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Abstract. The Proper Forcing Axiom implies that compact Hausdorff spaces
are either first-countable or contain a converging ω1-sequence.

Introduction

This paper continues the investigation from [5] into a conjectured dichotomy for
compact Hausdorff spaces: every such space is either first-countable or it has a non-
trivial converging ω1-sequence. Whether this dichotomy holds was asked by Juhász
and a consistent counterexample to this conjecture was given by him, Koszmider,
and Soukup in [8].

The main result in [5] states that the dichotomy holds in a large class of ccc
forcing extensions of models in which the Continuum Hypothesis holds. This result
does not encompass all ccc extensions and one can rightfully ask what the status
of the dichotomy is under Martin’s Axiom.

In Section 2 we point out that a space constructed by the first author in [4]
witnesses that the combination MA + c = ℵ2 is not strong enough to imply the
dichotomy.

Our main result appears in Section 3: the Proper Forcing Axiom implies the
dichotomy. This then also implies that the dichotomy is consistent with and inde-
pendent of MA + c = ℵ2. It also improves upon the first author’s result in [3, The-
orem 5.1], which implies that, in turn, PFA implies that a compact space without
convergent ω1-sequences must be Fréchet-Urysohn.

1. Some preliminaries

Here we collect the notions that will be used throughout the paper. Others will
be defined when needed.

Converging ω1-sequences. The central notion is that of a converging ω1-se-
quence. An ω1-sequence 〈xα : α ∈ ω1〉 converges to a point x if for every neigh-
bourhood U of x there is an α such that {xβ : β > α} ⊆ U . Unless stated otherwise
our converging sequences are assumed to be non-trivial, that is, injective. A space
that contains no non-trivial converging ω1-sequences will be called ω1-free.
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In all cases where we construct converging ω1-sequences we use the regularity
of the space to show convergence: an ω1-sequence 〈xα : α ∈ ω1〉 converges to a
point x if and only if for every neighbourhood U of x there is an α such that
{xβ : β > α} ⊆ clU .

We should record here that the dichotomy is indeed a dichotomy. If a point has
a countable local base then it is not the limit of a non-trivial ω1-sequence: that
sequence would have to be constant on a tail.

Free sequences. At one point we shall need to know that a compact ω1-free space
has countable tightness, which for the purposes of this paper is best defined by a
characterization: there is no free ω1-sequence.

An ω1-sequence 〈xα : α ∈ ω1〉 is free if for every α the sets {xβ : β < α} and
{xβ : β > α} have disjoint closures.

2. MA is not enough

In this section we show that the conjuction of MA and the equality c = ℵ2 is not
strong enough to give a positive answer to Juhász’ question. For this we recall the
definition of initial ω1-compactness: every open cover of cardinality at most ℵ1 has
a finite subcover.

In [4, Corollary 5.5] one finds a model of MA+c = ℵ2 in which there is a compact
space X that is of countable tightness, and has a proper dense subspace Y that is
first-countable and initially ω1-compact. As Y is a fortiori countably compact the
space X is not first-countable at all points that are not in Y . In addition every
compact subset of X \ Y is finite. We shall show that X is ω1-free.

Assume 〈xα : α ∈ ω1〉 is a converging ω1-sequence with limit x. Since, as noted
above, a point of first-countability cannot be the limit of a non-trivial ω1-sequence
we must have x ∈ X \ Y .

Since x is the only complete accumulation point of the set {xα : α ∈ ω1} the
initial ω1-compactness of Y implies that all but countably many xα are in X \ Y .

Thus we assume the xα are all in X \ Y . For each limit ordinal δ we choose a
cofinal subset Cδ of order type ω and an accumulation point yδ of {xα : α ∈ Cδ};
by the assumption on X \ Y we can take yδ in Y .

There is a point z in Y with the property that for every neighbourhood U of z
the set {δ : yδ ∈ U} is uncountable. But then so is {α : xα ∈ U} for every such
neighbourhood. But then z = x and we have our contradiction.

3. The main result

In this section we prove our main result.

Theorem 1 (PFA). Every compact Hausdorff space either contains a non-trivial
converging ω1-sequence or is first-countable.

