P (T ) = P (T | B)× P (B) + P (T | Bc)× P (Bc). (6.4)

This rule we call the law of total probability : computation of a probability by conditioning
on various disjoint events, which together contain all possible outcomes.

Exercise 6.5 Consider a deck of 52 cards from which we randomly draw two cards
and define the events

S1 = first card is ♠,
S2 = second card is ♠.

Compute P (S2) by application of the law of total probability.

In fact, the rule is more general and (6.4) is only a special case with two disjoint
events B and Bc. Figure 6.4 is an illustration of the rule, when conditioned on five
disjoint sets C1, C2, . . . , C5. The set A is the disjoint union of the sets (A ∩ C1), (A ∩

2See J. Moynagh, H. Schimmel, en G.N. Kramer. The evaluation of tests for the diagnosis of
transmissible spongiform encephalopathy in bovines. Technical report, European Commission, Directorate
General XXIV, Brussels, 1999.
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Figure 6.4: Law of total probability with 5 disjoint sets.

C2), . . . , (A ∩ C5), so that P (A) = P (A ∩ C1) + (A ∩ C2) + · · ·+ P (A ∩ C5). Thereafter,
we can apply the multiplication rule (6.3): P (A ∩ Ci) = P (A | Ci) × P (Ci), for each
i = 1, 2, . . . , 5.

Exercise 6.6 Someone wants to walk from A to B (see the map). To do so, he first
randomly selects one of the paths to C, D, or E. Next, he selects randomly one of the
possible paths at that moment (so if he first selected the path to E, he can either select
the path to A or the path to F ), etc. What is the probability that he will reach B after
two selections?
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We continue with the BSE example. When we process and apply the results of our
test to (6.4), we have

P (T ) = 0.70× P (B) + 0.10× P (Bc).

In short, if we have information about P (B), and thus also about P (Bc) = 1 − P (B)
(see Exercise 2), then we can compute P (T ). Suppose3 for the convenience that 2% of
the cows are actually infected, i.e., P (B) = 0.02, then

P (T ) = 0.70× 0.02 + 0.10× (1− 0.02) = 0.112.

We see that, despite the 70% chance of detecting infected cows, and with 10% risk of
indicating healthy cows as infected, no less than 11.2% (a factor 5.5 too high) of all cows

3This assumption is only done to make the calculations insightful. The actual value is unknown
and varies from country to country. The BSE risk for the Netherlands in 2003 was estimated at
P (B) ≈ 0.000013.
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test positive. This is of course due to the fact that in our example only 2% of the cows
are infected. This causes P (T | B) = 0.70 to work only in 2% of the cases, and the
influence of the false positive P (T | Bc) = 0.10 is much bigger.

Exercise 6.7 In 2003, the BSE risk for the Netherlands was estimated at P (B) =
0.000013. Compute P (T ) for this case.

Bayes’ rule. The much more important question from the beginning of this section
is: if a cow tests positive on BSE, then what is the probability that the cow is actually
infected? In formula: what is P (B | T )? We have information about P (T | B), a
conditional probability, but the wrong one. In fact, we want to change the roles of T and
B.

This is possible as follows. Starting with the definition of conditional probability we
get

P (B | T ) =
P (B ∩ T )

P (T )
=
P (T | B)× P (B)

P (T )
.

Then we apply (6.4) to the denominator, so that

P (B | T ) =
P (T | B)× P (B)

P (T | B)× P (B) + P (T | Bc)× P (Bc)
. (6.5)

This computational rule is called Bayes’ rule, named after the English clergyman Thomas
Bayes who derived this in the 18th century. When we apply this rule to our example,
with P (B) = 0.02, we get

P (B | T ) =
0.70× 0.02

0.70× 0.02 + 0.10× (1− 0.02)
= 0.125,

and with a similar computation: P (B | T c) = 0.0068. These conditional probabilities
show that T is a bad test. Indeed, a perfect test would have P (B | T ) = 1 and
P (B | T c) = 0. In Exercise 8 we redo the computations with a more realistic value
for P (B).

Exercise 6.8 In 2003, the BSE risk for the Netherlands was estimated at P (B) =
0.000013. Compute P (B | T ) and P (B | T c) for this case.

Exercise 6.9 We return to the example in the introduction of this chapter, i.e., assume
we have a test for which P (T | Bc) = 0.01 en P (T c | B) = 0.01. Furthermore, suppose it
is known that 1 in 1000 cows is infected. Compute the probability that a cow (actually)
is infected, given that it is infected according to the test.

