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Abstract. We show that in the class of Lindelöf Čech-complete
spaces the property of being C-embedded is quite well-behaved.
It admits a useful characterization that can be used to show that
products and perfect preimages of C-embedded spaces are again
C-embedded. We also show that both properties, Lindelöf and
Čech-complete, are needed in the product result.

Introduction

In [2] we investigated whether in realcompact spaces there could be
closed, countable, and discrete subspaces (closed copies of the space N of
natural numbers) that were C∗-embedded but not C-embedded, or even
not C∗-embedded. In the follow-up paper [3] we looked for the smallest
power of the real line R that could contain such closed copies of N.

In the present paper we consider more general spaces. It appears
that the members of the class of Lindelöf Čech-complete spaces behave
much like N as regards C-embedding. Our positive results characterize
C-embedding and allow us to conclude that, in this class, C-embedding is
preserved by products and perfect preimages. We also show, by means of

Date: 21-08-2024/15:08:48 (C-embedding-tp.tex).
2020 Mathematics Subject Classification. Primary 54C45; Secondary: 54D20,

54D35, 54D40, 54D60, 54G20.
Key words and phrases. C-embedding, Lindelöf, Čech-complete, product, perfect

preimage.
1



2 A. DOW, K. P. HART, J. VAN MILL, AND J. VERMEER

examples, that neither assumption, Lindelöfness nor Čech-completeness,
can be dropped in these results.

1. Preliminaries

All spaces in this paper are assumed to be, at least, Tychonoff spaces.
The books [4, 5] are our primary sources for all undefined topological
notions.

1.1. C-embedding. It behoves us to define the central notion of this
paper, that of C-embedding.

A subspace A of a space X is said to be C-embedded in X if every
continuous function from A to R admits a continuous extension to X.

In [5, Theorem 1.18], it is shown that A is C-embedded in X if and
only if

(1) it is C∗-embedded in X, that is, every bounded continuous func-
tion from A to R admits a continuous extension to X, and

(2) every zero-set Z that is disjoint from A is completely separated
from A, that is, there is a continuous function f : X → R such
that f(a) = 0 when a ∈ A and f(z) = 1 when z ∈ Z.

We shall use this equivalence in our proofs as well as the following
characterization of (1): if Z1 and Z2 are disjoint zero-sets of A then they
are completely separated in X, see [5, Theorem 1.17].

Also, given this equivalence one can weaken (1) to: A is z-embedded,
meaning that for every zero-set Z of A, there is a zero-set Z+ of X such
that Z = A∩Z+. The point is that if Z1 and Z2 are disjoint zero-sets of A
then the intersection Z+

1 ∩Z+
2 is a zero-set that is disjoint from A; then (2)

lets us make Z+
1 and Z+

2 a bit smaller so that they become disjoint.

Below we freely use the diagonal embedding e of a space X into RC(X),
defined by e(x) =

〈
f(x) : f ∈ C(X)

〉
. It is well known that e[X] is C-

embedded in the product and that e[X] is closed whenever X is realcom-
pact. Our examples are all realcompact, either because they are Lindelöf,
or discrete and of small enough cardinality. We recommend [5, Chapter 8]
and [4, Section 3.11] for basic information on realcompactness.

1.2. Rationals and irrationals. A few of the examples in Section 3
use some facts about the spaces of rational and irrational numbers, and
completely metrizable spaces, that we record here.

We let N denote the zero-dimensional Baire space NN, the product
of countably many copies of the discrete space N, denoted B(ℵ0) in [4,
Example 4.2.12]. In [4, Exercises 4.3.G and 4.3.H] we find the results
that we shall use below: N is homeomorphic to the subspace of irrational
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numbers in R, and any two countable dense subsets of R can be mapped
to each other by an autohomeomorphism of R.

1.3. Two technical results. In our examples we use Lavrentieff’s the-
orem, [4, Theorem 4.3.21], which states that if X and Y are completely
metrizable, with subspaces A and B respectively, and f : A → B is a
homeomorphism then f has an extension to a homeomorphism f̃ : Ã → B̃,
where Ã and B̃ are Gδ-sets.

We also use a result due to various authors, [4, Problem 2.7.12 (d)]:
Let κ be an infinite cardinal and let f : X → R be continuous, where X is
a product of a sequence ⟨Xα : α < κ⟩ of separable spaces. Then there are
a countable subset E of κ and a continuous function g :

∏
α∈E Xα → R

such that f = g ◦ πE , where πE : X →
∏

α∈E Xα is the projection — in
words: f factors through a countable subproduct.

