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Introduction

The Cech-Stone compactification of the real line R seems to have been much less
investigated than the space fw. One reason for this is that Sw can be attacked
with two kinds of weapons: Boolean algebraic and topological. The space SR is a
continuum, so it is not susceptible to Boolean algebraic treatment. Be that as it
may, SR deserves more of our attention than it has received so far. In an effort
to catch this attention I have tried to give a coherent overview of our knowledge
of SR at this time.

There have been several interesting developments in SR recently. As an answer
to a well-known question of van Douwen, YU [1991] constructed an autohomeo-
morphism of R* that maps a remote point to a non-remote point. Another recent
result is actually about w*; it is well-known that the principle NCF implies that
w* can be covered by nowhere dense P-sets; in [1991a] ZHU has shown that NCF
in fact implies that w* can be covered by a chain of nowhere dense P-sets. The
proof makes essential use of the structure of the family of subcontinua of R*.

ACKNOWLEDGEMENTS. I would like to thank several people for providing me with
material to write about.

Jan van Mill kindly gave me access to the unpublished work of Eric van Douwen
(hereafter cited as ‘van Douwen’s notes’)

Jiang-Ping Zhu sent me his preprints on continua in R*; as the reader will see,
many results of van Douwen were rediscovered by him, mostly with different proofs.

Michel Smith provided me with a preprint of Joseph Yu’s work on autohomeo-
morphisms of R*.

1. Notation and conventions

Although as a rule we introduce a notion when we first need it there are some
things that should be said right at the beginning.

The Cech-Stone compactification probably needs no introduction any more but
we fix our notation anyway. The properties of SX that we use are (i) every con-
tinuous function from X to the unit interval I has a continuous extension over X
and (ii) if A and B are closed subsets of X then clgx ANclgx B =clgx (AN B).

Property (ii) is valid only for normal spaces but since we are dealing with sub-
spaces of R there will arise no problem with this. We shall denote the space fX \ X
invariably by X* and we call it the (Cech-Stone) remainder of X.

We shall freely identify the points of SX with maximal filters of closed sets; if
x € BX then x corresponds to

Fo={F CX:Fisclosedin X and = € clgx F'}.

That F, is a filter follows from property (ii) above. Thus, a base for a point of SX
is actually a base for the filter F,. We trust that the reader will see through this
usage.

319



320 K. P. HArT / BR [CH. 9

The spaces that we deal with — H and M (M is defined below in subsection 2.1)
— are o-compact and locally compact. This has several useful consequences for
their remainders: if X is locally compact then X * is compact and if X is in addition
o-compact then X* is an F-space in which every nonempty Gs-set has nonempty
interior. The characteristic property of F-spaces is that bounded continuous func-
tions defined on F,-subsets can be extended over the whole space. This means for
us that if A is an F,-subset of X* then A = SA. We shall use this fact a few
times in this article (Proposition 2.12, Theorem 6.5 and the construction of the
continuum Ky in Section 10).

The book GILLMAN and JERISON [1976] is one of the basic references for 3X.

1.1. Some notation

We need to agree on a minimum of notation beforehand. The closure of a set A
is usually denoted clx A, where X is the ambient space. Sometimes it will be
convenient to use just a bar over the set in question. We expect no confusion.

If U is an open set in a space X then ExU will be the largest open subset of 5X
whose intersection with X equals U: in formula ExU = X \ X \ U.

Finally there is the space that it is all about: the half line H = [0, 00). We use
H rather than R because R* is merely the topological sum of two copies of H*.

1.2.  Continua

A continuum is a compact and connected Hausdorff space. Again, most of the
notions will be defined when their time comes but we should define here one of the
central notions in our investigations. A point x of a continuum X is said to be a
cut point if the space X \ {z} is not connected. This is equivalent to saying that
there are two non-degenerate closed sets F' and G such that F NG = {z}.

The reference KURATOWSKI [1968, Chapter Five] still is the best source for basic
material on continua.

1.83.  Set Theory

We use no heavy set-theoretic machinery. On two occasions we employ the forc-
ing method but not to such an extent that we should explain the notation and
terminology involved.

The book KUNEN [1980] contains all the set theory that we need.

2. Sums of continua

In this section we discuss a general way of constructing continua in Cech-Stone re-
mainders. We start with the following elementary topological lemma. Recall that
a map between topological spaces is said to be monotone if every fiber of it is
connected.

2.1. LEMMA. Let f : X — Y be a perfect and monotone map. Then the map
Bf : BX — BY is also monotone.
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O It suffices to show that 3% (z) is connected for every z € Y*. Solet z € Y* and
write B (z) as the disjoint union of two closed sets A and B. Using normality
of X find open sets U and V around A and B respectively, whose closures are
disjoint. As the open set U UV contains 5 (z) there is an open set O in fY
containing z such that f<[0] C U UV after shrinking U and V a bit we may as
well assume that Sf<[0]=UUV.

The set (U UV)N X is saturated with respect to f: it equals f<[O NY]. Since
£ (y) is connected for every y € Y and since U and V' are disjoint open sets in SX
we see that f< (y) is contained in U or V for every y € O. Therefore U N X and
V' N X are saturated with respect to f as well. We conclude that U' = f[U N X]
and V' = f[V N X] are disjoint open sets in Y¥'; moreover ONY =U'UV'.

We claim that U' NV’ N O = @. To see this consider # € O and assume = € U'.
Let g : BY — T be continuous such that g(z) =1 and ¢g[8Y \ O] C {0}. Using g we
define h: Y — [-1,1] by

[ gly) ifyey\V' and
h(y)—{—i(z) ifzeY\U’.a

Observe that h is continuous and that |h| = g [ Y, hence |Bh| = g. Now h(y) =
g(y) > 0 for y € U’ so that Bh(z) = g(z) =1; on the other hand h(y) = —g(y) for
y € V', hence Bh(y) <0 for all y € V'. We see that = ¢ V.

Assume for example that z € V/. Now V C VN X C 3f<[V'], because VN X =
fT[V']. But then BC VN Bf~(z) = @. It follows that 8f(z) is connected. O

We use this lemma to produce many continua in Cech-Stone remainders. First
we introduce some notation. Let X = P, . K, be a topological sum of continua.
The map from X to w that sends K, to n will indiscriminately be denoted by .
The following corollary to Lemma 2.1 identifies the components of 5X.

2.2. COROLLARY. The components of X are the fibers of the map (7.

Thus, for every point u of fw the fiber 7 (u) is a continuum, we usually denote

it by K,. Note that
Kru = ﬂ Clﬁx U I&rn.
Ueu nelU

We extend the I, notation to cover sequences (F, ), of closed sets of X that satisty
F,, C K, for every n. In this case we let F\, = (¢, clsx U, e Fn

If (x,,),, is a sequence of points in X such that z,, € K, for all n then x,, denotes
the point u—lim, z,, (note that w, is the unique accumulation point of (),
in K,). The following lemma provides us with cut points in the continua K.

2.3. LEMMA. Let (z,), be a sequence of points in X such that z, € K, for
all n and let w € w*. Then z, is a cut point of K, if and only if the set {n :
x, is a cut point of K,,} belongs to u.

O One direction is easy: if, without loss of generality, for every n one can write
K, = F, UG, where F,, and G,, are non-trivial closed sets with intersection {x, }
then K, = F, UG, and F, N G, = {z,}.
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For the other direction let U and V' be open sets in X that both intersect K,
such that UNV NK, =@ and K, \ (UUV) = {z,}. It follows immediately that
the set

A={n:UnK,#0#VNK,andz, ¢UUV}

belongs to u. A moment’s reflection should show that {n € A : {z,} = K, \ (UU
V)} also belongs to u. O

2.1. The space M

We now consider a special case, one that will be very important in the study of H*.
We define M = w x I. We shall write [,, for {n} x I and I, for the fiber of u. To
add to the confusion we also write x,, = u—lim,, (n,z,) if (z,), is a sequence in I.
In addition we put 0, = v—1lim,, 0 and 1, = u—lim,, 1.

The reason for our interest in Ml is that it provides a lot of subcontinua of H*. For
consider an embedding e of M into H such that lim,, e(n,0) = co. Then Se embeds
AM into SH and M* into H* so that we get a copy of I, in H* for every u in w*.
We shall see later that these continua determine virtually the whole structure of
the whole family of subcontinua of H*. We shall call them standard subcontinua
of H*.

Another way of embedding the components of M* into H* uses a very simple
quotient map of M* onto H*. The shift on w is the map o defined by o(n) = n+1;
we denote its extension to Sw by o as well.

2.4. THEOREM. If in M one identifies, for every u € w*, the point 1, with O,y
then the quotient space is homeomorphic with H*.

O The proof is easy once one realizes that H is the quotient of M that one obtains
by identifying (n, 1) with (n + 1, 0) for every n and that the restriction to H* of the
Cech-Stone extension of this quotient map is exactly the map from the theorem. O

This quotient map embeds every I, into H* because, as is easily seen, it is one-
to-one on each I,,.
2.2.  Properties of the continua L,

Let us fix a point u of w*. We shall determine some elementary properties of IL,,.
The following theorem identifies the more obvious cut points of I,. It is a direct
consequence of Lemma 2.3.

2.5. THEOREM. If (x,), is a sequence in (0,1) then the point x, is a cut point
of T,.

We use P, to denote the set of all points z, for sequences (), in I. This set
admits a natural linear order:

Ty <u Yu Mt {n:z, <y,} € u.

The following proposition summarizes the relevant information about P,.
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2.6. PROPOSITION. The set P, \ {04, 1.} is a dense set of cut points of I, and its
subspace topology is the same as the order topology induced by <,.

O That every point of P, is a cut point of I, is the content of Theorem 2.5. To
show that P, is dense we let U be an open subset of M such that U N1, # @.
It follows that A = {n : U NI, # @} is an element of u. For every n € A choose
an interval (a,,b,) in I, that is contained in U and let ¢, = (a, + b,)/2. Then
t, e UNP,.

Observe that if ¢, € U N P, would have been given in advance we could have
picked a, and b, in such a way that ¢, € (an,b,) € U. This then shows that
tu € (au,b,) € UN P, so that the subspace topology on P, is contained in the
order topology.

For the reverse inclusion simply note that the interval [0, z,) is exactly P, \ G,
and hence open in the subspace topology, where G, has the established meaning
once we set G,, = {n} x [x,,1] for all n. The interval (z,,1,] is likewise open. O

This proposition and Theorem 2.5 give rise to the following definition.

