

# An infinite library

## Tá scéilín agam

K. P. Hart

Faculty EEMCS  
TU Delft

Pittsburgh, 15 January 2026: 17:00 – 18:00 (CEST)

## Regular but not completely regular

We make a regular space that is almost-but-not-quite completely regular.

Almost:

All closed subsets are  $G_\delta$ -sets.

All points are zero-sets.

Not quite:

It is not completely regular

## Why?

Guram Bezhanishvili had a remark and a question:

The lattice  $O(X)$  of open subsets of a space  $X$  is the Dedekind-MacNeille completion of the lattice  $Coz(X)$  of cozero-sets iff  $X$  is completely regular and its points are zero-sets.

Both conditions are used:

complete regularity gives: every open set is the supremum of a family of cozero-sets  
points are zero-sets gives: every open set is the infimum of a family of cozero-sets  
these two together work together to make  $O(X)$  the D-M completion of  $Coz(X)$

And the question is, of course:

Can we weaken complete regularity to mere regularity?

Or: if points are zero-sets in a regular space is the space then completely regular?

## Many old examples do not work

Why?

Because they tend to have a closed set  $F$  and a point  $x$  outside  $F$  such that if  $f$  is continuous then there are quite a lot of points  $y$  in  $F$  such that  $f(y) = f(x)$ .

Exercise

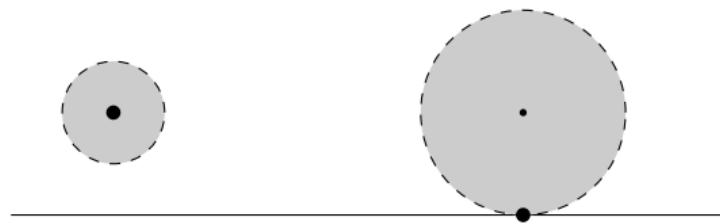
Verify this for Tychonoff's example of a regular space that is not completely regular (not the corkscrew in Steen and Seebach's book, but the accordeon in [Tychonoff's original paper](#)).

And many of the classical examples have many closed sets that are not  $G_\delta$ .

## The definition

On page 31 of Alexandroff and Hopf's *Topologie I*:

2°.  $R$  sei die Menge aller Punkte der Halbebene  $y \geq 0$  (es sind  $x$  und  $y$  Cartesische Koordinaten). Ist  $p = (x, y)$  und  $y > 0$ , so soll jede offene Kreisscheibe mit dem Mittelpunkt  $p$  und einem Radius  $< y$  Umgebung von  $p$  sein. Ist aber  $y = 0$ , so bestehe eine Umgebung von  $p$  aus dem Punkt  $p$  selbst und aus allen Punkten einer beliebigen offenen Kreisscheibe, die in der Halbebene  $y > 0$  liegt und deren Randkreis die  $x$ -Achse im Punkte  $p$  berührt<sup>1</sup>.



<sup>1</sup> Dieses Beispiel führt von Herrn NIEMYCKI her (vgl. § 6, Nr. 3).

## Its properties

What happens in § 6, Nr. 3? In § 6 we find:

**3. Beispiele.** Die in § 1, Nr. 1, unter 3° angeführte Konstruktion liefert, falls der Ausgangsraum  $R$  z. B. die Zahlengerade ist, einen topologischen Raum, welcher dem ersten, aber nicht dem zweiten Trennungsaxiom genügt. Der Raum von § 1, Nr. 4, 6°, ist ein Hausdorffscher irregulärer Raum, ebenso der Raum von § 1, Nr. 6, 1°. Der Raum von § 1, Nr. 6, 2°, ist regulär, jedoch nicht normal. In § 1, Nr. 4, 5°, ist ein Beispiel eines normalen nicht metrisierbaren Raumes gegeben.

So, the space  $R$  is regular but not normal.

## Its properties

On the next page we get

**Aufgabe.** Man führe die Beweise der hier aufgestellten Behauptungen durch. Anweisung: die untrennbar Mengen sind:

im Falle von § 1, Nr. 4, 6°, ein beliebiger Punkt  $(x_1, y_1)$  und die Menge aller Punkte  $(x_1, y)$ , mit  $y_1 < y < 1$ ;

im Falle § 1, Nr. 6, 1°, der Nullpunkt und die Menge  $D$ ;

im Falle § 1, Nr. 6, 2°, die Menge der rationalen und die der irrationalen Punkte der  $x$ -Achse<sup>1</sup>.