2. Positive results

We begin by giving an external characterization of closed subspaces of
Tychonoff spaces that are both Lindelöf and C-embedded.

The following lemma characterizes C-embeddedness for arbitrary closed
subsets.

Lemma 2.1. Let A be a closed subset of a space X. Then the following
three conditions are equivalent.

(1) A is C-embedded in X.
(2) A is z-embedded in X and for every zero-set Z of clβX A that

is disjoint from A there is a zero-set Z+ of βX that is disjoint
from X and such that Z = Z+ ∩ clβX A.

(3) A is z-embedded in X and for every zero-set Z of clβX A that is
disjoint from A there is a countable family Z of zero-sets of βX
such that Z ⊆

⋃
Z ⊆ βX \X.

Proof. To prove that (1) implies (2) we take a zero-set Z of clβX A and
construct Z+, as follows. Let f : clβX A → [0, 1] be continuous such that
Z = {a ∈ clβX A : f(a) = 0} and consider its restriction f ↾A to A; this is
a function from A to (0, 1]. By C-embeddedness we have an extension F :
X → (0, 1] of f ↾A, which we then extend to βF : βX → [0, 1]. Then let
Z+ be the zero-set of βF .

That (2) implies (3) is clear so we turn to proving that (3) implies (1).
We already know that A is z-embedded in X, so let Z be a zero-

set of X that is disjoint from A; we show that Z and A are completely
separated. Let Zβ be a zero-set of βX such that Z = X ∩ Zβ and let
ZA = Zβ∩clβX A. Then ZA is a zero-set of clβX A that is disjoint from A.
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Let Z be a countable family of zero-sets of βX as in the assumption.
Say Z = {Zn : n ∈ ω}, and for every n let Cn = βX \ Zn be the
complementary cozero-set.

Then X ⊆ L =
⋂

n∈ω Cn, and by [7, Lemma 2.2] (or [4, Exercise 3.8.F])
the space L is Lindelöf. In addition the sets Zβ ∩ L and clβX A ∩ L
are closed and disjoint in L; as L is normal these sets are completely
separated in L, and so Z and A are completely separated in X, because
X ⊆ L ⊆ βX. □

Using this lemma we get our principal result.

Theorem 2.2. Let A be a closed subset of a space X. Then the following
three conditions are equivalent.

(1) A is Lindelöf and C-embedded in X.
(2) For every compact subset K of clβX A \ A there is a zero-set Z

of βX such that K ⊆ Z ⊆ βX \X.
(3) For every compact subset K of clβX A \ A there is a countable

family Z of zero-sets of βX such that K ⊆
⋃

Z ⊆ βX \X.

Proof. To prove that (1) implies (2) we let K be a compact subset of
clβX A \A and find a zero-set Z of βX such that K ⊆ Z ⊆ βX \X.

To begin we choose for every a ∈ A a continuous function fa : βX →
[0, 1] such that fa(a) = 1 and fa(x) = 0 if x ∈ K. For each a we let
Ua = f←

[
( 12 , 1]

]
. There is a countable subset {an : n ∈ ω} of A such that

A ⊆
⋃

n∈ω Uan .
Let g =

∑
n∈ω 2−nfan

. Then g is continuous, g(a) > 0 when a ∈ A,
and g(x) = 0 when x ∈ K. We would like to let Z = g←(0), but that
set may intersect X. However, S = {x ∈ X : g(x) = 0} is a zero-set
of X that is disjoint from A. As A is C-embedded in X the sets S and
A are completely separated. Let f : X → [0, 1] be continuous such that
f(x) = 1 if x ∈ S and f(a) = 0 if a ∈ A. Note that βf vanishes on clβX A
and in particular on K.

Now let h = g + βf . Then h(x) ⩾ g(x) > 0 when x ∈ X \ S and
h(x) ⩾ 1 when x ∈ S. Also, h(x) = 0 when x ∈ K. It follows that h←(0)
is the zero-set of βX that we seek.

Clearly (2) implies (3).

We finish by proving that (3) implies (1). To begin: the present condi-
tion (3) is stronger than the second part of (3) in Lemma 2.1. We need to
show that A is Lindelöf and z-embedded in X. It will actually be simpler
to show that A is C∗-embedded in clβX A.