2.7. DEFINITION. Let a, and b, be points of P, with a, <, b,. The interval
from a,, to b, in I,, denoted [a,,b,], is the set of those points of I, that are in the
closure of |, [an, by].

If z is any point of I, then we define the layer of z to be the intersection of all
intervals that contain x. We denote this layer by L.

We collect some useful properties of layers and intervals.

2.8. PROPOSITION. Let a, and b, be points of P, with a, <, b, and let x be a
point of T,,.
1. The interval [ay,b,] is homeomorphic with 1.
2. The interval [ay, b,] is irreducible between a,, and b,,.
3. [aw,by] = [0y, by] N [aw, 1,]; hence L, is the intersection of all intervals of the
form [0y, b,] or [a,,1,] that contain it.
4. The layers of the points in P, are one-point sets.

It follows that each layer is a continuum: it is the intersection of a directed family
of continua.

Using Proposition 2.8 we extend the order <, to the whole set of layers in the
following way: L, <, L, iff there is a point a, € P, such that L, C [0y, a,] and
Ly C [ay,1y]. This is equivalent to saying that x and y have elements F' and G
respectively such that {n : FNI,, < GNI,} belongs to u. Notations like [0y, L) will
have the obvious meaning (in this case it is the union of the set of layers below L, ).

The following lemma establishes an important continuity property of the ex-
tended ordering <,.

2.9. LEMMA. Let © € I, \ {Ou,1.}. The closure of the interval [0,,L,) is the
interval [0y, L] ( = [Ou, Lz) U Ly).

OIf v € P, then this follows from the fact that P, is dense in I, and that its
subspace topology is its order topology.
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Assume x ¢ P,. A moment’s reflection should convince us that it suffices to
show z € [0y, L;). Let V be an open neighbourhood of  in SM and let A = {n :
VNI, # ©}. The set A isin u. Forn € A let a, = inf{t : (n,t) € V} and
b, = sup{t: (n,t) € V'}. Consider the interval [ay, b,]; it clearly contains , hence
the whole set L,. Since z ¢ P, we can find d, € P, with a, <, d, <y L,. We
may assume that a, < d, for n € A; therefore we can choose, for n € A, a point
tn € (an,d,) such that (n,t,) € V. But then t, € V N[04, L,). This suffices by
regularity of the space SML O

It goes (almost) without saying that a similar formula holds for the closure
of (L;,1,]. We also note that the intervals [0,,L,) and (L., 1,] are connected
since each is the union of an increasing chain of intervals.

2.10. COROLLARY. The decomposition of 1, into layers is upper semicontinuous
and the quotient topology is exactly the order topology from the ordering <,.

We denote the quotient space obtained in this way by X,; it is readily seen that
X, is the Dedekind completion of P,. For later use we give a description of those
subcontinua of I, that meet at least two layers.

2.11. THEOREM. Let K be a subcontinuum of 1, that meets two different layers.
Then there are two points © and y of 1, with L, <, L, such that K = [L,, L,].
Moreover, K is irreducible between p and g whenever p € L, and q € L.

O Consider the quotient map ¢ : I, = X,. The image ¢[K] is connected and con-
tains, by assumption, at least two points. It follows that ¢[K] is a non-degenerate
interval of X,, say with endpoints L, and L,. We claim that K = [L,,L,]
in I,. Indeed, since ¢ [ P, is one-to-one we must have [L,,L,) NP, C K. As
[Le, Ly)N P, =[Ly, Ly] and also K C [L,, Ly] we get K = [Ly, Ly].

The irreducibility follows easily: any continuum meeting L, and L, must contain
[Le, Ly N Py. O

To finish this section let us prove that I, contains non-trivial layers.

2.12. PROPOSITION. Let (a,), be a strictly increasing sequence in P, and let
B={beP,:a, <,bforaln}. Then

L:ﬂ{[an,b]:nEw,bEB}

is a non-trivial layer of 1,,.

O That L is a layer follows from the fact that P, is dense in the ordering <,. Since
the set D = {a, : n € w} is relatively discrete its closure is homeomorphic to fw,
but D\ D C L. O

2.13. REMARK. Layers may also be defined in a purely topological way: first we
give an alternative definition of the ordering <,: we say <, y iff every continuum
that contains 0, and y also contains x. The layer of  is now the set of those points y
for which ¢ <, y and y <, . It is not overly difficult to show that we get the
same layers back.
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This clearly demonstrates that layers are topologically invariant: any homeo-
morphism between continua I, and I, must map layers to layers.

Notes for Section 2.

Lemma 2.1 is probably folklore, but I did not find it in the literature. It appears in
van Douwens’s notes.

The space M and the continua I, were studied extensively by MIODUSZEWSKI in [1978].
The results of Subsections 2.1 and 2.2 are taken from that paper.

The definition of layers as given in Remark 2.13 was carried out for metric irreducible
continua in KURATOWSKI [1968, p. 199].

3. A nice base for fH

Time and time again we shall need nice open sets in SH and H". In this section
we shall describe such sets and show that there are indeed enough of them.

Let U and V be open subsets of SH that both meet H*, whose closures are
disjoint and assume that inf U < inf V. We shall define, inductively, two sequences
(an),, and (b,), in H and use these to construct nice open sets around U and V.

Let ap = infU. If n is even we let b, = sup{z € U : (ap,2z) NV = &} and
ant1 =inf{x € V : 2 > b,}. If n is odd we reverse the roles of U and V.

We note that a,, < b, < a,41 for every n because the closures of U and V are
disjoint. Also, because U and V both meet H*, the construction will never stop
and both sequences will converge to infinity.

Now let Uy = U, (a2n,b2,) and Vi = U, (a2n+1,b2n+1). We consider the sets
ExU; and ExV;. Since UNH C U; and VNH C V; we know that U C ExU; and
V C ExV;. Furthermore the closures—in H—of U; and V; are disjoint, hence so
are the closures—in SH—of ExU; and Ex V.

Let us call open sets like ExU; and ExV; that come from discrete sequences of
open intervals standard open sets. We summarize the foregoing discussion in the
following lemma.

3.1. LEMMA. IfU and V are open subsets of SH that both meet H* and whose clo-
sures are disjoint then they can be separated by standard open sets whose closures
are disjoint as well.

We shall often use the following consequence of this lemma.

3.2. PROPOSITION. If F' and G are disjoint closed subsets of H* then they can
be separated by standard open sets with disjoint closures. In particular, if U is

an open subset of H* containing F' then there is a standard open set O such that
FCOCU.

4., H* is indecomposable

We begin by recalling the definition of indecomposable continua.
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4.1. DEFINITION. A continuum is said to be indecomposable if it can not be written
as the union of two proper subcontinua.

It is an instructive exercise to show that a continuum is indecomposable iff every
proper subcontinuum of it is nowhere dense. We shall mostly use indecomposability
in this form.

4.2. THEOREM. The space H* is an indecomposable continuum.

O We must show that every proper subcontinuum of H* is nowhere dense.

Let K be a proper subcontinuum of H* and take a point z in H* \ K. Apply
Proposition 3.2 to K and « to obtain sequences (a,), and (b,), such that a, <
by, < @pyq for all n and K C ExO, where O = J,, (an, by).

Consider the following collection of subsets of w:

u= {Agw:KgclgHF(a,b,A)},

where F'(a,b, A) denotes the set |J,c4l@n,bn]. From the fundamental property
clga(F N G) = clgu F N clga G we deduce that u is a filter. In fact, because K is
connected, if A C w then either A € uor w\ A € u. We see that u is an ultrafilter.

Now let O be any open subset of SH such that O N K # @; we must show
that O \ K intersects H*. The set A = {n : O N (an,b,) # @} is in u because
O intersects K. Split A into two infinite sets A; and A,. One of these sets, say
Ay, is not in w. But then we may use it to find a point in O N H* \ K: choose
x, € ON(ay,b,) for n € A; and consider the closure of {z,, : n € A;}. |

Notes for Section 4.

Theorem 4.2 was proved by WoODS in [1968] and BELLAMY in [1971]. The proof given
here appears in van Douwen’s notes.

5. Standard subcontinua

Looking back at the proof of Theorem 4.2 we see that we actually constructed an
embedding of the space M into H: the map defined by ¢(n,z) = a, + x(b, — an).
Its extension By : M — [H is also an embedding. The reader will verify without
difficulty that the continuum K is contained in the continuum So[L,].

We get one more justification for our interest in standard subcontinua: every
proper subcontinuum is contained in a standard subcontinuum.

To make dealing with them a bit easier we introduce some notation. If (a,), and
(bn),, are sequences in H such that a, < b, < an41 for all n and lim,, a,, = oo then
we denote the points u—lim a,, and u—lim b,, by a, and b, respectively; this con-
forms with the convention adopted in Section 2. We define a homeomorphism of M
onto |J,[@n,bn] as above. Furthermore, since I, is irreducible between 0, and 1,,
the continuum fp[L,] is irreducible between a, and b,. Because of this we shall
denote [y[L,] by [au,b.]. As we shall see, the standard subcontinua really do
behave like intervals; this is another reason why we adopted the interval notation.
Finally, as in the proof of Theorem 4.2, we shall write

F(a7b7 A) = U [a’n?bn]v

neA
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whenever A C w. We observe that

(@, bu] = ) clgm F(a,b,U).
Ueu

It follows that [a.,b.] does not change if we change (a,), and (b,), on a set not
in u. We shall use this fact quite often.

For later use we sharpen the statement that every subcontinuum is contained in
a standard subcontinuum a bit.

5.1. THEOREM. If K is a proper subcontinuum of H* and U a neighbourhood
of K then there is a standard subcontinuum L of H* such that K C L C U.

The proof is implicit in the proof of Theorem 4.2; apply Proposition 3.2 to K
and U and observe that the standard subcontinuum found in this way is contained
inU.

The following corollary is quite handy in many situations. Using it we shall show,
for example, that H* is hereditarily unicoherent.

5.2. COROLLARY. Let K be a proper subcontinuum of H*. Then K is the inter-
section of the family of all standard subcontinua containing it.

The following theorem will be the key to practically the whole structure theory
of the subcontinua of H*. Its proof is a bit technical but certainly worth the effort.

5.3. THEOREM. Let K = [ay,b,] and L = [¢,,d,] be standard subcontinua of H*
with a nonempty intersection. Then one of the following three cases occurs:

1. ay,by, € L; in this case K C L and there is a finite-to-one map ¢ : w — w
such that ¢(u) = v.