Independence

Consider three probabilities from the previous section:

P (B) = 0.02

P (B | T ) = 0.125

P (B | T c) = 0.0068.

If we know nothing about a cow, we would say that there is a 2% chance it is infected.
However, if we know it tested positive, we can say there is a 12.5% chance the cow is
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infected. On the other hand, if it tested negative, there is only a 0.68% chance. We see
that the two events are related in some way: the probability of B depends on whether T
occurs or not.

Imagine the opposite: the test is useless. Whether the cow is infected is unrelated
to the outcome of the test, and knowing the outcome of the test does not change our
probability of B: P (B | T ) = P (B). In this case we would call B independent of T .

Definition 6.3. An event A is called independent of B if

P (A | B) = P (A). (6.6)

The above definition of independence initially appears to be one-sided. You would
think that if A is independent of B, then B is also independent of A. That this is indeed
the case, can be seen from the following exercise.

Exercise 6.10 Suppose A is independent of B, so that P (A | B) = P (A). Show that
B is independent A, i.e., P (B | A) = P (B).

In short, if A is independent of B, then this also applies the other way round. In this
case, we call A and B independent events. Note that from the multiplication rule (6.3)
it immediately follows that if A and B are independent events, then

P (A ∩B) = P (A | B)× P (B) = P (A)× P (B). (6.7)

Although intuitively, the definition (6.6) of independence is more natural, the above
rule (6.7) is used more often, when calculating the probability of independent events.
Just yet, we have seen that (6.6) implies (6.7). The next exercise shows that this also
hold the other way around, so that (6.6) and (6.7) are equivalent.

Exercise 6.11 Suppose that P (A ∩ B) = P (A) × P (B). Show that A and B are
independent, i.e., P (A | B) = P (A) and P (B | A) = P (B).

6.2 Estimating unknown parameters

During World War II, the Allied forces started to analyze markings and serial numbers
obtained from captured German equipment. An extensive description about how one
went about and what sort of obstacles one had to overcome is described in an article by
Richard Ruggles and Henry Brodie.4 A start was made by analyzing serial numbers on
car tires. For each manufacturer, the serial number started with a two letter code. These
were suspected to correspond to the month and year of manufacturing. This turned out
to be correct. Table 6.1 shows a number examples of month codes of some manufacturers.
For example, the Dunlop code was Dunlop Arbeit spelled backwards. After breaking
the year code as well, one was able to recode the serial numbers as numbers running
from 1 to some unknown largest number N , and the observed (recoded) serial numbers
could be viewed as a part of this. The goal was now to obtain, for each month for each
manufacturer, an estimate of N on the basis of the observed serial numbers.

After breaking the month and year codes, the estimation problem reduces to the
following statistical problem: given is a vase of balls numbered from 1 to N ; estimate N

4 Ruggles, R. and Brodie, H. (1947) An empirical approach to economic intelligence in World War II,
Journal of the American Statistical Association, 42, p. 72-91.
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Table 6.1: Coding of German manufacturers of tires.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Dunlop T I E B R A P O L N U D
Fulda F U L D A M U N S T E R
Phoenix F O N I X H A M B U R G
Sempirit A B C D E F G H I J K L

on the basis of the numbers x1, x2, . . . , xn, which are randomly drawn from the vase
without replacement. One idea to get an estimate is the following. The average of the
numbers 1, 2, . . . , N in the vase is

1

N
× (1 + 2 + · · ·+N) =

1

N
× 1

2
N(N + 1) =

N + 1

2
.

This should be approximately equal to the average x̄ of the numbers drawn:

x̄ ≈ N + 1

2
,

so that

2x̄− 1 ≈ N.
Therefore, take 2x̄− 1 as an estimate for N .

Another idea is that the largest observed number m = max(x1, x2, . . . , xn) must give
an indication about N . Since m will generally be less than N , this estimate can be
improved immediately by multiplying m with a factor greater than 1. Assuming that the
n numbers drwan are more or less equally distributed in the interval [0, N ], the maximum
is approximately

m ≈ n

n+ 1
×N

so that
n+ 1

n
m ≈ N.

Therefore, take (n + 1)m/n as an estimate N . This gives us two possible methods to
estimate N . Which of the two estimators is better now?

An important part of Statistics is devoted to estimating an unknown quantity based
on observations, such as the monthly number of tires produced per manufacturer. Most
often there are several ad hoc methods to be found and the question arises which one is
better. In this section we introduce a universal method of maximum likelihood, which
provides the best estimates in a particular sentence.