And in a footnote a further hint:

<sup>1</sup> Dieser letzte Fall ist etwas komplizierter als die übrigen; beim Beweis wird von der Tatsache Gebrauch gemacht, daß die Zahlengerade nicht als Summe von abzählbar-vielen nirgendsdichten Teilmengen dargestellt werden kann (Spezialfall des Baireschen Dichtigkeitssatzes, Kap. II, § 4, Satz V).

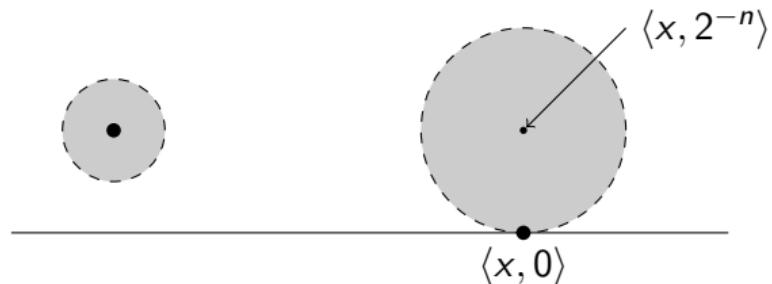
## Basic neighbourhoods

We need the basic neighbourhoods of the points on the  $x$ -axis.

For  $x \in \mathbb{R}$  and  $n \in \mathbb{N}$  we write

- ▶  $U'(x, n) = \{\langle u, v \rangle : \|\langle u, v \rangle - \langle x, 2^{-n} \rangle\| < 2^{-n}\}$  (the tangent disc of radius  $2^{-n}$ )
- ▶  $U(x, n) = \{\langle x, 0 \rangle\} \cup U'(x, n)$  (the  $n$ th neighbourhood of  $\langle x, 0 \rangle$ )

These are the sets that we will use frequently.



## Non-normality

Two important sets (remember the Aufgabe):

- ▶  $P = \{\langle x, 0 \rangle : x \text{ is irrational}\}$ , and
- ▶  $Q = \{\langle x, 0 \rangle : x \text{ is rational}\}$ .

As we saw, these two closed sets cannot be separated by disjoint open sets.

### Exercise

Prove this.

We shall study the behaviour of continuous functions on  $N$ ,  
and especially with respect to  $P$  and  $Q$ .

## An elementary but useful Lemma

### Lemma

Let  $n \in \mathbb{N}$ , let  $I = [a, b]$  be an interval in  $\mathbb{R}$ , and let  $D \subseteq I$  be dense in  $I$ . Then we have

$$\bigcup_{x \in D} U'(x, n) = \bigcup_{x \in I} U'(x, n)$$

### Proof.

Proof by picture. □

Now prove: if  $O$  is open in  $\mathbb{N}$  and  $P \subseteq O$  then  $\{q : \langle q, 0 \rangle \notin \text{cl } O\}$  is nowhere dense in  $\mathbb{Q}$  (normal topology).

## First lemma

### Lemma

Let  $f : N \rightarrow [0, 1]$  be continuous and such that  $f(x, 0) = 0$  when  $x \in P$ . Then for every open interval  $I$  in  $\mathbb{R}$  we have

$$\inf\{f(q, 0) : q \in I \cap \mathbb{Q}\} = 0$$

### Proof.

Let  $I$  and  $\varepsilon > 0$  be given. By the Baire Category theorem there are a  $k \in \mathbb{N}$  and an interval  $J \subseteq I$  such that

$$D = \{x \in P \cap J : f[U(x, k)] \subseteq [0, \frac{1}{2}\varepsilon)\}$$

is dense in  $J$  (normal topology). Then  $f(q, 0) < \varepsilon$  for all  $q \in J \cap \mathbb{Q}$ . □

## Second lemma

### Lemma

Let  $f : N \rightarrow [0, 1]$  be continuous and such that for every open interval  $I$  we have

$$\inf\{f(q, 0) : q \in I \cap \mathbb{Q}\} = 0$$

Then there is a dense  $G_\delta$ -set  $G$  in  $\mathbb{R}$  (normal topology) such that  $f(x, 0) = 0$  whenever  $x \in G$ .