2. a, € L and b, & L; then there is a permutation ¢ of w such that p(u) = v and
K U L is the standard subcontinuum [c,,b,]. If a,, = d,, then K N L = {a,},
otherwise K N L is the standard subcontinuum [a,,d,]. (The case a, & L
and b, € L is similar.)

3. ay,by € L; then ¢,,d, € K and we are in Case 1 with the roles reversed.

In short, the union of two standard subcontinua is a standard subcontinuum and
so is their intersection unless it is a one-point set.

O For every V € v we let Ay (By) be the set of n with a,, € F(c,d, V) (b, €
F(c,d, V) respectively). We consider three cases.

CASE 1. Here we have Ay, By € u for all V € v. We must show that [a,,b,] C
[cv, dy]. After changing the sequences on sets not in u or v respectively we may as
well assume that a,,b, € F(c¢,d,w) for all n.

Define ¢, : w — w by demanding that a, € [c,(n), dp(n)] and by, € [Cy(n), dyp(n)]-
It is clear that ¢(n) < ¢(n) < o(n+1) for all n. Let A = {n:p(n) =v(n)}.

If A € u then we get F(a,b,AN Ay NBy) C F(c,d, V) for all V € v and we
conclude that [ay,b,] C [cy,dy]. The map ¢ is finite-to-one on A and it maps u
to v. We can make some inessential changes to define it on the whole of w.

The assumption w \ A € u leads to a contradiction. For let {i,, : n € w} be the
monotone enumeration of w \ A and put P = {p(ip), ¥ (i1), ¢(i2),¥(iz),...} and
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Q = {¥ (i), ¢(i1), ¥ (i2), ¢(is), .. .}. Since the set F(c,d,w \ (P UQ)) contains no
points ay,, or b, with n € w\ A we must have P U Q € v. On the other hand both
Ap N Bp and Ag N Bg are empty, so that neither P nor @ belongs to v. This is
the desired contradiction.

CASE 2. Now we have Ay € u for all V' € v, but some By is not in u.
We may assume that a,, € F(c,d,w) and b,, € F(c,d,w) for all n. Let

P= {m :3dn [an € [Cm,dm]] };

then P € v because A,\p = @.
The map ¢ : w — P defined by a, € [cy(n),dy(n)] is One-to-one since we must
have
Co(n) < an < dy(n) < bn < Cp(ni)

for all n. It follows quite easily that v = @(u). If we now let e, = c,(,) and
fn = dy(n) for all n then we get e, = ¢y, fu = dy, and [ay, b, U [cy, dy] = [€w, bu].
Furthermore, if {n : a, = dy,)} € u then [a,,b,] N [c,,dy] = {a.} and if
{n:an <dymy} € uthen [ay,, b, N[c,,d] = [au, fu]-
CAsSE 3. Now there is Vj € v such that AVovBVo Zu. Let Uy =w \ (AVO U BVO)-
Consider any U € u contained in Uy. The set V = {m € Vj : [c;m, d1n ]V F(a,b,U) #
@} belongs to v, but because U C Uy we know that [c,,, d;,] is contained in [ay,, by,]
as soon as it intersects that set. We see that F'(¢,d, V) C F(a,b,U) and we conclude
that [cy, dy] C [Gu, by a

We see that the standard subcontinua really do behave like intervals. The fol-
lowing lemma provides further evidence. A family of sets is called linked if every
two elements of it have a nonempty intersection. It is easy to see, for example, that
every linked family of closed intervals in I has a nonempty intersection.

5.4. LEMMA. The intersection of a finite linked family of standard subcontinua is
a one-point set or a standard subcontinuum.

O We prove the lemma by induction on the number n of elements of the family.

For n = 2 we have Theorem 5.3; and the induction step reduces to the case
n = 3 as follows: If {Ky,..., K41} is linked then the family {K; N K, ; : i <n}
consists of standard subcontinua and possibly a one-point set. To show that this
last family is linked we apply the case n = 3 to every triple (i, 7,n + 1).

Finally then let {K, K5, K3} be a linked family of standard subcontinua. Then
K, UK, is a standard subcontinuum and hence so is (K; U K3) N K3. But then
the closed sets K1 N K3 and K> N K3 must intersect and since these are standard
subcontinua the intersection K7 N Ko N K3 is a standard subcontinuum or a one-
point set. a

5.5. COROLLARY. The intersection of every linked family of standard subcontinua
is a continuum.

O By the lemma every finite intersection from the family is again a standard sub-
continuum, or a singleton. So the intersection is the intersection of a downward
directed family of continua, hence a continuum. O
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This corollary allows us to conclude that H* is hereditarily unicoherent. We
recall that a continuum X is said to be unicoherent if whenever it is written as
the union of two subcontinua — X = K U L — the intersection of K and L is
connected. A hereditarily unicoherent continuum is one in which every subcontin-
uum is unicoherent, equivalently in which the intersection of any two subcontinua
is connected if nonempty. Using the same argument as in the proof of Corollary 5.5
we can prove that in a hereditarily unicoherent continuum the intersection of every
linked family of subcontinua is again a continuum.

5.6. THEOREM. The continuum H* is hereditarily unicoherent.

O Let K and L be subcontinua of H* with nonempty intersection. Since H* is
indecomposable we may assume that K and L are both proper subcontinua. By
Corollary 5.2 we may take families Lx and £, of standard subcontinua with in-
tersection K and L respectively. Then Lx U L is a linked family of standard
subcontinua with intersection K N L so that K N L is a continuum. a

We now prove a nice structure theorem for decomposable subcontinua of H*.
To begin we note that standard subcontinua and their non-degenerate intervals
are decomposable (as we will see later layers are indecomposable). The structure
theorem shows that these are the only decomposable subcontinua of H*. We begin
with a lemma.

5.7. LEMMA. Let K and L be proper subcontinua of H* and assume that the sets
KNL, K\Land L\ K are nonempty. Then there is a standard subcontinuum
of H* such that K and L are non-degenerate intervals of it.

O Fix points * € K \ L and y € L\ K. Take standard subcontinua K+ and LT
around K and L respectively such that ¢ LT and y ¢ KT. By Theorem 5.3
the union K+ U LT is a standard subcontinuum, denote it by [a,b,]. Now z is
not in LT, but LT contains K N L. It follows that K meets two different layers
of [ay,by]: the layer of x and a layer in L*. Now apply Theorem 2.11 to K. The
argument for L is the same of course. O

5.8. THEOREM. Let K be a subcontinuum of H*. Then either K is indecomposable
or there is a standard subcontinuum such that K is a non-degenerate interval of it.
In particular if K is decomposable then K is irreducible between two points and it
has a dense set of cut points.

O If K is decomposable then the previous lemma immediately implies that K is a
non-degenerate interval of some standard subcontinuum. O

The following consequence of Lemma 5.7 will play a role in our investigation of
cut points of subcontinua of H*.

5.9. THEOREM. If K and L are subcontinua of H*" that intersect and if one of K
and L is indecomposable then K C L or L C K.

An easy consequence of this theorem is the following.

5.10. THEOREM. Let K and L be subcontinua of H* such that K is a proper
subset of L and L is indecomposable. Then there is a standard subcontinuum M
such that K C M C L.
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O Take z € L\ K and let M be a standard subcontinuum around K such that
x & M. Since clearly M intersects L and L is not contained in M we must have
M C L. |

5.11. COROLLARY. Every subcontinuum of H* contains a standard subcontinuum
and hence no subcontinuum of H* is hereditarily indecomposable.

O The first part follows from Theorems 5.8 and 5.10. The ‘hence’ is justified by
the fact that standard subcontinua are decomposable. a0

Notes for Section 5.

The results in this section are all taken from van Douwen’s notes. Standard subcontinua
appear implicitly in GILLMAN and JERISON [1976, 10N].

Theorem 5.6 was proved by GILLMAN and HENRIKSEN in [1956, Corollary 4.10] by
algebraic means; they established an algebraic property of the ring C*(R) and showed
that, in general, a normal space X is hereditarily unicoherent if C*(X) has this property.

Some of the results of this section have been rediscovered in recent years.

The material in this section also appears in ZHU [190c0a], with different proofs.

The fact that no subcontinuum of H" is hereditarily indecomposable was established by
SMITH in [1987a] using a somewhat more complicated argument than the one presented
here. In [1988] SMITH showed that much more is true: no power of H" contains a heredi-
tarily indecomposable subcontinuum. This is in strong contrast with the metric situation:
it was proved by BING in [1951] that every two-dimensional metric continuum contains
a hereditarily indecomposable subcontinuum. It is also in contrast with the situation for
(R?)*: It was shown by SMITH in [1987b] that if X = ®D..c., Kn is a sum of hereditar-
ily indecomposable continua then every continuum K, is hereditarily indecomposable as
well. Apply this to a discrete (infinite) collection of pseudoarcs in the plane; one gets
hereditarily indecomposable subcontinua in (R*)*.

6. Layers and other indecomposable continua

This section is devoted to the study of some properties of layers in standard sub-
continua. As a byproduct of these investigations we get insight in the structure of
the indecomposable subcontinua of H* as well.

Let L be a layer of I,. We let A, be the set of sequences (a,), in I for which
ay <y L; it L = {z,} for some z, € P, then A; = {(an)n Dy < a:u}, otherwise
Ap = {{an), : L C [ay,1,]}. Likewise B, denotes the set of sequences (b,), for
which L <, b,.

The continuity properties of <, imply that

L= m{[au,bu] (an), € Ar and (b,), € BL}.

From this it follows that if L is not of the form {z} with z € P, then the pair
(AL, Bp) determines a gap in P,, i.e., there is no sequence (c,), such that a, <y
¢y <u by for all (a,), € A and (b,), € Br.

We can use Ay and By, to identify a nice local base at L in SM.
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6.1. LEMMA. If O is open in fM and L C O then there are (a,), € Ar, (bn), € Br
and U € u such that
L C clgy F(a,b,U) C O.

O This follows by compactness; L is the intersection of sets of the desired form. O

From now on we let L be a layer not of the form {z} for any « € P,. We shall
see that L is an indecomposable continuum; this is trivial if L is a one-point set;
to show it for the other layers will require some work.

