
and exhibit residual binding to CD25.
Silva et al. therefore began afresh, and set out 

to design a protein structure from scratch that 
would provide a stable scaffold onto which they 
could add the structural elements required 
to produce the specific protein surfaces that 
bind to IL-2Rβ and IL-2Rγ. Crucially, these 
binding surfaces must be correctly positioned 
relative to each other in space to ensure that 
the designer cytokine engages the IL-2Rβγc 
hetero dimer and triggers signalling. 

The authors obtained information about 
the structural and spatial requirements of their 
designer cytokine by analysing the crystal struc-
tures of naturally occurring cytokine–recep-
tor complexes7,8. IL-2 is one of a large family 
of cytokines that have at their core a bundle 
of four structural elements termed α-helices 
(Fig. 1a). These four α-helices are linked, in a 
defined order, by a series of short or long con-
necting loops. Instead of keeping this particular 
arrangement of α-helices and re-engineering 
the binding surfaces, Silva et al. reversed the 
process. They started by defining the posi-
tions of the all-important binding surfaces, and 
then used computational methods to design 
an arrangement of α-helices that not only links 
these surfaces but is also predicted to be stable.

The proof of the pudding is in the eating, 
however. When the authors prepared and 
characterized the best candidates from the 
first round of design, the proteins showed 
promise in terms of IL-2Rβγc binding, but had 
fairly poor thermal stability. Clearly, the recipe 
required some improvement. Silva et al. went 
back to the drawing board, taking the best 
arrangement of α-helices from the first round 
and substantially extending the computational 
search for optimal loops to link them together. 
This second round of design-generated candi-
dates had improved stability and exhibited 
excellent binding to IL-2Rβγc. 

Silva et al. then carried out an additional, 
experimentally driven round of mutagen-
esis — a fine-tuning process in which single 
amino-acid residues are changed — to enhance 
the binding properties of the best candidate 
proteins, and then fully characterized the 
cytokine that had the highest overall binding 
affinity for IL-2Rβγc. The results are impres-
sive. The final designer cytokine is highly 
stable and binds strongly to IL-2Rβγc, but not 
at all to CD25. Excitingly, this new protein is 
effective as a therapy in mouse models of skin 
and colon cancer, delivering the immuno-
therapeutic effects characteristic of natural 
IL-2, but with lower toxicity. The authors 
named their designer protein Neoleukin-2/15 
(Neo-2/15), because it is a new cytokine that 
mimics natural interleukins 2 and 15. 

The researchers then determined the 
crystal structure of Neo-2/15 in complex with 
IL-2Rβγc. Gratifyingly, the binding surfaces 
are positioned as designed, and the four-helix 
bundle matches the computational blueprint 
with almost pinpoint accuracy. The redesign 
of the interleukin’s four-helix bundle achieved 

by Silva et al. is remarkably radical: the order 
in which the α-helices are linked has been 
re arranged (Fig. 1b), and the amino-acid 
sequence of the resulting 100-residue protein 
is very different from that of either mouse or 
human IL-2. 

It remains to be seen whether Neo-2/15 
will deliver on its initial promise in the clinic. 
Moreover, perhaps the four-helix bundle is a 
particularly favourable case for re-engineering 
— other cytokine families that have more-
complex architectures might be harder to 
redesign. Nevertheless, Neo-2/15 excitingly 
demonstrates that bold de novo design, when 
combined with a deep knowledge of the struc-
tural determinants of receptor binding, can 
deliver designer cytokines that have bespoke 
binding properties. More broadly, Silva and 
colleagues’ approach to protein design has the 
potential for re-engineering any of the myriad 
biological systems that involve interactions 

between multiple proteins. In the meantime, 
the authors have opened up uncharted terri-
tory for therapeutics based on four-helix 
bundles, and there is plenty still to explore. ■
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C O M P U T E R  S C I E N C E 

Unprovability comes to 
machine learning
Scenarios have been discovered in which it is impossible to prove whether or not 
a machine-learning algorithm could solve a particular problem. This finding 
might have implications for both established and future learning algorithms.

L E V  R E Y Z I N

During the twentieth centur y, 
discoveries in mathematical logic 
revolutionized our understanding of 

the very foundations of mathematics. In 1931, 
the logician Kurt Gödel showed that, in any 
system of axioms that is expressive enough 
to model arithmetic, some true statements 
will be unprovable1. And in the following 
decades, it was demonstrated that the con-
tinuum hypothesis — which states that no 
set of distinct objects has a size larger than 
that of the integers but smaller than that of 
the real numbers — can be neither proved 
nor refuted using the standard axioms of 
mathematics2–4. Writing in Nature Machine 
Intelligence, Ben-David et al.5 show that the 
field of machine learning, although seemingly 
distant from mathematical logic, shares this 
limitation. They identify a machine-learning 
problem whose fate depends on the contin-
uum hypothesis, leaving its resolution forever 
beyond reach.

Machine learning is concerned with the 
design and analysis of algorithms that can 
learn and improve their performance as they 
are exposed to data. The power of this idea is 
illustrated by the following example: although 
it seems hopelessly difficult to explicitly 

program a computer to determine what objects 
are in a picture, the Viola–Jones machine-
learning system can detect human faces in real 
time after being trained on a labelled sample 
of photographs6. Today, we regularly inter-
act with machine-learning algorithms, from 
virtual assistants on our phones to spam filters 
for our e-mail. But these modern real-world 
applications trace their origins to a subfield 
of machine learning that is concerned with 
the careful formalization and mathematical 
analysis of various machine-learning settings.