### Proof.

Let  $k \in \mathbb{N}$ . Let  $I$  be a (nonempty) open interval in  $\mathbb{R}$ .

Let  $\varepsilon = 2^{-k}/3$  and cover  $[0, 1]$  by the open intervals  $K_i = (i\varepsilon, (i+2)\varepsilon)$  where  $i = -1, 0, \dots, 3 \cdot 2^k - 1$ . □

## Second lemma

Proof, continued.

By the Baire Category theorem there are  $i$  and  $n$  in  $\mathbb{N}$  and a (nonempty) open interval  $J \subseteq I$  such that

$$D = \{x \in J : f[U(x, n)] \subseteq K_i\}$$

is dense in  $J$  (normal topology).

So, by the elementary but useful lemma, we get that  $\bigcup_{x \in J} U'(x, n)$  is mapped into  $O_i$ .

Now take  $q \in J \cap \mathbb{Q}$  with  $f(q, 0) < \varepsilon$ .

But then  $f(q, 0) \in \text{cl } O_i$  and so  $i\varepsilon \leq f(q, 0)$ , we must have  $i \leq 0$ , and hence

$\bigcup_{x \in J} U'(x, n)$  is actually mapped into  $[0, 2\varepsilon]$ .

It follows that  $f(x, 0) \leq 2\varepsilon < 2^{-k}$  for all  $x \in J$ .

We get a dense open set  $O_k$  in  $\mathbb{R}$  (normal topology) such that  $f(x, 0) < 2^{-k}$  for all  $x \in O_k$ .

Now let  $k$  run free and take  $G = \bigcap_{k \in \mathbb{N}} O_k$ .

□

## If and only if

Note: the first lemma works not only for  $P$  but also for an arbitrary dense  $G_\delta$ -set  $G$ .

This gives us a sort of “if and only if”:

a continuous function  $f : N \rightarrow [0, 1]$  is zero on  $\{\langle x, 0 \rangle : x \in G\}$  for some dense  $G_\delta$ -set  $G$  if and only if  $\inf\{f(q, 0) : q \in I \cap \mathbb{Q}\} = 0$  for every nonempty open interval  $I$ .

## Reams of Niemytzki planes

Take infinitely many Niemytzki planes:  $R = N \times \mathbb{N}$  (yes,  $R$  for ream), with the product topology, where  $\mathbb{N}$  is discrete.

Sew them together to form a book, as follows.

- ▶ For every even  $n$  and every irrational  $p$  identify the two points  $\langle\langle p, 0 \rangle, n \rangle$  and  $\langle\langle p, 0 \rangle, n + 1 \rangle$ .
- ▶ For every odd  $n$  and every rational  $q$  identify the two points  $\langle\langle q, 0 \rangle, n \rangle$  and  $\langle\langle q, 0 \rangle, n + 1 \rangle$ .

The resulting quotient space we call  $B$  (yes,  $B$  for book).

We let  $\pi : R \rightarrow B$  be the quotient map.

## Some easy properties

Exercise 1.5.H in Engelking's book

Every closed subset of  $N$  is a  $G_\delta$ -set.

Lemma

*The map  $\pi$  is perfect, hence  $B$  is regular.*

Lemma

*Every closed set in  $B$  is a  $G_\delta$ -set.*

## Continuous functions on $B$

Let  $f : B \rightarrow [0, 1]$  be continuous and  $F : R \rightarrow [0, 1]$  the composition of  $\pi$  and  $f$ .

### Lemma

*If  $F(x, 0, 0) = 0$  for all  $x \in \mathbb{R}$  then there is a dense  $G_\delta$ -set  $G$  in  $\mathbb{R}$  (normal topology) such that for all  $x \in G$  and all  $n \in \mathbb{N}$  we have  $F(x, 0, n) = 0$ .*

### Proof.

Apply the First and Second lemmas alternatingly to obtain, by recursion, for each even  $n$  a dense  $G_\delta$ -set  $G_n$  such that  $F(x, 0, n+1) = F(x, 0, n) = 0$  for all  $x \in G_n$ .