The maximum likelihood principle

Consider the following (minor) problem. Given are two dice: one with 5 white sides and 1
red, the other with 1 white side and 5 red. Someone chooses one of both dice and uses it
three times to do the same experiment: throwing just as long as red comes up. We do
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not know which dice has been chosen to throw, but we only know the required numbers
in each of the three experiments:

7, 4 and 10.

The question is to determine which dice has been used to throw on the basis of these data.
It is everyones gut feeling to choose the first dice. Usually the explanation is that the dice
has more white faces and that 18 times white is thrown and 3 times red. Probably, the
problem is too easy to pose. Too bad, because despite its simplicity, the above example
illustrates an important principle in the statistics: the principle of maximum likelihood.
One chooses the dice, for which the required numbers are 7, 4 and 10 are most likely.

Indeed, when we assume that the results of the throws are independent, then the
probability for having to throw 7 times in the first experiment for a first time red for the
first dice equal to

P (first time R in throw 7) = P (W )× P (W )× · · · × P (W )︸ ︷︷ ︸
6 times

×P (R)

=
5

6
× 5

6
× · · · × 5

6
× 1

6
=

(
5

6

)6 1

6
.

Similar calculations also apply to the other two experiments, so that because of the
independence of the experiments, the probability of having 7, 4, and 10 is equal to

(
5

6

)6 1

6
×
(

5

6

)3 1

6
×
(

5

6

)9 1

6
=

518

621
= 0.0001738937.

In the same way one finds for the other dice that the probability of having 7, 4, and 10,
is equal to (

1

6

)6 5

6
×
(

1

6

)3 5

6
×
(

1

6

)9 5

6
=

53

621
= 5.7× 10−15.

Both probabilities are very small, but the probability of the observed outcomes 7, 4 and
10 is many times bigger (515 times as big!) for the first dice than for the second dice.
Hence, choosing for the first dice is the same as choosing the dice for which the observed
data is most likely. This principle, which is called the principle of maximum likelihood,
will also be used when we have to choose a value as an estimate for an unknown parameter
based on observations.

Definition 6.4. Suppose that we have to estimate an unknown parameter based on
observations, shortly called data. According to the principle of maximum likelihood, we
take as an estimate of the unknown parameter, the value for which the probability of the
data is the largest.

The likelihood: the probability of the data

Let’s make the “dice problem” somewhat more complicated. We replace the throwing of
dice by turning a “wheel of fortune”. The area in which the pointer can end up when
the wheel comes to a halt, consists of an unknown proportion p colored red and the
rest is white. We do the same experiment three times: turn the wheel until the pointer
ends in red. Suppose the required number of attempts to a first time red are again 7, 4



86 CHAPTER 6. PROBABILITY AND STATISTICS

and 10. The question is to estimate the parameter p (the proportion red) based on these
observations. We will apply the principle of maximum likelihood. The next step is then
to calculate the probability that in the successive experiments with the wheel of fortune,
one must turn 7, 4, and 10 times, respectively, for a first time red. In the same way as in
the previous paragraph the probability of the data (the observed outcomes 7, 4 and 10)
is equal to

(1− p)6p× (1− p)3p× (1− p)9p.
In this way, the probability of the data becomes a function of the parameter p ∈ [0, 1].
This function is called the likelihood function, or shortly likelihood, and is usually denoted
by the capital letter L. According to the principle of maximum likelihood, we now take
as an estimate for p, the value which maximizes the likelihood L(p).

First note that in the example above we can simplify things:

L(p) = (1− p)18p3, for p ∈ [0, 1].

The maximum of L(p), for p ∈ [0, 1], can be found by setting the derivative equal to zero.
The derivative of L(p) is

L′(p) = −18(1− p)17p3 + 3(1− p)18p2

= (1− p)17p2 [−18p+ 3(1− p)]
= (1− p)17p2 [−21p+ 3] .

Therefore L′(p) = 0 if and only if p = 0, p = 1, or p = 1/7. One can check that this
means that L(p) has a unique maximum at p = 1/7. We conclude that p = 1/7 is the
maximum likelihood estimate for p.

Exercise 6.12 A retailer in computer chips is offered two parties on the black market
each consisting of 10 000 chips. It is known that one party has 50% defective chips and
the other party only 10%. The retailer is willing to buy the party with 10% defective
chips, but he does not know which party it is. He is given the opportunity to choose 10
chips from one of the parties to test. After choosing, it appears that the first three chips
are defective and the rest is good. When the retailer uses the principle of maximum
likelihood, which party should he buy, the party tested or the other one?

Exercise 6.13 Consider the “wheel of fortune” problem. Suppose one observes
x1, x2, . . . , xn as outcomes, i.e., during the i-th experiment one had to turn xi times
before a first time red, for i = 1, 2, . . . , n.