We begin by analyzing the situation in Case 1 of Theorem 5.3 more carefully.
We have two standard subcontinua [a,, b,] and [c,, d,] such that [ay, b,] C [cy, dy].
We also have a finite-to-one map ¢ : w — w such that ¢(u) = v. The proof of
Theorem 5.3 shows that, without loss of generality, [a,, bn] C [cyo(n), dy(n)] for all n.
Next we apply Theorem 5.8 to deduce that [a,,b,] is either contained in a layer
of [¢y,d,] or that it is an interval of [c,,d,]. The following lemma tell us how we
can see which case holds by looking at the map ¢.

6.2. LEMMA. The map ¢ is one-to-one on some element of u if and only if [a,, b,] is
an interval of [c,, d,].

O Suppose  is one-to-one on some element U of u, without loss of generality U = w.
Consider the sequences (e,), and (f,.), defined by e, = c () and f, = dy(n)-

It should be clear that e, = ¢y, fu = d, and [ey, fu] = [cv,dy]. After this
reindexing it follows immediately that [a,, b,] is an interval of [c,,d,].

Now assume that ¢ is one-to-one on no element of u. Let (x,), be any sequence
with x,, € [cp,d,] for all n. Divide w into three sets as follows:

Uy = {i:if (i) =n then z, < a;},
Uy = {i :if p(i) = n then z, > b;}, and
Us :u)\(U1 UUQ).

Observe that ¢ is one-to-one on U (if i € Us then x,(;) € [as, b)), so that either
U, € wor Us € u. But this means that either [a,, b,] C [cy, Zy] OF [y, by] C [Ty, dy].

Since this holds for all sequences (z,), we conclude that [a,,b,] is contained in
a layer of [c,,d,]. O

Now we are ready to show that non-trivial layers of standard subcontinua are
indecomposable.

6.3. THEOREM. Every layer of I, is an indecomposable continuum.

O Since one-point layers are trivially indecomposable we consider a layer L with at
least two points. A consequence of Theorem 5.8 is that a decomposable continuum
contains a standard subcontinuum with (relative) nonempty interior. We see that
it suffices to show that every standard subcontinuum of L is nowhere dense in L.

Let ([ci,di]), be a sequence of intervals in M and let v € w* be such that
[cv,d,] C L. Let ¢ be the map determined by [c;,d;] C I,(;). By Lemma 6.2 the
map ¢ is not one-to-one on any element of v.
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To begin we observe that for every (a,), € Ar, every (b,),, € By and every
U € u the set
{i 2 ey di] C F(a,b,U)}

is in v. Next we consider for V' € v and (a,),,, (bn), and U as above the sequence
of numbers (my,),ecv defined by

My = ‘{i eV :lesdi C [an,bn]}‘.

This sequence must be unbounded since otherwise we could divide V into finitely
many sets on which ¢ would be one-to-one; but none of these sets would be in v.

Now let O be open in M such that ON[e,, d,] # @. Theset Vo = {i : ON[c;, d;] #
@} belongs to v. We split Vo into two infinite pieces Vp and V; as follows. In every
interval I,, that contains some of the [c;, d;] these intervals lie ordered by the order
of I, (formally, if [c;,di],[c;,d;] C L, say ¢ <, j iff max{c;,d;} < min{c;,d;}).
For such n put into V; those ¢ which are even numbered in <,, and put the odd
numbered ¢ into V7. Using the above observation on unbounded sequences it is now
straightforward to show that the closures of O N {J,cy, [ci,di] and O N U,ey, [e:, di]
both meet L. One of these sets is disjoint from [c,, d,].

Since L is a regular topological space this finishes the proof. O

We can also show that there are indecomposable subcontinua of H* that are not
layers of standard subcontinua. The construction relies on the following lemma.

6.4. LEMMA. Let K be a linearly ordered family of indecomposable subcontinua
of H*, and let L = (\K. Then L is indecomposable and if L is a layer of some
standard subcontinuum then L € K.

O Let M be any standard subcontinuum containing L. By Theorems 5.8 and 5.9
every K € K either contains M or is contained in a layer of M.

This immediately implies that L is contained in a layer of every standard sub-
continuum containing it and hence indecomposable. It also implies that L € K if
L is a layer of some M, because some K € K has to be contained in M hence in a
layer, but this layer must be L. O

6.5. THEOREM. There is an indecomposable subcontinuum of H" that is not a
layer of any standard subcontinuum.

O Apply Proposition 2.12 and Theorem 5.10 infinitely many times to find a se-
quence (K,) of continua such that K,i; is a non-trivial layer of a standard
subcontinuum of K,,. By Theorem 6.3 every K, is indecomposable.

By the previous lemma the intersection ﬂn K, is an indecomposable continuum
that is not a layer of any standard subcontinuum. O

Note that (1, I{,, can not be a one-point set either: pick z,, € K,, \ K, 41 for
every n and let D = {x,, : n € w}. The set D is relatively discrete so its closure is
homeomorphic with fw, but also D\ D C ), K,.

Notes for Section 6.

Lemma 6.1 was proved by MIODUSZEWSKI in [1978]; using it Mioduszewski showed that
the decomposition of M" into layers is upper-semicontinuous (cf. Corollary 2.10).
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Theorem 6.3 appears in van Douwen’s notes, but without proof. van Douwen used it
to deduce Theorem 6.5.

Theorem 6.3 was rediscovered by SMITH in [1900] and ZHU in [1991b]. In [1900a] ZHU
rediscovered Theorem 6.5.

7. Cut points and nonhomogeneity of H*

In this section we will give a clear cut reason why H* is not homogeneous, by
exhibiting two points with easily defined different topological behaviour.

A point of a continuum X is said to be a weak cut point of X if it is a cut point
of some subcontinuum of X.

Our goal then will be to find a weak cut point of H* and another point that is
not a weak cut point.

A large family of weak cut points is the following. We shall call a point x of H*
a near point if it is in the closure of some closed and discrete subset of H. If a
point is not near then we call it a far point.

The following theorem is a direct consequence of Theorem 2.5.

7.1. THEOREM. Every near point of H is a weak cut point of H*.

It remains to find a point that is not a weak cut point. The following lemma
shows that we only have to worry about standard subcontinua.

7.2. LEMMA. Let z be a weak cut point of H*. Then z is a cut point of some
standard subcontinuum.

O Let K be a subcontinuum such that z is a cut point of K. Then K is decompos-
able and hence a non-degenerate interval in some standard subcontinuum M. But
then z is also a cut point of M. O

The following proposition tells us how we can recognize cut points of standard
subcontinua by looking at their layers.

7.3. PROPOSITION. A point x of 1,,\ {04,1,} is a cut point if and only if its layer
is a one-point set.

O If L, = {2} then {[0y, Ls), (Ls, 1]} is a partition of I\ {z} into disjoint open
sets.

On the other hand if L, # {z} then [0,,L.) \ {z} and (L.,1,] \ {z} have
a nonempty intersection. Since both sets are connected their union I, \ {z} is
connected as well. O

We see that a point is a weak cut point iff it determines a one-point layer in
some standard subcontinuum.

To find a point that is not a weak cut point we consider a maximal chain K of
non-degenerate indecomposable subcontinua of H*. The intersection of I consists
of exactly one point. To see this we note that () K is indecomposable by Lemma 6.4.
If it were non-degenerate then we could find a standard subcontinuum of it and add
a non-trivial layer of this continuum to the family IC, contradicting the maximality.
Let y be the point of [ K.
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7.4. THEOREM. The point y is not a weak cut point.

O We must show that whenever M is a standard subcontinuum of H* that con-
tains y, the layer of y in M is non-degenerate.

So let M be standard with y € M. Using Theorem 5.9 we deduce that there
must be a K € K such that K C M. But this K must be contained in a layer
of M, and it must be the layer of y which therefore is non-trivial. O

The converse of this theorem also holds: if y is not a weak cut point then it is
the intersection of a chain of nondegenerate indecomposable continua. By Theo-
rem 5.9 the family Ky of nondegenerate indecomposable continua that contain y is
a chain. By Lemma 6.4 the intersection of /ICy is indecomposable. To see that the
intersection is exactly {y} we combine Theorem 5.10, Lemma 7.2, Proposition 7.3
and Theorem 6.3.

It is interesting to note that non weak cut points can also be constructed directly
from H. For this we consider the family

F ={F: Fisclosed and m(H\ F) < cc}.

Thus F consists of those closed sets whose complement has finite Lebesgue measure.
It is clear that F is a filter of closed sets. A point of H" that extends this filter is
called a large point. Since closed and discrete subsets of H are countable it follows
right away that large points are far.

We shall show that large points are not weak cut points either. In the proof we
use the following characterization, in terms of Ay, and By, of when L is a one-point
set. This characterization is somewhat more amenable to set theory than the result
from Proposition 7.3. We shall use it in Section 8.

We recall that a null sequence is a sequence that converges to zero.

7.5. PROPOSITION. The layer L consists of one point if and only if for every
positive null sequence (z,), in (0,1) there are (a,), € Ar and (b,), € By such
that {n:b, —a, < z,} € u.

O With every null sequence (x,), we associate three closed sets Fp, F; and F» that
cover M, as follows. Choose a sequence (k,), in N such that 1/k, < z,. Forn € w
and ¢ < 3 we let

Fin = J{ (3 +)/3kn, (3 + i+ 1)/3k,] : j < k).

The sets F; ,, divide the interval [ into three pieces. We let F; = |J,, Fj,» for i < 3.

If L = {p} is a one-point layer and (x,), is a null sequence then one of the
sets F;, say Fp, is not in p. We can therefore find a set of the form F(a, b, U), with
(an), € Ar and (b,), € By, that is disjoint from F. But this readily implies that
bp — a,, < 2x,/3 for alln € U.

If L contains two distinct points p and ¢ take elements F' and G of p and ¢
respectively that are disjoint. The set U = {n: FNL, # @ # GNIL,} belongs to u.
Now if (an), € Ar and (b,), € B then the set V of those n for which [ay,b,]
meets both F NI, and G N1, also belongs to u. However for these n we must
have b, —a, > d(F N1,,GNI,); we see that any null sequence (z,), satisfying
xn, < d(FNIL,GNI,) will do. O
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7.6. THEOREM. A large point is not a cut point of any standard subcontinuum.

O Let z be a large point and let M be a standard subcontinuum containing it. Let
L be the layer of z in M. Since every element of z must have infinite measure we
can apply Proposition 7.5 with any convergent series to conclude that L is not a
one-point set. a

Notes for Section 7.
Theorems 7.1 and 7.4 are taken from van Douwen’s notes. In [190ca] ZHU rediscovered
Theorem 7.4 and showed that its converse holds.