Then let  $G = \bigcap_{n \text{ even}} G_n$ .



## Add a point to $R$ and $B$

Add a point  $\infty$  to  $R$ , with basic neighbourhoods

$$U_m = \{\infty\} \cup \bigcup_{n \geq m} (N \times \{n\})$$

and add it to  $B$  also.

Give  $B \cup \{\infty\}$  the quotient topology induced by the map  $\pi$ , extended to give  $\pi(\infty) = \infty$ .

The new map is still perfect, so  $B \cup \{\infty\}$  is regular.

But  $B \cup \{\infty\}$  is not completely regular.

For if  $f : B \cup \{\infty\} \rightarrow [0, 1]$  is continuous and equal to zero on the bottom leaf then by the last lemma we must have  $f(\infty) = 0$  (in  $R$  the point  $\infty$  is in the closure of  $G \times \mathbb{N}$ ).

## One book is not enough

The book-with-ornament  $B \cup \{\infty\}$  comes close to giving us what we want.

In the space  $B \cup \{\infty\}$  all closed sets are  $G_\delta$ -sets.

The subspace  $B$  is in fact completely regular, and all points of  $B$  are zero-sets of  $B \cup \{\infty\}$ .

But  $\{\infty\}$  is only a  $G_\delta$ -set, not a zero-set.

### Exercise

Prove this: if  $f : B \rightarrow [0, 1]$  is continuous then  $\{x \in \mathbb{R} : (\forall n)(f(x, 0, n) = f(\infty))\}$  contains a dense  $G_\delta$ -set.

So ...

## We build a library

... we take infinitely many books (eat your heart out Borges).

Start with  $N \times \mathbb{N} \times \mathbb{N}$  and add a point  $\infty$ , with basic neighbourhoods

$$V_k = \bigcup_{m \geq k} \bigcup_{n \geq k} N \times \{\langle m, n \rangle\}$$

Then turn each column  $N \times \{m\} \times \mathbb{N}$  into a book  $B_m$ , as above:

- ▶ identify  $\langle \langle p, 0 \rangle, m, 2n \rangle$  and  $\langle \langle p, 0 \rangle, m, 2n + 1 \rangle$ , when  $p$  is irrational, and
- ▶ identify  $\langle \langle q, 0 \rangle, m, 2n + 1 \rangle$  and  $\langle \langle q, 0 \rangle, m, 2n + 2 \rangle$ , when  $q$  is rational

## We build a library

The resulting space  $L$  (yes,  $L$  for library), is again regular and  $L \setminus \{\infty\}$  is a collection of books, hence completely regular even.

As before all closed sets are  $G_\delta$  in  $L \setminus \{\infty\}$ , and hence in  $L$  because  $\{\infty\}$  is a  $G_\delta$  too.

If we let  $f : L \rightarrow [0, 1]$  be continuous and identically zero on all pages 0 of the books then we must have  $f(\infty) = 0$  as well, because we get a single dense  $G_\delta$ -set  $G$  in  $\mathbb{R}$  (normal topology) such that  $f(x, m, n) = 0$  for all  $x \in G$  and all  $m$  and  $n$ .

But  $\{\infty\}$  is in fact a zero-set because the function  $f : L \rightarrow [0, 1]$ , defined by

- ▶  $f(\infty) = 0$ , and
- ▶  $f(x) = 2^{-m}$  if  $x \in B_m$

is continuous and zero only at  $\infty$ .

## A connected example

Actually, if we topologize  $R \cup \{\infty\}$  slightly differently we can make do with just one book.

Basic neighbourhoods of  $\{\infty\}$

$$W_k = \{\infty\} \cup \bigcup_{n \geq k} ((k, \rightarrow) \times [0, \rightarrow) \times \{n\})$$

If we now make a book we still cannot separate the zeroth leaf from  $\infty$ .

But  $f : B \cup \{\infty\} \rightarrow [0, \infty)$  defined by  $f(\infty) = 0$  and  $f(x, y) = e^{-x}$  shows that  $\{\infty\}$  is a zero-set.

## Light reading



K. P. Hart,

*An Infinite Library*, [arXiv:2508.13325 \[math.GN\]](https://arxiv.org/abs/2508.13325)