1. Deduce that the likelihood is given by L(p) = (1− p)x1+x2+···+xn−npn.

2. Show that the maximum likelihood estimate is given by

n

x1 + x2 + · · ·+ xn
.

A totally different, and much simpler, argument is that we have seen 3 times red
on 21 throws, so that the probability p of red is equal to p = 3/21 = 1/7. This last
argument illustrates another estimation principle: the method of moments. In this
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specific example, this method entails that a probability P (A) is estimated by counting
the relative frequency of the occurrence of the event A in a series of repetitions of the
same experiment. This method seems very attractive because of its simplicity and seems
to yield the same as the more complicated principle of maximum likelihood. However,
the fact that in this example the two principles yield the same estimate is a coincidence.
In the remainder of this section we will first consider an example to which the method
of moments cannot be applied, but where the principle of maximum likelihood offers a
solution. Then we end this section with an example that will show that the maximum
likelihood estimator is better than the moment estimator.

Remark 6.5. The moments method has a long history. Karl Pearson (1857-1936) is
often referred to as the one who emphasized the importance of this method. In the
beginning of the 20th century there has been a stir about the properties of the method
of moments compared to other methods, especially the controversy between Pearson and
Ronald Aylmer Fisher (1890-1962). In his first article,5 Fisher rediscovered the method
of maximum likelihood, already known by Lambert (1760) and Bernoulli (1777). Fisher’s
work in the field of statistics drew Pearson’s attention. As editor of the journal Biometrika,
Pearson published an article by Fisher in 1915 about the probability distribution of the
correlation coefficient. In a follow-up article in Biometrika in 1916, Pearson criticized the
former article by Fisher without prior notice. Pearson did not understand the maximum
likelihood method used by Fisher, and wrongly burned it to the ground. Fisher was
grieved by Pearson’s self-empowered performance and his lack of understanding, which
ultimately led to their violent confrontation. Nevertheless, in 1919 Pearson asked Fisher
to accept a position at University College in London, where he fulfilled the chair of
Eugenetics. Fisher refused.

Maximum likelihood in case of incomplete data

A situation that is very similar to the “wheel of fortune” problem is discussed in a
paper by Weinberg and Gladen6. They examined the number of menstrual cycles until
pregnancy, measured from the time they had decided to conceive. During the study, data
was collected from 100 smoking and 486 non-smoking women. These are summarized in
Table 6.2. Note that for 7 smoking and 12 non-smoking women the data is incomplete;

Table 6.2: Observed number of cycles until pregnancy.

Number of cycles 1 2 3 4 5 6 7 8 9 10 11 12 >12

Smokers 29 16 17 4 3 9 4 5 1 1 1 3 7

Non-smokers 198 107 55 38 18 22 7 9 5 3 6 6 12

Source: C.R. Weinberg and B.C. Gladen. The beta-geometric distribution applied to
comparative fecundability studies. Biometrics, 42(3):547–560, 1986.

we only have information that more than 12 cycles were needed for pregnancy. The

5Fisher, R.A. (1912) Messeng. Math., 41, p. 155-160.
6C.R. Weinberg and B.C. Gladen (1986) The beta-geometric distribution applied to comparative

fecundability studies. Biometrics, 42(3):547–560.
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question is now: what are the probabilities of pregnancy for smoking and non-smoking
women, and are these very different from each other?

Suppose for the moment that the probability of pregnancy is the same during each
cycle, say p, with 0 < p ≤ 1, and that the outcomes during the different cycles are
independent of each other. Then, as in the “wheel of fortune” problem, it holds that

P (pregnancy in k-th cycle) = (1− p)k−1p, for k = 1, 2, . . .

These probabilities form the so-called Geometric distribution with parameter p ∈ [0, 1].
The fact that this is indeed a proper probability distribution, is established in the next
exercise.

Exercise 6.14 Show that the probabilities (1− p)k−1p, for k = 1, 2, . . . sum up to 1.

Because P (pregnancy in first cycle) = p, a simple estimate for p is:

number of women with pregnancy in the first cycle

total number of women
.

This gives estimates p = 29/100 = 0.29 for the smoking women and p = 198/486 = 0.41
for non-smoking women. Intuitively, it must be clear that this cannot be the best method.
After all, in this way much of the data in Table 6.2 is not used.

Of course we want a method that uses all information. However, for 7 smoking and
12 non-smoking women, we only know that the number of attempts has been more than
12, but we do not know exactly how many attempts have been made until pregnancy.
When we simply ignore the information in the last column of Table 6.2, then we can
compute estimates, analogously to the “wheel of fortune” problem, using the formula
from Exercise 13.