Proposition 7.5 is a variation of Lemma 2.1 of ZHU [19c0b].

In [1980] VAN MILL and MILLS showed that near points have a slightly stronger cut point
property than the one given here: there are a subcontinuum K and a neighbourhood U
of K such that the point is a cut point of every continuum between K and U. They
then went on to show that large points do not have this property. Note however that, by
Lemma 7.2, this property is only formally stronger.

Large points were given as examples of far points by FINE and GILLMAN in [1962]; they
credited W. F. Eberlein with the construction. As a point of interest we note that large
points are not remote: consider the complement of a dense open set of measure 1.

8. The existence of non-trivial cut points

The reader may certainly have wondered why Corollary 7.3 does not say that a
point is a cut point of I, iff it is an element of P,, and likewise why Lemma 7.2
does not simply identify the weak cut points as the near points of H. The answer
is: ‘because that statement is not true in general’. As we shall see in Theorem 8.3,
Martin’s Axiom for Countable posets (MAC) implies the existence of a point u
of w* for which there are cut points of I, outside P,. When mapped into H* via
some embedding, these become weak cut points that are not near.

Let us call cut points of I,, that are not points of P, non-trivial cut points of 1.

In our investigations into the nature of cut points we shall need the concept
of a remote point. A point of X* is said to be a remote point of X if it is not
in the closure—in B3X—of any nowhere dense subset of X. It is well-known that
R has remote points. We shall give a proof of this fact later in this section for
completeness and to contrast it with the proof of Theorem 8.3.

Let us investigate what non-trivial cut points should look like. By Lemma 6.1 we
know convenient local bases for non-trivial cut points. Let us restate this lemma
in terms of closed sets: If x is a non-trivial cut point and F' is a closed set not
in x then there are (a,), € Ay}, (bn), € By} and U € u such that F(a,b,U) is
disjoint from F. The converse is also true: if the sets F(a,b,U) determine a local
base at x then x is a cut point because these sets are a local base at the layer of x.

This does not quite mean that a cut point, when viewed as a closed ultrafilter,
must have a base of sets of the form F(a,b,U), as we shall see momentarily. Let
us note that a non-trivial cut point that has a base of sets of the form F(a,b,U)
must be a remote point. The converse is also true as the following result shows.

8.1. PROPOSITION. A non-trivial cut point is a far point of M. It is a remote
point if and only if it has a base consisting of sets of the form F(a,b,U).
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O Let = be a non-trivial cut point of I, and let D C M be closed and discrete.
For every n the set D N1, is finite, enumerate it as {d,; : i < k,} (in increasing
order). Put D, = {d,, 2; : ¢ <k, /2} and D, = D\ D.. One of these sets, say D,, is
not in z. There is a neighbourhood F'(a,b,U) of x disjoint from D,. Because each
interval (a,, by,) is convex it contains at most one point of D; but x is not in P, so
now we can find a neighbourhood of it that is disjoint from D.

To prove the second statement assume z is remote and let F' € x. We must find
U, (an), and (b,), such that F(a,b,U) C F. Since x is remote it is not in the
closure of the boundary of F'. Take a neighbourhood F(a,b,U) of = that is disjoint
from the boundary of F'. We can assume that [a,,b,] meets F for every n € U.
But since [an, by] is connected and meets F' but not its boundary it can not meet
the complement of F' as well. We conclude that F(a,b,U) C F. O

Let us call a non-trivial cut point with a base of sets of the form F(a,b,U)
a narrow remote point. This name is inspired by Proposition 7.5, and also by
the proof of Theorem 8.4 because the remote points constructed there will be
anything but narrow: their elements tend to be spread out more and more over the
intervals I,,.

We shall now construct two kinds of non-trivial cut points in some I, one will
be remote the other will not. We construct the points from a special remote point
of the space w x C; this remote point will have a base of clopen sets.

Let B be the canonical clopen base for C. This base is indexed by the set S =
U, 2 of all finite 0-1-valued sequences: if s € S then B; = {x € C: s C z}.

8.2. THEOREM. MAC implies that there are a free ultrafilter u on w, and a point x
in (w x C)* such that x has a base consisting of sets of the form

nel

where U € u and f is a function from w to S.

O Let (Fy : @ < ¢) count the family of closed subsets of w x C. By induction on «
we shall find U, and f, such that the family {S(U., fa) : @ < ¢} has the finite
intersection property and such that for every a

S(Uq, fa) CFyor S(Uy, fa) NF, = 2. (%)

To avoid having to check irrelevant details we assume that F;, = w x C, U,, = [n,w)
and f, (i) = () for all n < w (and all ¢). We start the induction at w. Let v > w and
assume everything has been found up to but not including v. We are to construct
U, and f,. We shall use the subposet P., of Fn(w,B) consisting of those finite
partial functions p from w into B that satisfy

Vn € dom(p) [Bp(m) CF,or Bp(m) NnE, = Q]. (**)
This poset is clearly countable. We define some dense subsets of IP,: for a finite

subset E of v and an n € w we let Dg ,, be the set of those elements of I’ for which
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there is an m € dom(p) such that m >n, m € (), Us and

Bym) C ) Bram)-
o€l

The set Dg , is easily seen to be dense: there are infinitely many m for which the
intersection

() SUa fa) 0 ({m} x C)

aEl

is nonempty. Now let G be a filter on P, that meets all sets of the form D , and
let f, = JG. Clearly f, is a function that satisfies (sx). Let A, = {m € dom(f,) :
Bf (m) € F,} and B, = dom(f,) \ A,. We claim that one of A, and B, can be
used as U,,. Clearly both S(4,, fy) and S(B,, f,) satisty (x). By construction the
family

{S(Uavfoz) ra< ’7} U {S(dom(fv)va)}

has the finite intersection property; but then so does at least one of the families
that we get when we replace dom(f,) by A, or B, respectively. This concludes
the induction step and the construction of u and . O

We now use u and z to create non-trivial cut points that are externally different:
one is a remote point of M, the other is not.

8.3. THEOREM. Ifu and x are as in the previous theorem then there are non-trivial
cut points y and z of 1, such that y is a remote point of M and z is not remote.

O Consider the following two maps from C to I: o(x) = > o =n - 2-("+1) and
e(r) = Y cw 2Tn - 3=+ Of course o is the usual two-to-one surjection of C
onto I and e is the usual homeomorphism of C onto the familiar middle-third set.
We shall simply identify C and the middle-third set and pretend that e is the
identity map. The crucial property of both o and e is that for every s € S the sets
o[Bs] and e[B;] are order-convex in I and C respectively.

Consider the maps from w x C to M induced by o and e; we shall denote these
by o and e also. We claim that the points y = fe(z) and z = fo(x) are as required.

We deal with y first. Let F' C M be closed and assume that F' ¢ y. We may
choose U € w and a function f such that F N.S(U, f) = @. Take n € U and let
Cf(n) be the convex hull of By(,) in I,, and note that By, = Cf,) N C. We
claim that F' N Cy(,) is covered by finitely many complementary intervals of C,.
This follows from the fact that the intersection F' N Cy,) NC,, = F N By is
empty. The finite set of endpoints of these intervals we denote by w,. The set
W = U,cu wn is closed and discrete in w x C and hence there are V' € u and g
such that S(V,g) C S(U, f) \ W. Take the convex hull of S(V, g), this set is of the
form S(V,a,b), disjoint from F' and an element of y.

We conclude that y is a non-trivial cut point of I,. Since y is in the closure
of w x C, it is not a remote point of M.

In the same way it can be shown that z has a base consisting of sets of the
form F(a,b,U) (the images of the sets S(Uy, f«)), so that it is a non-trivial cut point
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of I, that is also a remote point of M. The only fact that really needs checking is
that Bo* (z) = {z}.

Let t # «, and let F € t and S(U, f) € x be disjoint. Take an element S(V,g)
of z, contained in S(U, f) that contains none of the endpoints of S(U, f) (the
endpoints in the order-theoretic sense). A moment’s reflection should convince us
that F N o [0[S(V,g)]] = @, and this implies that So(t) # z. a

Now that we know that non-trivial cut points may exist the question arises
whether they really exist. The full answer to this question is not known yet. What
we do know is that narrow remote points need not exist: there are none in Laver’s
model for the Borel Conjecture.

For those who are familiar with Laver forcing the following should suffice as a
sketch of the argument.

Let (P, : a < wa) be a countable support iteration of Laver forcing. Assume
that in M, there is a narrow remote point x, say « € I,,. There is an a < ws such
that, in My, z | « is a narrow remote point. Let (A, B) be the gap in Py, that
determines the layer {z [ a} in [y}q.

Consider any sequence (c,), in I, from M,,. There is a closed nowhere dense
set C' of M, coded in M,, such that (n,c,) € C for all n. Because x [ « is narrow
we can find a« € A, b € Band U € u | « such that F(a,b,U)NC = . We
conclude that (A, B) will determine, in M,,, a gap in P,; hence it must determine
the layer {z}.

On the other hand, if f : w — w is the Laver real added at stage a then for
every null sequence z from M, there is N such that x,, > 1/f(n) for all n > N. It
now follows from Proposition 7.5 that (A, B) can not determine a one-point layer
in M,,.

This shows that something like MAC is needed in the proof of Theorem 8.2.

To finish this section we will give a proof that R has remote points. The reader
should contrast these ‘real’ remote points with narrow remote points.

8.4. THEOREM. The space R has remote points.

O Let D denote the family of all closed nowhere dense subsets of R. Our aim is to
find a family F = {Fp : D € D} of closed sets with the finite intersection property
and such that FpND = @ for all D € D. Any closed ultrafilter extending F must
be a remote point. We shall construct the sets Fp in pieces, as follows.

To begin we let B = {B; : i € w} be the set of open intervals with rational
intervals. Furthermore we take a discrete family {I,, : n € w} of open intervals
in R, for example I,, = (2n,2n + 1). For every D € D and every n € w we shall
find a closed set Fp , C O, such that Fp, N D = @.

After this we shall let F)p = Un€w Fp . To ensure that the resulting family F
has the finite intersection property we shall—for a fixed n—construct the Fp , in
such a way that every n of them have a nonempty intersection (in other words
{Fp,» : D € D} has the n-intersection property). That this suffices is readily seen.

It remains to construct the sets Fp,. These will be made up of closures of
elements of 5. We collect the possible candidates:

K(D,n)={i€w:B,NnD = and B, C I,}.
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We shall choose, for each D, a natural number ip , and we shall put
= U{Ei i € K(D,n) and i <ip.,}.