That A is Lindelöf is proved as follows. Let U be a collection of open
subsets of βX that covers A. Let K = clβX A \

⋃
U and let Z be a

countable family of zero-sets of βX as in the assumption.
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As in the proof of Lemma 2.1 the complement L of
⋃

Z in βX is
Lindelöf and it contains X. Then L ∩ clβX A is Lindelöf as well and,
moreover, contained in

⋃
U . But A ⊆ L ∩ clβX A, so A is covered by a

countable subfamily of U .
To see that A is C∗-embedded in clβX A, and hence in βX, we show

that if E and F are disjoint closed subsets of A then their closures
in clβX A are disjoint; this shows that clβX A actually is the Čech-Stone
compactification of the normal space A.

Let E and F be as above and let K = clβX E ∩ clβX F . Then K ⊆
clβX A \A and hence there is a countable family Z of zero-sets of βX as
in our assumption.

We have just established that L = βX \
⋃

Z is Lindelöf, hence L is
normal as well. Also X ⊆ L ⊆ βX, and so βL = βX.

In addition we have clL E ∩ clL F = ∅ and hence clβX E ∩ clβX F = ∅
(so in hindsight K = ∅). □

There are two special cases of this result that are worth recording
here. They consider Lindelöf subspaces that are locally compact or Čech-
complete.

Theorem 2.3. Let A be a closed and locally compact subset of X. Then
the following three conditions are equivalent.

(1) A is Lindelöf and C-embedded in X.
(2) There is a zero-set Z of βX such that clβX A \A ⊆ Z ⊆ βX \X.
(3) There is a countable family Z of zero-sets of βX such that clβX A\

A ⊆
⋃
Z ⊆ βX \X.

Proof. The set clβX A \ A is closed and hence compact. Therefore it is
necessary and sufficient to assume or establish (2) and (3) for that set
only. □

Theorem 2.4. Let A be a closed and Čech-complete subset of X. Then
the following conditions are equivalent.

(1) A is Lindelöf and C-embedded in X.
(2) There is a countable family Z of zero-sets of βX such that clβX A\

A ⊆
⋃
Z ⊆ βX \X.

Proof. By the definition of Čech-completeness the set clβX A\A is an Fσ-
subset of clβX A. One applies (2) or (3) in Theorem 2.2 to the countably
many closed sets whose union is clβX A\A to obtain the desired cover. □

From these characterizations we deduce two results about the preser-
vation of C-embeddedness.
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Theorem 2.5. Let ⟨Xi : i < k⟩ be a sequence of spaces, where k is a
finite ordinal or ω, and let ⟨Ai : i < k⟩ be a corresponding sequence of
C-embedded subspaces (Ai of Xi) that are closed, Lindelöf, and Čech-
complete. Then the product

∏
i<k Ai is Lindelöf, Čech-complete, and C-

embedded in
∏

i<k Xi.

Proof. We write A =
∏

i<k Ai and X =
∏

i<k Xi.
For each i let Zi be a countable family of zero-sets in βXi such that

clβXi
Ai \Ai ⊆

⋃
Zi ⊆ βXi \Xi.

Then clA \ A is covered by union Z of the families {π←i [Z] : Z ∈ Zi}.
These are countable families of zero-sets in

∏
i<k βXi and their members

are contained in (
∏

i<k βXi) \X.
Let f : βX →

∏
i<k βXi be the natural map. Then {f←[Z] : Z ∈ Z} is

a countable family of zero-sets in βX. Because f is perfect its union
⋃

Z
is contained in βX \X and it contains clβX A \A.

Theorem 2.4 implies that A is Lindelöf and C-embedded in X. □

By strengthening the assumptions on the subspaces and weakening the
conclusion we get a version of this result for arbitrary products.

Corollary 2.6. Let ⟨Xα : α < κ⟩ be an arbitray sequence of spaces, and
let ⟨Aα : α < κ⟩ be a corresponding sequence of C-embedded subspaces (Aα

of Xα) that are closed, Lindelöf, Čech-complete, and separable. Then the
product A =

∏
α<κ Aα is C-embedded in X =

∏
α<κ Xα.

Proof. If f : A → R is continuous then, by separability of the factors,
the factorization result from section 1.3 implies that f factors through
a countable subproduct

∏
α∈E Aα. The previous theorem implies that

the factored map fE has a continuous extension F to
∏

α∈E Xα. Then
F determines a continous extension of f to X. □

Theorem 2.7. Let A be a closed, Lindelöf and Čech-complete subspace
of X that is also C-embedded and let f : Y → X be a perfect surjection.
Then f←[A] is C-embedded in Y .