We shall prove the theorem in a number of steps. We assume PFA and we let X
be a compact Hausdorff space that is non first-countable and also ω1-free, and we
intend to reach a contradiction by the end of this section.

Lemma 2. Our space X has countable tightness.

Proof. This is established by Juhász and Szentmiklóssy in [9]: a compact space of
uncountable tightness contains (even) a free ω1-sequence that converges. �

Lemma 3. We may assume, without loss of generality, that X is separable.

Proof. This was established by the present authors in [5]: a compact ω1-free space
that is not first-countable contains a closed separable subspace that is not first-
countable. �
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Henceforth we add separability to the assumptions on our space X.

Lemma 4. Our space X has cardinality at most c.

Proof. In [1] Balogh proved that PFA implies all compact Hausdorff spaces of count-
able tightness are in fact sequential.

Now apply the elementary fact that the sequential closure of a countable set has
cardinality at most c. �

Our next step is to investigate what happens to our space X when we force with
the partial order Fn(ω1, 2,ℵ1): the set of countable partial functions from ω1 to 2
(notation as in [10]).

The reason for this is that the main steps towards the contradiction involve
proper partial orders that are built in two stages, the first of which is the afore-
mentioned partial order Fn(ω1, 2,ℵ1); this partial order is proper and forces CH to
hold.

Lemma 5. Upon forcing with Fn(ω1, 2,ℵ1) our space X remains compact.

Proof. By “our space X remains compact” we mean that the set X, with the
topology generated by the ground-model open sets, is a compact space.

To begin: our space X does remain countably compact. This is so because
every countably infinite subset of X belongs to the ground model and hence has an
accumulation point there. Because the old sets form a base for the new topology
that point remains an accumulation point.

Now, if X is no longer compact in this extension then [2, Proposition 5.8] ap-
plies and there is a proper partial order P that introduces an embedding e of the
ordinal space ω1 into X. We shall specify ℵ1 many dense sets in the partial order
Fn(ω1, 2,ℵ1) ∗ Ṗ to determine a map f : ω1 → X, in our ground model, that is a
free sequence in X.

First we take, for each α, the set Eα = {p : (∃x ∈ X)(p  ė(α) = x)}. An
application of PFA to this family yields a map f : ω1 → X.

Next we note that in the extension the set e[α+1] is compact and does not meet
the closure of e

[
[α+1, ω1)

]
. Therefore there is an open set Uα in the ground model

topology with the property that e[α + 1] ⊆ Uα and clUα ∩ e
[
[α + 1, ω1)

]
= ∅. As

above we get dense sets Dα that determine the sequence 〈Uα : α ∈ ω1〉.
Now apply PFA to the union of the families to get the desired free sequence

f : ω1 → X.
This contradicts the countable tightness of X and establishes the lemma. �

If we combine this with Lemma 4 then we know that in the extension by
Fn(ω1, 2,ℵ1) our space X has become a compact space of cardinality and weight
at most ℵ1. This will be used in the next step.

From [5] we quote (and modify) the notion ultra-Fréchet, a useful technical
property that will be used in our proof.

Definition 6. A space Z will be said to be ultra-Fréchet if it has countable tightness
and for each countable subset D of Z and each free ultrafilter U on D that converges
in Z there is a countable subfamily U ′ of U with the property that every infinite
pseudointersection of U ′ converges.

This is a weakening of the original definition, which did not require that the
ultrafilter U be convergent and thus would imply that the space is countably com-
pact. In the present context of compact spaces there is no difference but the notion
may be useful outside this class.
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We also remark that all pseudointersections of the countable subfamily converge
to the same point (the union of two pseudointersections is again a pseudointersec-
tion), to wit the limit of the ultrafilter.

Lemma 7. Our space X is ultra-Fréchet, also upon forcing with Fn(ω1, 2,ℵ1).

Proof. We argue by contradiction and assume that in the extension there are a
countable set D and an ultrafilter U on D where the property fails; that is: every
countable subfamily of U has an infinite pseudointersection that does not converge.

This will also cover the ground model case: because the forcing adds no new
countable sets a ‘bad’ pair 〈D,U〉 from the ground model is still ‘bad’ in the exten-
sion.