Exercise 6.15 Consider the data of Table 6.2. Suppose we ignore the last column and
compute the estimates for the probability p on pregnancy using only the first 12 columns.
Show that both the maximum likelihood estimate and the method of moments estimate
are p = 0.281 for smoking women and p = 0.3688 for non-smoking women.

Note, however, that this method overestimates the parameter p. After all, the formula
from Exercise 13 is 1/x̄. Suppose that you would know the exact number of attempts of
the women in the last column in Table 6.2. In that case, the average number of attempts
would be higher, which means that the estimate 1/x̄ would be lower. In short, by ignoring
the information from the last column, we get too high estimates for p.

The nice thing is that the principle of maximum likelihood offers a way out here.
Despite the limited information in the last column of Table 6.2, we can still compute the
probability of the data. Namely,

P (pregnancy after the 12-th cycle) = P (no pregnancy in cycles 1 to 12)

= (1− p)12.

Furthermore, we see from Table 6.2 that 29 smoking women are successful during the
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first cycle. This occurs with probability p29. In this way, for the smoking women, we find

Event Probability

29 times pregnancy in cycle 1 p29

16 times pregnancy in cycle 2
{

(1− p)p
}16

17 times pregnancy in cycle 3
{

(1− p)2p
}17

...
...

3 times pregnancy in cycle 12
{

(1− p)11p
}3

7 times pregnancy after cycle 12
{

(1− p)12
}7

This means that the probability of the data (the likelihood) for the smoking women is
given by

L(p) = C × p29 ×
{

(1− p)p
}16 ×

{
(1− p)2p

}17 × · · · ×
{

(1− p)11p
}3 ×

{
(1− p)12

}7

= C × p93 × (1− p)322.

Here, C is the number of possibilities of having 29 times a 1, 16 times a 2, . . . , 3 times a
12, and 7 times some number larger than 12, for 100 smoking women. We make no effort
to calculate this number because it does not depend on p.7 According to the principle of
maximum likelihood the estimate for p is the value that maximizes L(p). One can check
that

L′(p) = C × p92(1− p)321 (93− 415p)

so that L(p) has a unique maximum (check this!) at p = 93/415 = 0.224. We say that
for the smoking women, the maximum likelihood estimate is given by p = 0.224. Note
that this estimate is quite smaller than the estimate 0.29, based on only the first column
of Table 6.2, and estimate 0.281 from Exercise 15.

Exercise 6.16 Deduce that for the non-smoking women, the likelihood is given by

L(p) = constant× p474 × (1− p)955.

Compute the maximum likelihood estimate for p.

Example of a non-differentiable likelihood

To determine where the likelihood L attains its maximum, so far we have only seen
examples where we could differentiate L. This is not always possible. For example,
suppose we have a vase of balls numbered 1, 2, . . . , N , where N is unknown. We randomly
draw (without replacement) out of the vase five balls with numbers:

40, 28, 7, 44 and 18.

Compute the maximum likelihood estimate for N , the number of balls in the vase, based
on this data. The first step is to calculate the probability of the data, as a function
of the unknown parameter N . The largest number drawn is 44. This means that for
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Figure 6.5: Likelihood L(N).

N = 1, 2, . . . , 43, the probability of the above data is equal to zero! For N = 44, 45, . . .,
the probability of the data is equal to

1

N(N − 1)(N − 2)(N − 3)(N − 4)
.

Hence, the likelihood is given by

L(N) =





0 , for N = 1, 2, . . . , 43;
1

N(N − 1)(N − 2)(N − 3)(N − 4)
, for N = 44, 45, . . . .

Figure 6.5 contains a graph of the likelihood. The maximum likelihood estimate for
N is given by that value of N for which the probability L(N) is maximal. From the
description of L(N), see also Figure 6.5, it immediately follows that this is at N = 44.
Therefore, the largest number drawn is the maximum likelihood estimate for the number
of balls in the vase.

Estimating the German war production

The previous example shows that the principle of maximum likelihood does not always
provide a good estimate directly. After all, the largest number drawn will generally be
smaller than the largest number N in the vase. That means that we sometimes need
to adjust the maximum likelihood estimate in order to turn it into a good estimate.
However, without going into details, there are theorems in mathematical statistics stating
that the (adjusted) maximum likelihood estimates are the best, in a particular sentence.
We will illustrate this by means of the example from the beginning of this chapter about
estimating German war production.