Proof. The previous proof applies. If Z is a countable family of zero-sets
of βX such that

clβX A \A ⊆
⋃

Z ⊆ βX \X
then, because f is perfect, we have

clβY f←[A] \ f←[A] ⊆
⋃

{f←[Z] : Z ∈ Z} ⊆ βY \ Y. □

Remark 2.8. The proofs that (1) implies (2) and (3) implies (1) in Theo-
rem 2.2 use properties of βX.
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The proof of Theorem 2.5 shows, implicitly, that if A satisfies condi-
tion (3) in some compactification of X then it will satisfy that condition
in βX as well. The converse of this does not hold.

For let X be an uncountable discrete space, and A a countable subset
of X. Then A is — trivially — Lindelöf, Čech-complete, and C-embedded
in X, and, in addition, clβX A \A is itself a zero-set of βX.

But A does not satisfy condition (3) in the one-point compactifica-
tion αX of X. Indeed clαX A\A = αX \X = {∞}, where ∞ is the point
at infinity, and this remainder contains no zero-set of αX.

3. Examples

An easy consequence of Theorem 2.5 is that if two spaces X and Y
contain closed copies, N1 and N2 respectively, of N that are C-embedded
then the product N1 ×N2 is C-embedded in X × Y .

This can also be established in an elementary way. There are continu-
ous functions f1 : X → R and f2 : Y → R such that f1 maps N1 injectively
into {2n : n ∈ N} and f2 maps N2 injectively into {3n : n ∈ N}. Then
f : X×Y → R, defined by f(x, y) = f1(x)·f2(y), maps N1×N2 injectively
into N and this suffices to ensure C-embedding.

The countability of N corresponds to the Lindelöf assumption in The-
orem 2.5. This assumption cannot be dropped completely as the next
example shows.

Example 3.1. Let κ be a cardinal such that there is an uncountable
closed and discrete subset D that is C-embedded in Rκ. Then D ×D is
not C∗-embedded in Rκ × Rκ.

Remark 3.2. We can have D of cardinality ℵ1 and with κ = 2ℵ1 . For
if λ is less than the first measurable cardinal then λ, with its discrete
topology, is realcompact and so the image of λ under the diagonal map
e : λ → RC(λ) is closed and C-embedded.

Proof of Example 3.1. We define f : D ×D → [0, 1] as follows:

• f(d, e) = 0 if d ̸= e, and
• d 7→ f(d, d) maps into the interval (0, 1], injectively if |D| ⩽ c,

and surjectively if |D| ⩾ c (and so bijectively if |D| = c).

Because D ×D is discrete f is automatically continuous.
Now assume F : Rκ × Rκ → R is a continuous extension of f and let

C be a countable subset of κ such that F factors through RC × RC . So
we have a continuous map g : RC ×RC → [0, 1] such that F = g ◦ (π× π)
where π : Rκ → RC is the projection.
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Let E = π[D] and observe that E is uncountable. If |D| ⩽ c then π is
a bijection between D and E because d 7→ g(π(d), π(d)) is injective, and
if |D| ⩾ c then g[E × E] = [0, 1], so |E| ⩾ c as well.

Now let e ∈ E, then g(e, e) > 0 and so there is a neighbourhood U of e
in RC such that g(x, y) > 0 for all x, y ∈ U . We claim that U ∩E = {e}.
Indeed, if x ∈ U and x ̸= e then g(x, e) > 0 whereas g(y, e) = 0 whenever
y ∈ E and y ̸= e.

It follows that E is an uncountable relatively discrete subset of the
separable and metrizable space RC × RC , a clear impossibility. □

The assumption that the factors be Čech-complete cannot be dropped
either.

Theorem 3.3. The product Q×Q is not C∗-embedded in RC(Q)×RC(Q),
where Q is embedded in RC(Q) via the diagonal embedding e : Q → RC(Q).

Before we give the proof we need a lemma first.

Lemma 3.4. Let X be a separable and metrizable space, and let f :
X ×X → R be a continuous function. Then the following two statements
about f are equivalent.

(1) f has a continuous extension to the product RC(X)×RC(X), where
we identify X with its image e[X] under the diagonal embedding
e : X → RC(X), and

(2) there is a completely metrizable extension M of X such that f has
a continuous extension to M ×M .

Proof. Necessity: assume F : RC(X) × RC(X) → R is an extension of f .
We can find a countable subset E of C(X) such that F factors through
the partial product RE × RE . We can enlarge E, if need be, so that
the projection πE : RC(X) → RE is a homeomorphism on e[X], that is,
πE ◦ e : X → RE is a homeomorphic embedding; here is where we use
that X is regular and second-countable.