We do this in an n + 1-step ‘closing-off argument’: For a fixed D let ipgy =
min K (D,n) and glven tp,m for m < n determine ip ,m+1 as follows: For ev-
ery s € w with B, C O, there is a t, € K(D,n) with B, C B, because D is
nowhere dense. Let ip,m+1 be the first element of K (D, n) above i p,m and all ¢,
for s <ip,m-

We verify the n-intersection property. Let {D; : i < n} be a family of closed
nowhere dense subsets of X. We assume that the indexing is such that ip, ; <
ip,,; whenever j < k. Now we set s(0) = ip,,0, and given s(j) < ip, ; we let
s(j + 1) = min{t € K(Dj41,n): B, C B} Since s(j) <ip; j <ip,,,,; wWe see
that s(j + 1) <ip,,, j+1. We get a decreasing sequence

Bgo) 2 Bs1) 2 -+ 2 Byn-1),

and we conclude that
Bs(n—l) g ﬂ FDj,n-
j<n
Of course By(,—1) # 9. O

In the next section we will apply the knowledge acquired in this section to solve
a long outstanding problem from the theory of remote points: we shall construct
an autohomeomorphism of H* that maps a remote point to a near point.

Notes for Section 8.

Proposition 8.1 was proved by ZHU in [1991b].

The proof of Theorem 8.2 is a minor modification of the construction of a narrow remote
point by BALDWIN and SMITH in [1986].

Non-trivial cut points that are not remote points were found, assuming CH, by ZHU
in [1991b].

The consistency of the non-existence of narrow remote points was established by ZHU
in [1900b]. Laver’s model for the Borel Conjecture is from LAVER [1976].

Theorem 8.4 is a special case of the main theorem of VAN DOUWEN [1981a] and CHAE
and SMITH [1980] which states that every space with a countable m-base has a remote
point.

9. Mapping a remote point to a near point

In this section we shall see how, in certain situations, one may map a remote
point of H* to a non-remote point. It should be pointed out that this is a major
feat: the homeomorphism that accomplishes this can not be of the form Bf for
some autohomeomorphism of H. It is generally quite hard, if not impossible, to
construct such non-trivial homeomorphisms of Cech-Stone remainders.

The idea is quite simple: we take a point u of w*, take two cut points of I, and
map one to the other by an autohomeomorphism of M*. Once this is done, use



340 K. P. HArT / BR [CH. 9

the quotient mapping of Theorem 2.4 to turn this autohomeomorphism into one
of H*.

Of course this is easier said than done and a lot of care will have to go into the
choice of u and the cut points x and y of I, for this to have any chance of success.

The point v of w* will be a P-point of character w; and the cut points z and y
will have character w; as well. We recall that u is a P-point if it satisfies the
following condition: if (Uy,), is a sequence of elements of u then there is U € u
such that U is almost contained in every U, which means that U \ U, is finite for
every n. We write A C* B to denote that A is almost contained in B.

Since u is a P-point of character w; we can find a base (U, : @ < wy) for u such
that U, C* Ug whenever < a < w;.

Since the character of x is wy, the cofinality of [0,, ) and the coinitiality of (x,1,]
are both w; (use Proposition 2.12 to see that these numbers are uncountable).
Therefore we can find sequences {(a, : a < wi) in Ay and (bs : @ < wi) in By,y,
such that ag . <u Ga,u <u bayu <ubgu if B <a <wp and {2} =, [Ca,u; ba,ul-

Of course similar sequences (cq : @ < wy) and (d, : o < wy) can be found for the
point y.

We can, upon shrinking the sets U, somewhat, assume that U, is always a
subset of U, (rather than almost a subset) and that

ag(n) < ao(n) < ba(n) <bg(n) and cz(n) < ca(n) < do(n) < dg(n)

for all but finitely many n € U, whenever # < a. If @« = #+ 1 we can even assuie
that these inequalities hold for all n € U,. We shall write

F, = ClgM F(aa, ba, Ua) n M*,

and
Ga = ClgM F(Ca,da,Ua) N M*

for every a.

9.1. LEMMA. The family {F, : o < w;} is a local base for M* at x and so is
{Ga:a<w} aty.
O Let O be open in BM such that z € O. By Lemma 6.1 we can find U € w,
a € Agzy and b € B,y such that ClgyF(a,b,U) C O.

Find « such that Uy, C* U and a(n) < aq(n) < ba(n) < b(n) for all n € U,.
From this it follows immediately that F,, C O N M*.

To finish the proof we should show that every Fi, is a neighbourhood of x in M*.
However, one readily verifies that F,y1; N (M* \ F,) = @, so that « € Int F,, for
all a. O

Now we are ready for the construction of the autohomeomorphism of M* that
maps z to y.

We shall construct a sequence (h,, : @ < w;) of autohomeomorphisms of fM such
that the following conditions are satisfied:

1. For every n € N and every a we have hy(n,0) = (n,0) and ho(n,1) = (n, 1),
hence h,(0,) =0, and h,(1,) =1, for every u € w*,
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2. for every a we have ho[M* \ F,] = M* \ G4, and
3. if f < a < w; then hy r(Mk \Fﬁ) :hﬂ r(M* \Fﬁ)

Once we have this sequence we can define h : M* — M* by combining the maps
he | (M*\ F,) and sending « to y. It is clear that h is one-to-one and onto. That
h is a homeomorphism follows because it is a homeomorphism on every set M* \ F,,
and because it maps F, onto G, for every a.

The construction of the h, will be by induction. There is no loss of generality in
assuming that Uy = w, that ap and ¢y are identically zero and that by and dy are
identically one.

We shall construct the h, on M of course and let Cech and Stone do the rest.
Our demands on the h, are as follows:

1. The map h,, is piecewise linear and monotone on every I,, and if n € U, then
ha(aq(n)) = ca(n) and hq (ba(n)) = do(n), and

2. if B < & < w; then for all but finitely many n € Ug the functions h, and hg
agree on the intervals [0, ag(n)] and [bz(n), 1].

It should be clear that these conditions are sufficient.

To start the induction we let hg be the identity. Now assume that we have
constructed h. for v < o and that all the demands are met for § < v < a.

In the successor case, say o = $+1, we know that ag(n) < as(n) < ba(n) < B(n)
and cg(n) < ca(n) < do(n) < dg(n) for all n € U,. We let h, agree with hsz on
the I, with n g Uy. If n € U, we let hy agree with hg on [0,ag(n)]U[bz(n), 1] but
on [ag(n),bz(n)] we make sure that hq (aq(n)) = ca(n) and hq (ba(n)) = do(n). A
straightforward check will show that h, is as required.

If o is a limit we let (a; : ¢ € w) be a strictly increasing sequence of ordinals that
converges to . We assume that g = 0. From the way we chose the U, we know
that for every ¢ we have

Ao, (N) < ag(n) < bo(n) <ba,(n) and cq, (n) < ca(n) < do(n) < de,(n)  (*)

for all but finitely many n € U,. Choose a strictly increasing sequence (n;); of
natural numbers with ng = 0 such that for every ¢: if n € U, and n > n; then
n € U,, and the inequalities () hold.

Now we define ho. If n € U, and n € Uy, \Uy,,, then h, agrees with ho, on I,,. If
n € Uy and n; < n < n;y; then we let hy agree with hq, on [0, aq, (n)] U [ba,; (), 1]
but on [aq, (1), ba, (n)] we make sure that hq(aq(n)) = ca(n) and hg(bo(n)) =
do(n). It is again straightforward to check that this h, is as required.

It now remains to show that this situation can actually occur.

One possibility is to assume the Continuum Hypothesis and do the proof of
Theorem 8.2 with a bit of extra care so as to make the ultrafilter © a P-point.
Theorem 8.3 will then give us two non-trivial cut points of I,: one remote, the
other non-remote. We conclude that we can map a remote point to different kinds
of non-remote points: far and near.

Another possibility is to turn the proof of Theorem 8.2 into an iterated forcing
construction.
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We shall try to be brief. For a point x of (w x C)* we can consider the following
poset P.. Its elements are pairs (F, f), where F' is a finite subset of x and f is a
finite partial function from w to S. Such an f determines a clopen subset of w x C:

Cf: U {n}xBf(n).
nedom(f)

We order P, by
(F.f)<(G.g) iff FD2G, f2gandC;\C,C[)G.

This defines a ccc poset. Indeed, two elements with the same second coordinates
are compatible: (FUG, f) < (F, f),(G, f).

Observe that P, is not very interesting if x is not remote: as soon as F' has
a nowhere dense element, no element (F, f) can be extended by enlarging the
coordinate f.

Now assume that x is remote. Then the following types of sets are dense in P,:

DP:{<F7f>:P€F}7
where P € x and
E, = {(F, f): thereis an m > n such that m € dom(f)},

where n € w. For the Dp observe that always (F U {P}, f) < (F, f). For the E,
we use that for any (F, f) the set (] F meets infinitely many of the sets {m} x C
in a set with nonempty interior.

Now let G be generic on P, and set

fo=U{r:3FtR.1 e 61},

The set Xg = S(dom(fg), fo) is a noncompact clopen set and it is such that
X¢ \ P is compact for every P € x. Also note that dom(fg) is almost contained
in every element of the ultrafilter u = {U : U x C € z}.

Start with any model M of ZFC and set up a finite support iterated forcing
construction (P, : a < w;) as follows. At every stage we let @, be a P,-name for
a remote point and we let P41 = P, *P;_. The set added by P;_ will be denoted
by Xa.

The remote point x4 is chosen in such a way that Xz € z, for every 8 < a. It
is not too hard to show that this can always be done (use Theorem 8.4).

In the end we get a point = in (w x C)* generated by the family {X, : @ < w;}
and its associated ultrafilter v on w. The point u is a P-point of w* and z is a
remote point of w x C that is just like the remote point from Theorem 8.2. To it
we may apply the proof of Theorem 8.3.

In this way we get the consistency with —~CH of an autohomeomorphism of H*
that moves a remote point to a non-remote point.
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Notes for Section 9.

The results from this section are due to YU [1991]; except for the iterated-forcing con-
struction, this is an elaboration of Exercise VIII A10 from KUNEN [1980]. To the best of
my knowledge this is the first non-trivial homeomorphism of H".

In [1980] VAN MILL and MILLS exhibited, assuming CH, a remote point = of H such
that h(z) is remote for every autohomeomorphism h of H".

