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The problem

Fundamenta Mathematicae, 1925:

No restrictions on the nature of the pieces.
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The problem

So: change into

by dividing it into finitely many subsets and rearranging them,
using rigid motions.

The Riemann Mapping Theorem does not count.
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Compass and straightedge

First attempt would be: compass and straightedge.

Conspicuously absent in Euclid’s Elements.

One would have to construct a line segment of length π.

Archimedes: the disc has the same area as a triangle with base π
and height 1.
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Compass and straightedge

We now know why this would not work.

Every constructible number is algebraic (of degree a power of 2).

Lindemann (1882): π is transcendental.
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Banach-Tarski

We all know the Banach-Tarski phenomenon.

One can decompose the unit ball into finitely many subsets;
rearrange these subsets using rigid motions;
and reassemble them into two unit spheres.
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The plane

There is no Banach-Tarski phenomenon in the plane.

Why?

Because . . .
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The plane

Theorem

There is a finitely additive and isometry-invariant extension of
(planar) Lebesgue-measure to the full power set of R2.

So, in the plane the condition ‘of equal measure’ is important.
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Scissors maybe?

Dubins, Hirsch, and Karush: not with scissors.

You cannot make a jig-saw puzzle out of the disc that can also be
laid out as a square.

Jig-saw puzzle:
the pieces are Jordan-curves-plus-their-interior-domains.
We allow overlap on the boundaries.
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Scissors maybe?

Why?

An informative picture on the blackboard.
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Ugly sets

Laczkovich (1990): it can be done using translations only.

But it needs the Axiom of Choice and the pieces are not very nice
(not measurable).
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Nicer sets

Marks and Unger (2016): it can be done using translations only.

And with Borel measurable pieces.

In fact the complexity of the pieces is not higher than five.
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How to translate

Where should that point go?
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Finding veeery many candidates

We work in the unit square S = [0, 1)2.

Let A and B be scaled versions in S of our disc and square
respectively.

A

B

K. P. Hart Borel circle-squaring 16 / 23



History
About the proof

Finding veeery many candidates

Very technical lemma

For almost every u ∈ S5 there are ε > 0 and M > 0 such that for
every x ∈ S and N > 0

D
(
FN(x,u),X )

)
6 M · N−1−ε

for both X = A and X = B.

What is all that?
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Finding veeery many candidates

FN(x,u) is the set of all Z-linear combinations

x + n1u1 + n2u2 + n3u3 + n4u4 + n5u5

with integer ni such that 0 6 ni < N for all i .
These are reduced modulo 1 (to get back into S).

D(F ,X ) is the ‘discrepancy’ of F relative to X :

D(F ,X ) =

∣∣∣∣ |F ∩ X |
|F |

− λ(X )

∣∣∣∣
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Finding veeery many candidates

We take one such u and use it to define a directed graph on S .
From every x there emanate five arrows: x→ x + u1,
x→ x + u2, x→ x + u3, x→ x + u4, and x→ x + u5.
(Everything still reduced modulo 1.)
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Finding veeery many candidates

Very technical lemma

For almost every u ∈ S5 there are ε > 0 and M > 0 such that for
every x ∈ S and N > 0

D
(
FN(x,u),X )

)
6 M · N−1−ε

for both X = A and X = B.

So this Lemma says that we can take, uniformly,
graph-neighbourhoods of every point that approximate the
measures of A and B as well as we please.
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How to choose?

First choose a suitably large N to have the corresponding
graph-neighbourhoods give good approximations of A and B.

It is then possible to define a Borel-measurable flow ϕ on the
graph such that

every point of A produces 1

every point of B receives 1

all other points of S produce/receive 0
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How to choose?

Via this flow you can construct a Borel-measurable bijection
f : A→ B such that for every x ∈ A the value f (x) is in the
graph-neighbourhood FN(x,u).

But now we have 5N translations {Tk : k = 1, . . . , 5N} such that
for every x there is a k with f (x) = Tk(x).

There is your partition: Ak =
{
x ∈ A : f (x) = Tk(x)

}
.

During a lecture in February Andrew Marks mentioned the
following upper bound for the number of pieces: 10220.

K. P. Hart Borel circle-squaring 22 / 23



History
About the proof

Light reading

Andrew S. Marks and Spencer T. Unger
Borel Circle Squaring, https://arxiv.org/abs/1612.05833
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