Now let G : RE×RE → R be such that F = G◦(πE×πE). Then RE is
a completely metrizable extension of X, and G is a continuous extension
of f .

Sufficiency: assume M is a completely metrizable space that contains X
and such that there is a continuous extension g : M ×M → R of f . We
assume X is dense in M as its closure in M is completely metrizable as
well.

Then there is an embedding h : M → Rω such that h[M ] is closed.
Because h[M ]×h[M ] is closed in Rω×Rω there is a continuous function G :
Rω ×Rω → R that extends g (more precisely: such that g = G ◦ h). The



C-EMBEDDING, LINDELÖFNESS, AND ČECH-COMPLETENESS 9

countably many projections πn : Rω → R yield members of C(M) via
pn = πn◦h. These give us a projection Π : RC(X) → Rω such that Π◦e = h
on X. Then G ◦ (Π×Π) is the extension of f to RC(X) × RC(X). □

Proof of Theorem 3.3. By the lemma, to show that Q × Q is not C∗-
embedded in RC(Q) × RC(Q) it suffices to exhibit a bounded continuous
function f : Q × Q → R that has no continuous extension to M × M
whenever M is a completely metrizable extension of Q.

We claim that it suffices to find a continuous function f : Q×Q → R
such that there is no Gδ-subset G of R such that f has a continuous
extension to G × G. Indeed, if M is an arbitrary completely metrizable
extension of Q, say with embedding g : Q → M , then Lavrentieff’s theo-
rem yields Gδ-sets A in R and B in X, and a homeomorphism ḡ : A → B
that extends g. If f̄ were a continuous extension of f to M × M then
f̄ ◦ (ḡ × ḡ) would be a continuous extension of f to A×A.

To define f we let L be the line in the plane with equation y = x+ π.
Clearly L is disjoint from Q × Q. But, if A is a Gδ-subset of R that
contains Q then (A × A) ∩ L ̸= ∅. For let A be such a Gδ-set then both
A and A−π are dense Gδ-subsets of R and hence, by the Baire Category
theorem the intersection B = A ∩ (A − π) is also a dense Gδ-set. But if
x ∈ B then (x, x+ π) ∈ (A×A) ∩ L.

Now define f : Q×Q → [−1, 1] by

f(p, q) =
q − p− π

|q − p− π|
Then f has no continuous extension to any point of L. □

Example 3.5. One may wonder whether Theorem 3.3 can be proved
using a homeomorphism between Q × Q and Q. The idea is that such a
homeomorphism should change the geometry of Q×Q too much to allow
it to be extended to RC(Q) × RC(Q).

We exhibit two homeomorphisms between Q×Q and Q: one that can
be extended and one that cannot.

The first comes via a direct application of Lemma 3.4.
We let N = NN be zero-dimensional Baire space and let Q be embed-

ded in N as the subset Q of sequences that end in zeros, so Q = {x :
(∃m)(∀n ⩾ m)(xn = 0)}.

Now, the homeomorphism h : N ×N → N is obtained by interleaving
sequences and it maps Q × Q to Q. If we compose this map with an
embedding g of N into R that maps Q onto Q then g ◦ h is an extension
to N ×N of its restriction to Q×Q.

To obtain the second homeomorphism we take the embedding g : N →
R used above with e[Q] = Q and we let N = g[N ].
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Then N is a Gδ-set that contains Q and the composition G = g ◦ h ◦
(g−1 × g−1) is a homeomorphism from N ×N to N . In particular, G is
injective on the intersection of N ×N with the line L above.

Next define a homeomorphism f : Q × Q → Q × Q by f(p, q) =
(p+ 1, q + 1) if q > p+ π and f(p, q) = (p− 1, q − 1) if q < p+ π. Then
the composition G ◦ f is still a homeomorphism between Q × Q and Q.
However, if M is a Gδ-set that contains Q then L∩ ((M ∩N)× (M ∩N))
is nonempty and G ◦ f has no continuous extension to any point in that
intersection.

For let ⟨x, y⟩ be a point in the intersection and take two sequences〈
⟨pn, qn⟩ : n ∈ ω

〉
and

〈
⟨rn, sn⟩ : n ∈ ω

〉
in Q×Q that converge to ⟨x, y⟩

and such that qn > pn + π and sn < rn + π for all n. Then limn(G ◦
f)(pn, qn) = G(x+ 1, y + 1) and limn(G ◦ f)(rn, sn) = G(x− 1, y − 1). It
follows that G ◦ f cannot be extended to M ×M . □

The space Q is very not Čech-complete. It is natural to wonder how
close to Čech-complete a separable and metrizable can be and still satisfy
Theorem 3.3.