10. The number of subcontinua of H*

In this section we make a beginning with the topological classification of the proper
subcontinua of H*. It will become clear that our knowledge is still quite limited.
We discuss the known ZFC results first; we will find nine different continua. In
fact, we show that every standard subcontinuum contains at least eight topologi-
cally different subcontinua. This suggests obvious questions, we will save these for
Section 13.
Let I, be any standard subcontinuum.

10.1. LEMMA. Let {(a,), and (b,), be sequences in P, such that
Ap Su An41 <u bn+1 Su bn

for all n. Then there is x € P, such that a, <, © <, b, for all n.

O Choose a decreasing sequence (U,,)
such that satisfying Uy = w and

,» Of elements of v with empty intersection

an (i) < ant1(2) < bny1(d) < ba(i), (2 € Ungr).

Next define z by z(i) = %(an(z) + bn(z)) fori € U, \ Upy1- |

Now we are ready to define the eight subcontinua of I,,. There will be six intervals
and two indecomposable continua.

To begin we let K; = I,. Next we take a strictly increasing sequence (a,),
in P, with limit layer L; (cf. Proposition 2.12) and we set Ky = [0,,L;] and
K3 = [L1,1,]. Take another strictly increasing sequence (b,), in P,, this time
above L; and let Ly be its limit layer; put K4 = [L1, Ls]. Choose yet another
sequence (cy), in P, N [Ly, Ly, strictly decreasing with limit layer Ls. We set
[&'5 = [L3,L2] and [(6 = [Ll,Lg]. Flnally we let 1{7 = {Ou} and Krg = Ll.

It is clear that K7 is different from Kg and that both are different from K
through K.

To distinguish the first six continua we observe that any homeomorphism between
them should map layers to layers because layers are indecomposable. Furthermore
we note that each K; has two distinguished end layers: the only layers that, when
removed, leave K; connected. These end layers should therefore be mapped to
end layers.

We inspect the end layers: K; has two one-point end layers and K, and K3
each have one but in K, the other end layer is a Gs-set and in K3 it is not—by
Lemma 10.1. We can distinguish K4, K5 and Kg by the number of end layers that
are (G5-sets.
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To find our ninth continuum we have to do some more work. The continuum Ky
will be indecomposable and non-degenerate. To distinguish it from Kg we negate
the following property that Kg has: every nonempty Gs subset has nonempty
interior, or using complements: no proper F, subset is dense. To see that Kg has
this property, we note that the space [0,,L;) is o-compact and locally compact
and that, because M* is an F-space, we have [0y, L1] = [0, L1).

We shall construct a strictly increasing sequence (M), of indecomposable con-
tinua and let Ky = |J, M,. Clearly Ky is a continuum: (J,, M, is connected.
Since M,, is nowhere dense in M,,41 for every n, the set Un M, is a proper dense
F,-subset of Kg. To see that Ky is indecomposable, consider a proper subcontin-
uum K. If K is disjoint from every M, then K is nowhere dense in Ky, because
it misses a dense subset. On the other hand, if it meets some M, then it must be
contained in one of them, because we have M, C K or K C My, for every k > n
and |J, My C K is impossible.

For the construction of the continua M, we need the notion of a @-point. A
point u of w* is said to be a Q-point if for every finite-to-one function f : w — w
there is an element of v on which f is one-to-one. It is not too hard to show that
it suffices to consider monotone functions only.

It is easy to find non-Q-points. Define for example 7 by w(k) = n iff 2" < k <
271 (and 7(0) = 0). It is easily seen that the family

{w\ A : 7 is one-to-one on A}

has the finite intersection property and that no ultrafilter extending it is a @-point.
Using Lemma 6.2 it is straightforward to prove the following lemma.

10.2. LEMMA. Let [ay, b,] be a standard subcontinuum. Then [a,,, b,] is contained
in an indecomposable (proper) subcontinuum of H* if and only if v is not a Q)-point.

O Suppose first u is a @Q-point and let [c,,d,] be any standard subcontinuum
containing [a,,b,]. We may assume that for every n there is an m such that
[@n,bn]) C [Cm,dn]. This defines a finite-to-one map ¢ from w to w. Fix U € u
on which ¢ is one-to-one. It follows that f(u) = v and that [a,,b,] is a interval
of [¢y,dy].

We conclude that [a,,b,] is not contained in the layer of any other standard
subcontinuum. Since indecomposable subcontinua must be contained in the layer
of some standard subcontinuum we see that [a,, d,] is not contained in any inde-
composable subcontinuum of H*.

Conversely suppose that u is not a @-point and fix an increasing finite-to-one
map ¢ that is not one-to-one on any element of u. We may assume that ¢ is
surjective. For every n let [c,,d,] be the smallest interval that covers all intervals
[a;,b;] with ¢(i) = n. Finally let v = p(u).

Now Lemma 6.2 applies and we can conclude that [a,, b,] is contained in a layer
of [¢y,dy]. a

Our aim is to construct a sequence (u,), in w* such that 7(u,) = tn41 for all n
and 7 is not one-to-one on any element of any u,. Once we have this sequence
we start with a standard subcontinuum [a,,, by,] and inductively apply the proof
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of Lemma 10.2 to find standard subcontinua [a,, ,b,, ] such that for every n the
continuum [ay, , by, ] is contained in a layer of [ay,,,,bu, ], call this layer M,.
This gives us our sequence (M), .

For the construction of (u,), we consider the family

F= {F C w: 3n[r is one-to-one on 7" [w \ F] }

It is not too hard to verify that F U {[n,w) : n € w} has the finite intersection
property. Now let ug be any ultrafilter that extends F and set u,, = 7" (ug) for
n > 0. It should be clear that (u,),, is as required.

If one is willing to go beyond ZFC a bit more can be said. First we quote a
theorem due to Dow. If k and A are regular cardinals then a (x,A)-gap in an
ordered set is a pair of sequences S = (24 : a < K), T = (yo : @ < A) such that
S is increasing, T is decreasing, S is below 7' and there is no element x such that
o < <ygforall @ <kand <A

10.3. THEOREM (Dow). If k < ¢ is a regular uncountable cardinal then there is an
ultrafilter u, such that P, has a {(w, k)-gap, but no (w, \)-gap for any A < k.

Using this theorem we can find nonhomeomorphic standard subcontinua of H*,
one for every regular uncountable cardinal that is not larger than ¢: if x < A then
a layer in I, that corresponds to an (w, k)-gap can not be mapped to any layer
of I,,,. For this to be of any use we must assume —-CH of course.

To find different indecomposable subcontinua of H* one can use the following
theorem.

10.4. THEOREM (Zhu). Assume that ¢ is regular and satisfies 2<¢ = ¢, and let k be
a regular uncountable cardinal less than or equal to ¢. If one adds k Cohen reals
then in the resulting model there is, in some I, a layer in which the intersection
of fewer than k open sets has nonempty interior and in which there is also a point
of character k.

Notes for Section 10.

Lemma 10.1 is well-known; it is a basic fact about ultrapowers of R.

The continua K through Ky were found by SMITH in [1986]. In [1977] VAN DOUWEN
announced five different subcontinua: two indecomposable (K3 and Ky) and three decom-
posable, distinguished by the number of one-point end layers. In his notes van Douwen
also considered the number of G5-sets among the end layers. The construction of Ko
given here is due to ZHU [19c0a].

The existence of @Q-points is independent of ZFC: on the one hand it is straightfor-
ward to construct a Q-point assuming the Continuum Hypothesis; on the other hand the
principle NCF (see Section 11) implies that no Q-points exist.

Theorem 10.3 was proved by DOw in [1984].

11. Composants and NCF

Since H* is an indecomposable continuum it becomes interesting to study its com-
posants.



346 K. P. HArT / BR [CH. 9

11.1. DEFINITION. Let X be an indecomposable continuum. The relation ‘z and
y are contained in a proper subcontinuum of X’ is an equivalence relation on X.
The equivalence classes under this relation are called the composants of X.

The relation above is clearly reflexive and symmetric; indecomposability guar-
antees that it is also transitive. An obvious question is what the number of com-
posants of an indecomposable continuum can be. In the metric case this number is
always ¢ and in the non-metric case there are examples of continua with one, two
or 2" composants for any infinite .

We shall see that the number of composants of H* is determined completely by
a combinatorial property of the set w*.

11.2. THEOREM. Every composant of H* contains a point of w*.

O Consider the quotient map ¢ from M* onto H* from Theorem 2.4. There is a
point u € w* such that © € ¢[I,]. The standard subcontinuum ¢[I,] connects
x and w. O

By this theorem we can concentrate on the composants of the points of w*. To
be able to characterize when two points of w* are in the same composant of H* we
make the following definition.

11.3. DEFINITION. Two points u and v of w* are said to be nearly coherent if there
are finite-to-one maps f and g from w to w such that f(u) = g(v).

This notion has proved itself useful in various circumstances. The principle
NCF (Near Coherence of Filters), which says that any two points of w* are nearly
coherent, implies that many objects have a simple structure. It is not too hard to
show that u and v are nearly coherent iff there is one non-decreasing surjection f
such that f(u) = f(v).

The following theorem shows the connection between NCF and the composants
of H*.

11.4. THEOREM. Let u,v € w*. Then u and v are in the same composant of H*
if and only if they are nearly coherent.

O For the first implication assume that u and v are contained in some standard
subcontinuum K of H*. Take sequences (an), and (b,), in H such that a, <
bp, < any1 for all n, and an ultrafilter w such that K = [a,, b,]. We may assume
that w is covered by the intervals [a,,b,]. Now define f : w — w by f(i) = n iff
i € [an,by]. This map is finite-to-one and it maps u and v to w.

To prove the converse we let f be finite-to-one and non-decreasing such that
fw) = f(v) = w for some w € w*. We let I,, be the smallest interval contain-
ing f(n). It should now be clear that w,v € I,, and hence that v and v are in
the same composant. a0

This theorem implies that the number of composants of H* is equal to the number
of equivalence classes of w* under the relation of near coherence (that this is indeed
an equivalence relation follows from the theorem).

This number depends on extra axioms of set theory. On the one hand CH implies
that there are 2° equivalence classes and on the other hand the principle NCF is
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consistent with ZFC. We see that the number of composants of H" can not be
determined in ZFC.