We note that by sequentiality of X every countably infinite subset of X contains
an infinite subset that converges: if the set is closed then it is compact metrizable
and hence contains a convergent sequence, and if it is not closed then sequentiality
gives us a sequence in the set that converges to a point outside the set.

We now construct, recursively, an almost disjoint family {aα : α ∈ ω1} of infinite
subsets of D that converge, say aα converges to yα, where yα 6= x. Note that none
of the aαs can belong to U : the countable, indeed singleton, family {aα} would
contradict our assumption. We also choose, for each α, a neighbourhood Oα of x
such that yα /∈ clOα.

We enumerate U as 〈Uα : α ∈ ω1〉.
At stage α we let cα be an infinite pseudointersection of {Uβ : β < α}∪{D∩Oβ :

β < α} that does not converge.
As noted above cα has an infinite subset that converges; if every infinite conver-

gent subset of cα were to converge to x then by sequentiality the sequential closure
of cα would be just cα∪{x}, and cα would converge after all. So there is an infinite
convergent subset aα of cα that converges to some point yα distinct from x.

The family {aα : α ∈ ω1} and the ultrafilter U satisfy the conditions of [6,
Lemma 1.8]. Therefore there is a ccc partial order Q that introduces an uncountable
subset I of ω1 such that {aα : α ∈ I} is a Luzin family. This means that for every
α ∈ I and every natural number n the set F (α, n) = {β ∈ I ∩ α : aβ ∩ aα ⊆ n} is
finite.

It takes only ℵ1 many dense sets in the partial order Fn(ω1, 2,ℵ1)∗Q̇ to determine
such an uncountable set I, the function α 7→ aα ∪ {yα} and the finite sets F (α, n).
Therefore an application of PFA yields the existence of such sets in the ground
model, and we may as well assume I = ω1.

The sequence 〈yα : α ∈ ω1〉 converges, in the ground model. Indeed, let K =⋂
α cl{yβ : β > α}. By compactness K is non-empty of course and by the Luzin

property of the family {aα : α ∈ ω1} it consists of just one point and 〈yα : α ∈ ω1〉
converges to that point, which contradicts our standing assumption on X.

To see this, let x ∈ K and let O be an arbitrary neighbourhood of x. The set
A = {α : yα ∈ O} is uncountable, and for each α ∈ A there is an mα ∈ ω such
that aα \O ⊆ mα. We may assume that there is a single m such that mα = m for
all α ∈ A.

We claim that {β : yβ /∈ clO} is countable; by regularity of X this suffices to
prove that 〈yα : α ∈ ω1〉 converges to x.

If the set is uncountable then, by the same argument as above, we find an
uncountable set B and an n > m such that aβ ∩O ⊆ n for all β ∈ B. But now take
α ∈ A such that α∩B is infinite. Then aβ ∩aα ⊆ n for all β ∈ α∩B, contradicting
the Luzin property of our family. �

We can now take the last step towards our contradiction. To recapitulate:
we assume our space X is compact, separable, not first-countable and ω1-free.
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From this we deduced that X remains compact after forcing with the partial or-
der Fn(ω1, 2,ℵ1), and that it is ultra-Fréchet before and after this forcing. In
addition, its separability and non-first-countability are preserved by Fn(ω1, 2,ℵ1)
too.

Lemma 8. The assumptions that X is compact, separable, not first-countable and
ultra-Fréchet, before and after forcing with Fn(ω1, 2,ℵ1), imply that X has a con-
verging ω1-sequence.

Proof. We work in the extension by Fn(ω1, 2,ℵ1) and take a sequence 〈Mα : α ∈ ω1〉
of countable elementary substructures of H(κ) for a suitable large cardinal κ such
that

• X belongs to M0

• Mα =
⋃
β<αMβ if α is a limit

• 〈Mβ : β 6 α〉 ∈Mα+1 and Mα ≺Mα+1 for all α

By elementarity there are z ∈M0∩X and D ∈M0 such that X is not first-countable
at z and D is countable and dense in X. We fix such z and D.