We can re-use the proof of Theorem 3.3 (and Lemma 3.4) to get an
example that is a Baire space.

Example 3.6. We take a subspace A of R such that {x+ π : x ∈ A} =
R \ A. That such a space exists was established by Van Mill in [9] in an
alternative proof of Menu’s theorem from [8] that R can be partitioned
into two mutually homeomorphic and homogeneous subspaces.

A particularly transparent construction of a set A as required was
suggested by Jeroen Bruyning in [9]. Let H be a Hamel base for R over
the field Q that contains 1 and π.

For x ∈ R let xπ denote its (rational) π-coordinate with respect to this
base. Let A = {x ∈ R : ⌊xπ⌋ is even}, where ⌊·⌋ denotes the greatest-
integer function.

By the Baire category theorem the set A is a Baire space. By construc-
tion its square A×A is disjoint from the line L with equation y = x+ π.
As before the function f : A×A → [−1, 1] defined by

f(a, b) =
b− a− π

|b− a− π|

has no continuous extension to any point of L.
Finally let G be a Gδ-set that contains A, say G =

⋂∞
n=1 On with each

On open in R. Since A is dense (it contains Q) we find that for every n
the set On is dense in R and hence the difference On \A is dense in R\A.
As R \A is a Baire space we deduce that G \A is nonempty. Also, G− π
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contains R \ A so that H = (G \ A) ∩ (G − π) ̸= ∅. As above, if x ∈ H
then (x, x+ π) is in (G×G) ∩ L.

Thus the product theorem does not (even) hold for Baire spaces that
are separable and metrizable.

There are various properties that are shared by locally compact spaces
and completely metrizable spaces, and that imply that the space is a Baire
space, see [1]. One can ask for each of these properties whether satisfy
our preservation theorems.

Many of these properties have in common that for (separable) metriz-
able spaces they imply Čech-completeness; this means that counterexam-
ples will have to be non-metrizable.

We show that the property of co-compactness, see also [10], is not
strong enough to guarantee that Theorem 2.5 holds.

A space (X, τ) is co-compact if there is a family F of τ -closed sets
whose τ -interiors form a base for the given topology τ , and that at the
same time forms a subbase for the closed sets of a compact topology τF
on the set X. We note that τF will be T1 but will not necessarily be
Hausdorff.

In [10] it is shown that for metrizable spaces co-compactness and Čech-
completeness are equivalent.

It turns out that the subject of Gary’s first paper [6], the Sorgenfery
line S, satisfies Theorem 3.3 too. It is well-known that S is Lindelöf, and
it is readily seen to be co-compact: let F be the family of closed and
bounded intervals in R.

The proof of Theorem 3.3 for S rests on the following observation about
the subset D = {⟨x, y⟩ : x+ y ⩾ 0} of the plane.

Lemma 3.7. Let τ be a topology on R such that D is open in the plane
with respect to the product topology from τ . Then for every a ∈ R the set
[a,∞) belongs to τ , and hence τ is not second-countable.

Proof. Let x ∈ R and let U and V be members of τ such that ⟨x,−x⟩ ∈
U ×V ⊆ D. We claim that U ⊆ [x,∞) (and by symmetry V ⊆ [−x,∞)).
Indeed, let z ∈ U , then ⟨z,−x⟩ ∈ U × V ⊆ D and hence z − x ⩾ 0, or
z ⩾ x.

Let ⟨Ux : x ∈ R⟩ be a choice function from τ such that x ∈ Ux ⊆ [x,∞)
for all x. Then [a,∞) =

⋃
x⩾a Ux is in τ , for every a.

That τ is not second-countable follows as in the familiar proof that the
Sorgenfrey line is not second-countable. □

Proof of Theorem 3.3 for S. Let f : S×S → R be the characteristic func-
tion of D and assume F : RC(S) × RC(S) → R is a continuous extension
of F . We take a countable subfamily E of C(S) and a continuous function
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G : RE × RE → R such that F = G ◦ (πE × πE). If we make sure that
the identity function i : S → R belongs to E then πE is injective on S and
G restricts to the characteristic function of D on S× S.

It follows that D is open in the topology τ that S×S inherits from RE×
RE , but the subspace (S, τ) is second-countable. □
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