7
C = 311657028822819441451842682167854800096263625208359116504431153487280760832000000000.
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Figure 6.6: Histograms of 2000 values of s1 (left panel) and s2 (right panel).

Accuracy of two estimators: a computer simulation. After the problem had
been reduced to estimation of the number of balls in a vase numbered 1, 2, . . . , N , via
some ad hoc reasoning we arrived at two estimators

s1 = 2x̄− 1

s2 =
n+ 1

n
m.

Looking back, we can now see that s2 is the adjusted maximum likelihood estimate.
Furthermore, we note that s1 is in fact the result of the method of moments. Without
going further into mathematical details, we show the performance of both estimators by
means of a computer simulation.

Suppose the vase contains N = 1000 balls and that we draw n = 10 balls from
the vase without replacement. We can imitate this on a computer. Thereafter we can
calculate estimates s1 and s2 based on the numbers drawn. We can easily repeat this
procedure on the computer, say 2000 times. Because the 10 numbers are drawn randomly,
with any repetition of the procedure slightly different numbers will be drawn and the
value of the estimates s1 and s2 will vary. For a reasonable method of estimation, we
would like the estimates to vary around the parameter of interest, in our case N = 1000.
Finally, the method that varies the least can then be regarded as the best.

Figure 6.6 shows the results of this computer simulation, summarized in two his-
tograms. We see that for both methods, the estimates vary around N = 1000. In fact,
for this simulation, the average of the two thousand s1 values is 998.15. Although the
histogram of the s2 values is skewed, the average of the two thousand s2 values is equal
to 1001.52. In short, both estimation methods are on average “on target”. We can also
prove this mathematically, by means of the notion of unbiasedness, but we will do that
in the second-year course Introduction to Statistics.

More interesting is that the values of s2 vary much less around N = 1000 than the
values of s1. We can also formalize this mathematically by using the notion of variance,
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but once more we will do this in a follow-up course. It appears that the amount of
variation of estimate s1 is four times larger than that of s2. One can show that in general,
the amount of variation of estimate s1 is a factor (n + 2)/3 times larger than that of
s2. In short, with larger data sets, the difference in accuracy between s1 and s2 only
increases. The estimate s2, based on the maximum likelihood estimate is to be preferred
above s1.

Results in the Second World War. During the Second World War estimation
method s2 was used. After the end of the war, it appeared how accurate the estimates
were, especially compared with the estimates delivered by the secret service during the
war. A good example are the estimates for the average monthly production of tires
in 1943. The data are summarized in Table 6.3. The maximum likelihood estimates
hardly differ from the actual figures. The estimates of the secret service for total monthly
production, likely to be influenced by the German propaganda machine, turned out to
be a factor five too high. Other examples concern the production of trucks in 1942, see
Table 6.4, and the average monthly production of tanks, see Table 6.5.

Table 6.3: Average monthly production of tires in 1943.

Type of tire estimate true production secret service

Truck and car 147 000 159 000
Airplane 28 500 26 400

——— ———
Total 175 500 186 100 900 000 – 1 200 000

Table 6.4: Production of trucks in 1942.

Type of truck estimate true production

Light truck 16 500 14 436
Medium truck 62 300 53 439
Heavy truck 18 500 11 952

——— ———
Total 97 300 79 827

secret service

200 000
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Table 6.5: Average monthly production of tanks in 1940-1942.

Date estimate true production

June 1940 169 122
June 1941 244 271
August 1942 327 342

secret service

1000
1550
1550

6.3 Exercises

Exercises for Section 1

Exercise 6.17 Suppose A and B are two events with P (A) = 0.3, P (B) = 0.4, and
P (A ∩B) = 0.2. What is P (Ac ∩B)?

Exercise 6.18 Give a formal proof of the following rule

P (A ∪B) = P (A) + P (B)− P (A ∩B),

by making use of Definition 6.1.

Exercise 6.19 Generally P (A | C) + P (A | Cc) = 1 is not true. Come up with a
counter example.

Exercise 6.20 A student participates in a multiple-choice exam. Suppose that for each
question, he either knows the answer, or randomly choses from the four different options.
When he knows the answer, the probability of a correct answer is 1 and equal to 1/4, if
he gambles. To pass the exam you must answer 60% of the questions correctly. Suppose
the student has “learned for a 6”, i.e., the probability that he knows the answer to a
question is 0.6. What is the probability that the student actually knows the answer,
given that he answered the question correctly?

Exercises for Section 2

Exercise 6.21 One conducts a series of 100 experiments that can result in “success”
and “failure”. The outcomes of the different experiments are independent of each other
and in each experiment the probability of “success” is equal to some unknown number
p ∈ [0, 1]. One finds 63 “successes”.