Elementarity also implies that Mω
α ∈ Mα+1 for all α and this, combined with

the Continuum Hypothesis, implies that every countable subset of M =
⋃
α<ω1

Mα

is a member of M . In particular P(D) ⊆M .
At this point we could refer to [5, Proof of Proposition 2.8], which produces

sequences 〈aα : α ∈ ω1〉 and 〈bα : α ∈ ω1〉 of infinite subsets of D and a se-
quence 〈yα : α ∈ ω1〉 of points in X \ {z} with the following properties:

(1) aα converges to z
(2) bα converges to yα
(3) aα ∩ bα = ∅
(4) {A : aα ∪ bα ⊆∗ A} is an ultrafilter in Mα ∩ P(D)
(5) aα, bα, and yα belong to Mα+1

However, for the benefit of the reader we will give a somewhat more streamlined
construction than the one referred to above.

Fix an α ∈ ω1 and let yα be a point in the intersection⋂
{U : U ∈Mα, z ∈ U,U is open in X}

that is distinct from z. Such a point exists because {z} is not a Gδ-set in X.
Moreover, by elementarity we can assume yα ∈Mα+1.

Next observe that yα /∈ clA whenever A ∈ Mα ∩ P(D) and z /∈ clA. There is
an ultrafilter U1 on the Boolean algebra Mα ∩ P(D) that extends the filter dual
to {A : z /∈ clA} and is such that yα ∈

⋂
{clU : U ∈ U1}; again we can assume

U1 ∈ Mα+1. By the contrapositive of the first sentence of this paragraph we have
z ∈

⋂
{clU : U ∈ U1}. Next we take ultrafilters U2 and U3 on D that extend U1

and converge to z and yα respectively, yet again we take these ultrafilters in Mα+1.
Now apply the ultra-Fréchet property to U2 and yα, and to U3 and z to find

countable subfamilies U ′2 and U ′3 as in the definition, where we may assume that
both families contain U1. These choices can be made in Mα+1 and we can then
take pseudointersections aα and bα of U ′2 and U ′3 respectively that belong to Mα+1.
By the remark after Definition 6 aα converges to z and bα converges to yα, and we
can assume aα ∩ bα = ∅.

All five conditions are met: we took care of (1), (2), (3), and (5) explicitly;
(4) holds because aα and bα are both pseudointersections of U1.

Conditions (4) and (5) imply that the sequences 〈aα : α ∈ ω1〉 and 〈bα : α ∈ ω1〉
are not σ-separated in a strong way: whenever A is a countable family of subsets
of D there is an α such that for every A ∈ A either A ∩ (aα ∪ bα) is finite or
aα ∪ bα ⊆∗ A.
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We may then apply a result of Todorčević, see [7, p. 145], that implies there is
a proper partial order T that produces an uncountable subset J of ω1 such that
(aα ∩ bβ) ∪ (aβ ∩ bα) is non-empty whenever α, β ∈ J are distinct.

As before we need ℵ1 many dense sets in the proper partial order Fn(ω1, 2,ℵ1)∗Ṫ
to determine the sequences 〈aα : α ∈ ω1〉, 〈bα : α ∈ ω1〉, and 〈yα : α ∈ ω1〉 as well
as the uncountable set J . We apply PFA and obtain items with properties (1), (2)
and (3) in our list above as well as the uncountable set J from Todorčević’s result,
which we may assume to be ω1 itself.

We claim that 〈yα : α ∈ ω1〉 converges to z, which is the final contradiction
that we seek. Let O be a neighbourhood of z. Because every aα converges to z we
know that aα \O is always finite. We claim that bα ∩O is finite for only countably
many α, and hence that there is an α such that yβ ∈ clO for β > α.

Indeed, assume bα ∩ O is finite for uncountably many α and fix two finite sets
F and G such that the set A of those α for which F = aα \ O and G = bα ∩ O is
uncountable. Now let α, β ∈ A be distinct. Then aα = F ∪ (aα ∩ O) = (aβ \ O) ∪
(aα ∩ O) and bβ = G ∪ (bβ \ O) = (bα ∩ O) ∪ (bβ \ O), which implies aα ∩ bβ = ∅.
Likewise aβ ∩ bα = ∅ and we are done. �
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