Borel circle-squaring Tá scéilín agam

K. P. Hart

Faculty EEMCS TU Delft

Delft, 12 December, 2017

The problem

Fundamenta Mathematicae, 1925:

38) Un carré et un cercle dont les aires sont égales peuvent-ils être décomposés en un nombre fini de sous-ensembles disjoints respectivement congruents?

Problème de M. Tarski.

No restrictions on the nature of the pieces.

History About the proof

The problem

by dividing it into finitely many subsets and rearranging them, using rigid motions.

The Riemann Mapping Theorem does not count.

Compass and straightedge

First attempt would be: compass and straightedge.

Conspicuously absent in Euclid's Elements.

One would have to construct a line segment of length π .

Archimedes: the disc has the same area as a triangle with base π and height 1.

Compass and straightedge

We now know why this would not work.

Every constructible number is algebraic (of degree a power of 2). Lindemann (1882): π is transcendental.

We all know the Banach-Tarski phenomenon.

One can decompose the unit ball into finitely many subsets; rearrange these subsets using rigid motions; and reassemble them into two unit spheres.

There is no Banach-Tarski phenomenon in the plane.

Why?

Because . . .

The plane

Theorem

There is a finitely additive and isometry-invariant extension of (planar) Lebesgue-measure to the full power set of \mathbb{R}^2 .

So, in the plane the condition 'of equal measure' is important.

Dubins, Hirsch, and Karush: not with scissors.

You cannot make a jig-saw puzzle out of the disc that can also be laid out as a square.

Jig-saw puzzle: the pieces are Jordan-curves-plus-their-interior-domains. We allow overlap on the boundaries.

Scissors maybe?

Why?

An informative picture on the blackboard.

Laczkovich (1990): it can be done using translations only.

But it needs the Axiom of Choice and the pieces are not very nice (not measurable).

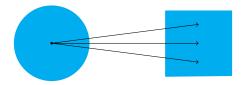
Marks and Unger (2016): it can be done using translations only.

And with Borel measurable pieces.

In fact the complexity of the pieces is not higher than five.

History About the proof

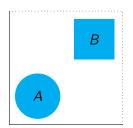
How to translate



Where should that point go?

We work in the unit square $S = [0, 1)^2$.

Let A and B be scaled versions in S of our disc and square respectively.



Very technical lemma

For almost every $u \in S^5$ there are $\varepsilon > 0$ and M > 0 such that for every $x \in S$ and N > 0

$$D(F_N(x, u), X)) \leqslant M \cdot N^{-1-\varepsilon}$$

for both X = A and X = B.

What is all that?

• $F_N(x, u)$ is the set of all \mathbb{Z} -linear combinations

 $x + n_1 u_1 + n_2 u_2 + n_3 u_3 + n_4 u_4 + n_5 u_5$

with integer n_i such that $0 \le n_i < N$ for all i. These are reduced modulo 1 (to get back into S).

• D(F, X) is the 'discrepancy' of F relative to X:

$$D(F,X) = \left| \frac{|F \cap X|}{|F|} - \lambda(X) \right|$$

We take one such u and use it to define a directed graph on S. From every x there emanate five arrows: $x \to x + u_1$, $x \to x + u_2$, $x \to x + u_3$, $x \to x + u_4$, and $x \to x + u_5$. (Everything still reduced modulo 1.)

Very technical lemma

For almost every $u \in S^5$ there are $\varepsilon > 0$ and M > 0 such that for every $x \in S$ and N > 0

$$D(F_N(x,u),X)) \leqslant M \cdot N^{-1-\varepsilon}$$

for both X = A and X = B.

So this Lemma says that we can take, uniformly, graph-neighbourhoods of every point that approximate the measures of A and B as well as we please.

First choose a suitably large N to have the corresponding graph-neighbourhoods give good approximations of A and B.

It is then possible to define a Borel-measurable flow φ on the graph such that

- every point of A produces 1
- every point of B receives 1
- all other points of S produce/receive 0

How to choose?

Via this flow you can construct a Borel-measurable bijection $f: A \to B$ such that for every $x \in A$ the value f(x) is in the graph-neighbourhood $F_N(x, u)$.

But now we have 5^N translations $\{T_k : k = 1, ..., 5^N\}$ such that for every x there is a k with $f(x) = T_k(x)$.

There is your partition: $A_k = \{x \in A : f(x) = T_k(x)\}.$

During a lecture in February Andrew Marks mentioned the following upper bound for the number of pieces: 10^{220} .

Light reading

Andrew S. Marks and Spencer T. Unger Borel Circle Squaring, https://arxiv.org/abs/1612.05833