(i) Give the formula for the likelihood L(p).

(ii) Compute the maximum likelihood estimate for p.
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Exercise 6.22 One conducts a series of n experiments that can result in “success” and
“failure”. The outcomes of the different experiment are independent of each other and in
each experiment the probability of “success” is equal to some unknown number p ∈ [0, 1].
One finds k “successes”.

(i) Give the formula for the likelihood L(p).

(ii) Compute the maximum likelihood estimate for p.

Exercise 6.23 During a survey in the London subway, at a particular subway station
one counted how many women were present in 100 rows each consisting of 10 people. In
this way, a data set was formed with numbers x1, x2, . . . , x100, where xi is the observed
number of women in the i-th row, for i = 1, 2, . . . , 100. We assume that the rows are
independent of each other, as well as the gender of the persons in the different positions
in a row. Suppose that for each row and for each position, the probability of a woman is
equal to p.

(i) What is the probability of having xi women in the i-th row?

(ii) Give the formula of the likelihood L(p), the probability of the data x1, x2, . . . , x100.

(iii) Give the formula of the maximum likelihood estimate for p.

The data is summarized in the table below.

Number of women 0 1 2 3 4 5 6 7 8 9 10
Number of rows 1 3 4 23 25 19 18 5 1 1 0

Source: R.A. Jinkinson and M. Slater. Critical discussion of a graphical method for iden-
tifying discrete distributions. The Statistician, 30:239–248, 1981; Table 1 on page 240.

(iv) Compute the maximum likelihood estimate on the basis of the table above.

(v) What is the method of moments estimate?

Exercise 6.24 Events that occur with a very small probability, but which can take
place at any position in a particular area, in such a way that the average number of
events per unit of area is more or less constant, say λ > 0, are often modeled by a Poisson
probability distribution:

P (k events) =
λk

k!
e−λ, for k = 0, 1, 2, . . .

A nice example concerns bombs hitting London during World War II. An area of 36 km2

in South London was subdivided into 576 squares with sides of 1/4 kilometer. In each of
the 576 square subdivisions, the number of hits was counted of V2 missiles, fired by the
German army on London. In this way, a dataset x1, x2, . . . , x567 was collected, where xi
is the number of hits in the i-th square. The data are summarized in the table below,
which lists the number of squares with 0 hits, 1 hit, 2 hits, and so on.
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Aantal hits 0 1 2 3 4 5 6 7
Aantal vierkanten 229 211 93 35 7 0 0 1

Source: R.D. Clarke. An application of the Poisson distribution. Journal of the Institute
of Actuaries, 72:48, 1946; Table 1 on page 481. c© Faculty and Institute of Actuaries.

On the basis of this information we want to compute the maximum likelihood estimate
for the parameter λ, which represents the number of hits in a square with sides of 1/4
kilometer.

(i) Deduce that the likelihood of the data is given by

L(λ) = C × 1

(2!)93 × (3!)35 × (4!)7 × (7!)
λ537e−576λ

where C is the number of possibilities for having 229 times a 0, 211 times a 1,. . . , 1
time a 7.

(ii) Compute the maximum likelihood estimate for λ.

Exercise 6.25 A vase contains balls numbered from n, n+ 1, . . ., where n is unknown
as well as the total number of balls in the vase. We randomly draw 5 balls out of the
vase without replacement:

40 28 7 44 18

(i) Sketch the graph of the likelihood L(n).

(ii) What is the maximum likelihood estimate for n?
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Hints and answers

Graphs

Solution 1.1

The edge set is given by E = {{1, 3}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {3, 6}, {4, 6}, {5, 6}}.

Solution 1.2

There are 210 graphs with node set {1, 2, 3, 4, 5}.

Solution 1.3

The graph Cn has n edges. The graph Kn has
(
n
2

)
= n(n−1)

2 edges.

Solution 1.4

There are 10 nodes of degree 3.

Solution 1.5

We have f(5) = 12.

Solution 1.6

Such a graph does not exist since it would have 3·17
2 = 25.5 edges by the Handshaking

lemma.

Solution 1.8

Hint. What are the possible degrees of a node in a graph on n nodes?

Solution 1.9

(a) 410

(b) 5 + 20 + 60 + 120 + 120 = 325

Solution 1.12

The graph has two connected components.

97
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Solution 1.13

a) 3

b) 5

Solution 1.17

Precisely when n is odd.

Solution 1.18

There is no such walk.