The goal of learning a predictor (a 
mathema tical function that can be used to 
make predictions) from a database of random 
examples was formalized in the aptly named 
probably approximately correct (PAC) 
learning model7. In this model, the aim is to 
train the predictor to match some true func-
tion that labels the data. A different model, 
called online learning, has the learner making 
immediate predictions as data arrive — for 
example, capturing a trading system’s task of 
executing transactions in an ever-changing 
market. And another model known as multi-
armed bandits can simulate clinical trials, in 
which the medical outcomes that an experi-
menter observes depend on his or her own 
choices.

These are only a few examples of the many 
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models used in machine learning. In each 
case, the basic goal is to perform as well, or 
nearly as well, as the best predictor in a family 
of functions, such as neural networks or deci-
sion trees. For a given model and function 
family, if this goal can be achieved under some 
reasonable constraints, the family is said to be 
learnable in the model.

Machine-learning theorists are typically able 
to transform questions about the learnability of 
a particular function family into problems that 
involve analysing various notions of dimension 
that measure some aspect of the family’s com-
plexity. For example, the appropriate notion 
for analysing PAC learning is known as the 
Vapnik–Chervonenkis (VC) dimension8, and, 
in general, results relating learnability to com-
plexity are sometimes referred to as Occam’s-
razor theorems9. These notions of dimension 
happen to be simple enough to leave no room 
for the spectre of unprovability to manifest 
itself. But Ben-David and colleagues show 
that machine learning cannot always escape 
this fate. They introduce a learning model 
called estimating the maximum (EMX), and 
go on to discover a family of functions whose 
learnability in EMX is unprovable in standard 
mathematics.

Ben-David et al. describe an example EMX 
problem: targeting advertisements at the most 
frequent visitors to a website when it is not 
known in advance which visitors will visit the 
site. The authors formalize EMX as a question 
about a learner’s ability to find a function, from 
a given family, whose expected value over a 
target distribution is as large as possible. EMX 
is actually quite similar to the PAC model, but 
the slightly different learning criterion surpris-
ingly connects it to the continuum hypothesis 
and brings unprovability into the picture.

The authors’ proof involves a beautiful 
connection between machine learning and 
data compression that was first observed10 in 
the 1980s. The intuition is that, if a training 
sample labelled by a function from some fam-
ily can always be compressed, the family must 
in some sense have low complexity, and there-
fore be learnable. Moreover, certain learning 
algorithms can be used to compress data. The 
authors introduce monotone compression — 
a variant of compression that they show to be 
appropriate for characterizing the learnability 
of particular function families in EMX.

Ben-David and colleagues then prove that 
the ability to carry out a weak form of mono-
tone compression is related to the size of 
certain infinite sets. The set that the authors 
ultimately use in their work is the unit interval, 
which is the set of real numbers between 0 and 
1. Their results imply that the finite subsets of 
the unit interval have monotone-compression 
schemes, and therefore are learnable in EMX, 
if and only if the continuum hypothesis is true, 
which is known to be unprovable.

Because EMX is a new model in machine 
learning, we do not yet know its usefulness for 
developing real-world algorithms. So these 

results might not turn out to have practical 
importance. But we do now know that we 
should be careful when introducing new 
models of learning. Moreover, we might need 
to look again at the many subtleties that can 
come up, even in established learning models.

Machine learning has matured as a math-
ematical discipline and now joins the many 
subfields of mathematics that deal with the 
burden of unprovability and the unease that 
comes with it. Perhaps results such as this one 
will bring to the field of machine learning a 
healthy dose of humility, even as machine-
learning algorithms continue to revolutionize 
the world around us. ■
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M E TA B O L I S M

Fat cells with a 
sweet tooth
Some fat cells convert energy into heat, so targeting them to induce weight loss is 
appealing. The discovery that a subset of the cells burns glucose, rather than both 
glucose and lipids, could improve our ability to do just that. See Article p.180

W E N F E I  S U N  &  C H R I S T I A N  W O L F R U M

Fat is often thought of as a means to store 
energy in the form of lipids. But this is 
just the role of white fat cells. The body 

also contains a second type of fat that burns 
the energy stored in nutrients to produce heat, 

enabling mammals to maintain their body 
temperature in a cold environment1. Activa-
ting this ‘thermogenic’ fat is thought to be an 
attractive way to combat obesity2. On page 180, 
Chen et al.3 identify a previously uncharac-
terized type of thermogenic fat cell, which is 
derived from a hitherto unknown cell lineage 

Figure 1 | Dual routes to heat-producing fat. a, White fat cells store energy. In wild-type mice under 
cold conditions, proteins called β-adrenergic receptors on fat-precursor cells (not shown) are activated 
by a β-adrenergic signalling pathway, which causes some precursors in white-fat tissues to differentiate 
into beige fat cells. This beige fat burns energy from both lipids and sugar to produce heat, maintaining 
body temperature. b, Chen et al.3 analysed β-less mice, which lack β-adrenergic receptors, meaning that 
β-adrenergic signalling is blocked. The authors showed that a different type of beige fat, dubbed glycolytic 
beige fat (g-beige fat), arises in these animals under cold conditions. The differentiation of these cells 
from a group of precursors that express the muscle-precursor protein MyoD (not shown) is driven by the 
transcription factor GABPα. The cells burn mainly glucose.
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