Solution 1.19

Hint. Make a complete graph with node set {0, 1, . . . , 6}. The 21 edges represent the
dominoes with unequal numbers of pips. This is an Eulerian graph.

Solution 1.20

No, No, Yes.

Solution 1.23

Hint. Remove 5 nodes to obtain a graph with 6 connected components.

Solution 1.24

An example is the cyclic graph on five nodes C5.

Solution 1.25

Hint. Make a graph whose nodes are the binary words of length n, and two words form
an edge if they differ in exactly one bit. For n = 2 this is a ‘square’, for n = 3 this is a
‘cube’, for n = 4 a ‘hypercube’ and so on.

Solution 1.26

a) Hint. Consider a path of maximum length. Why do the first and last node have
degree 1 in the graph?

b) A tree with n nodes has n− 1 edges.

Solution 1.27

n!, (n−1)!
2 .

Solution 1.29

The octahedral graph is Eulerian.

Complex Numbers
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Solution 2.1

a) 15 + 5i

b) 128− 128i

c) 128 + 128i

Solution 2.2

a) 1
2 + 1

2 i and −1
2 i

b) −i and i

c) 1
5 − 2

5 i

Solution 2.4

z2 = −1
2 − 1

2 i
√

3, z3 = 1, z4 = −1
2 + 1

2 i
√

3, etc.

z1000 = −1
2 + 1

2 i
√

3, z1001 = −1
2 − 1

2 i
√

3

Solution 2.5

−2 + i, 1− 3i, 2 + 5i, rotation over angle 1
2π.

Solution 2.6

2i, −2 + 2i, −4, −4− 4i, · · · , 16.

Solution 2.7

w1 = a, w2 = b, w3 = (a+ b) + (a+ b)i

Solution 2.8

−5i = 5(cos 3
2π + i sin 3

2π);

−
√

6 +
√

2i = 2
√

2(cos 5
6π + i sin 5

6π);

−3− 4i = 5(cosψ + i sinψ), ψ = − arctan 4
3 .

Solution 2.9

cos( 1
12π) = 1

4(
√

6 +
√

2) and sin( 1
12π) = 1

4(
√

6−
√

2)

Solution 2.10

w1 = 2 + 4i, w2 = −3 + i, w3 = −2− i, w4 = 8
5 − 6

5 i = 2
5(3− 4i)

Solution 2.12√
3− i

Solution 2.13

zk =
√

2
(
cos(14 + 2

5kπ) + i sin(14 + 2
5kπ)

)
, k = 1, 2, 3, 4, 5;

Note that z5 = 1 + i and that all solutions lie on a circle of radius
√

2 around the origin.
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Optimization in networks

Solution 3.1

Determine, for each vertex v, the number of paths from s to v. Consider the vertices v
in a handy order, considering t last. The solution is 16.

Solution 3.2

Verify that this proporty holds in the beginning and is preserved in each iteration.

Solution 3.3

Here you need to use that the lengths of the arcs are non-negative.

Solution 3.4

Use Exercise 3.2 for one inequality and consider the vertices on a shortest path from s
to u for the other inequality.

Solution 3.8

Add up the balance equations for all v ∈ V \ {s, t}.

Solution 3.10

a) The lengths of the shortest paths are 0, 2, 4, 6, 1, 4, 5 and 8.

Solution 3.13

a) 34

b) 17

Differentialequations

Counting

Solution 5.2

[5]0 = {∅}, [5]1 = {{1}, {2}, {3}, {4}, {5}} en
[5]2 = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}.

Solution 5.4

The probability of getting a hand with only red cards is 26!39!
13!52! .

The probability of getting all cards in one suit is 13!39!
52! .

Solution 5.29

220 and 620 respectively.
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Solution 5.32

There are 2n maps from n to 2. Which 2 are non-surjective?

Solution 5.34
310−3·210+3

6 = 9330

Solution 5.35

2100

Probability and Statistics

Solution 6.1

a) A = {MMK,MKM,KMM, }, B = {MMK,MKM,KMM,MMM},
C = {KKK,KMK,KKM,KMM} en D = {MKK,MMK,MKM,MMM}.

b) Ac = {KKK,MKK,KMK,KKM,MMM},
A ∪ (C ∩D) = {MMK,MKM,KMM} and A ∩Dc = {KMM}.

Solution 6.3
3
7

Solution 6.5
1
4

Solution 6.7

0.1000078

Solution 6.9

0.09016

Solution 6.17

0.2

Solution 6.20
6
7

Solution 6.21

a) L(p) =
(
100
63

)
p63(1− p)37

b) p = 0.63

Solution 6.24

b) λ = 537
576
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