We finish this section with an interesting application of the results presented in
this paper to the space w*

The problem is to cover w* with ‘small’ P-sets. A P-set in a topological space is
one with the property that the intersection of countably many of its neighbourhoods
is again a neighbourhood of it. A P-point is a point « such that {z} is a P-set. For
points of w* we now have two notions of P-point; see Section 9. It is well-known
that these notions are the same. It is easy to see that a compact space in which
every point is a P-point must be finite, hence not every point of w* is a P-point.

One may therefore wonder whether compact spaces may be covered with ‘small’
P-sets. We take small to mean closed and nowhere dense. It turns out that
under CH the space w* can not be covered with closed nowhere dense P-sets. On
the other hand, a well-known consequence of NCF is that w* can be covered with
nowhere dense P-sets. This can be seen as follows: NCF implies that for every
u € w* there is a finite-to-one map ¢ : w — w such that v = p(u) is a P-point. It
is readily seen that the set S¢* (v) is a closed nowhere dense P-set of w*.

Using some of the results on subcontinua of H* one can prove the following
strengthening of this observation.

11.5. THEOREM (Zhu). NCF implies that w* can be covered by a chain of nowhere
dense P-sets.

The proof of this theorem relies on the following lemma.

11.6. LEMMA. Let u be a P-point of w* and let ([a,, bn]>n be a discrete sequence
of intervals in H. Then w* N [a,, b,] is a nowhere dense P-set of w*.

O We assume that a, < b, < ap4; for all n and define ¢ : w — w by (i) =
min{n : ¢ < b,}. Then w* N [ay,b,] = A* N e (u), where A =wn Y, [an,b,]. O

Proof of Theorem 11.5. We construct a sequence (u4)q of P-points and corre-
sponding standard subcontinua K, such that K, C Kz whenever a < 8 and such
that H* = {J, Ka.

By NCF we may pick a P-point ug. We let K be determined by ug and <[n, n+
1/2]),,.

At a successor stage, given u, and K,, we apply the proof of Lemma 10.2 (and
NCF) to find a finite-to-one map ¢, a P-point u,4+1 and a standard subcontin-
uum K, 41 such that K, is contained in a layer L, of K41 and ta41 = @a(ta)-

If a is a limit consider the union |, ., Ky = U, ., Ly. If this union equals H*
then stop, otherwise pick a point € H* that is not in the union. By NCF (H*
has one composant) we may find a standard subcontinuum K, determined by a
P-point u,, containing both uyp and x. Now apply Theorem 5.9 to conclude that
U7 <o Ky C K, (in fact the closure of the union is indecomposable and hence
contained in a layer of K).

This construction will stop before the cardinal number (2°)* and thus produce
our chain (K, Nw*), of nowhere dense P-sets covering w*. |
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11.7. REMARK. Consider the sequence (u,)o constructed in the proof above.
What we have seen is that whenever a < /3 there is a finite-to-one map ¢ such that
¢(ua) = ug (use Lemma 10.2) and for every u € w* are an « and a finite-to-one
map ¢ such that ¥(u) = u,.

Let us consider the following ordering on w*: say u < v iff there is a finite-to-one
map ¢ such that ¢(v) = w (this is almost the Rudin-Keisler order).

Now by definition NCF says that the ordered set (w*, <) is downward directed.
What we have seen is that it is equivalent to the formally much stronger statement
that there is a linearly ordered coinitial subset in this ordering. Indeed, the usual
consistency proofs for NCF produce exactly such sets.

11.8. REMARK. It may seem strange that the structure of a continuum may have
effect on the structure of w*, a zero-dimensional space. The proof of Theorem 11.5
uses the structure of H* in an essential way: the saving feature at the limit stage
is that indecomposable subcontinua are either disjoint or comparable. I don’t see
how this may be translated into a direct argument that would avoid H" altogether.

Notes for Section 11.

In [1927] MAZURKIEWICZ proved that every metric indecomposable continuum contains
a Cantor set K no two points of which lie in the same composant. This more than shows
that the number of composants of a metric indecomposable continuum equals ¢.

Non-metric indecomposable continua with one or two composants were constructed by
BELLAMY in [1978] and in [1976] SMITH constructed for every infinite £ an indecomposable
continuum with 2 composants.

In [1970] M. E. RUDIN constructed a family of 2° points in w” such that no two of
them are near coherent, and then proved one half of Theorem 11.4 (points that are in the
same composant are near coherent). In [1978] MIODUSZEWSKI proved the same half and
in [1980] essentially announced the converse.

The papers from [1986] and [1987] by BLASS survey many applications of NCF. Proofs
of its consistency can be found in BLASS and SHELAH [1987, 1989].

Theorem 11.5 is due to ZHU [1991a]. For a proof that, under CH, the space w* can not
be covered by nowhere dense P-sets see KUNEN, VAN MILL and MILLS [1980]. Another
model in which w* can be covered by nowhere dense P-sets can be found in BALCAR,
FRANKIEWICZ and MILLLS [1980].

12. Miscellanea from van Douwen’s notes

In this section I collect some results from van Douwen’s notes that do not seem to
fit elsewhere.
The first result shows once more that H* is indecomposable.

12.1. THEOREM. Let F' be a proper closed subset of H" with nonempty interior.
Then F has a closed subset homeomorphic to w* that is a retract of F.

O Apply Proposition 3.2 twice, first to F' and a point not in F' to obtain sequences
(an), and (bn), such that I C F(a,b,w)* and then to a point in the interior
of F" and the closed set cly- (H* \ F') to find sequences (c,),, and (d,), such that
F(c,d,w)* C F. We may assume that every interval [¢,,,d,] is contained in some
interval [ay, b,].
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Define r : F(a,b,w) — F(c,d,w) as follows: for every n let m,, be the first m
such that [¢y,dy] C [an,bs,] if such an m exists, otherwise let m, be minimal
subject to ¢, > b,. Now map, for every n, the interval [a,,b,] to the point ¢, .

The map r is a retraction of F(a,b,w) onto {c,,, : n € w}. Its extension fr is a
retraction of F'(a,b,w)* onto {cm, : n € w}*; it retracts F' onto this set as well. O

We conclude that closed sets with nonempty interior have 2° components, the
maximum number possible.

The second result shows that, although proper subcontinua of H* are nowhere
dense, they may stretch out over a long distance.

12.2. THEOREM. Let {U, : n € w} be a sequence of nonempty open subsets
of H*. Then there is a proper indecomposable subcontinuum of H* that meets
every set U,.

O For each n choose a discrete subset D,, of H* such that D* C U,. Next find
a discrete sequence (I, : n € w) of closed and nondegenerate intervals such that
I, N D,, # @ whenever n > m. It follows immediately that every standard sub-
continuum I, intersects every U,,.

By Lemma 10.2 any non Q-point w will provide us with an indecomposable
continuum that meets every U,. O

13. Some questions

In this section we collect some questions that are suggested by the results presented
in this survey.

13.1. QUESTION (Van Douwen). Is there in some I, a non-trivial cut point?

This question needs no real motivation; once one identifies the obvious cut points
one wonders whether there are more of them. By Lemma 7.2 this question asks
whether there is a weak cut point of H* that is not a near point. We note that
Theorem 8.3 provides a conditional positive answer. On the other hand, none of
the results in this paper say something about the other end of the spectrum.

13.2. QUESTION. Is there an ultrafilter u such that I, has no nontrivial cut points?

In Section 10 we discovered nine topologically different subcontinua of H*. It
seems unlikely that this is the best one can say in ZFC.

13.3. QUESTION. What is the number of topologically different subcontinua of H* ?

The ‘right’” answer to this question should be: 2°. We remark that the remainder
of R? does indeed have 2° different subcontinua. This was established by BROWNER
WINSLOW in [1980] and VAN DOUWEN in [1981b].

The number of subcontinua can be at least c; if one adds enough Cohen reals then
one can find ¢ different continua in H*. This follows from Theorems 10.3 and 10.4.
Theorem 10.3 gives better information: there are always at least as many standard
subcontinua of H* as there are regular cardinals below (or equal to) c; it also gives a
positive answer, under —~CH, to the following question; one would like a ZFC result
of course.
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13.4. QUESTION. Are there u and v in w* such that I, and I, are nonhomeomor-
phic.?

Let us note however that the Continuum Hypothesis implies that for any two
ultrafilters v and v the sets P, and P, are isomorphic as ordered sets. The point
is that these sets satisfy Lemma 10.1, i.e., they are 7;-sets. It is an old result of
HAUSDORFF from [1914] that any two n;-sets of cardinality w; are isomorphic.

In connection with the result of Yu, Section 9, the following questions come to
mind.

13.5. QUESTION. Is there, in ZFC, a non-trivial homeomorphism of H*?

For the space w* the answer is negative, see SHELAH and STEPRANS [1988].
Should this question have a positive answer then the following question becomes
interesting as well:

13.6. QUESTION. Determine whether the ‘real’ remote points of van Douwen

(Theorem 8.4) can be mapped to non remote points by an autohomeomorphism
of H*.

As a first try one may consider large points. There are two reasons to do this:
(i) both kinds of points have fairly concrete descriptions and (ii) neither kind of
point is a weak cut point (so there is no obvious reason why large points can’t be
mapped to remote points).

It follows from Lemma 6.1 that the decomposition into layers is upper semi-
continuous on the whole space M*. It induces, via the quotient map of Lemma 2.4,
an upper semi-continuous decomposition of H*. The quotient of H* obtained in this
way looks a lot like a solenoid. It would be interesting to investigate the structure of
this space, for example its dynamical properties. This would probably necessitate
an investigation of the ordered continua X, defined right after Corollary 2.10.

References

BALCAR, B., R. FRANKIEWICZ, and C. F. MILLS.
[1980] More on nowhere dense closed P-sets. Bulletin of the Polish Academy of
Sciences. Mathematics, 28, 295-299.

BALDWIN, S. and M. SMITH.
[1986] On a possible property of far points of 8[0,00). Topology Proceedings, 11,
239-245.
BeELLAMY, D. P.
[1971] An non-metric indecomposable continuum. Duke Mathematical Journal, 38,
15-20.

[1978] Indecomposable continua with one and two composants. Fundamenta
Mathematicae, 101, 129-134.

Bing, R. H.
[1951] Higher-dimensional hereditarily indecomposable continua. Transactions of the
American Mathematical Society, 71, 267-273.



References 351

Brass, A.
[1986] Near Coherence of Filters I: cofinal equivalence of models of arithmetic. Notre
Dame Journal of Formal Logic, 27, 579-591.
[1987] Near Coherence of Filters II: applications to operator ideals, the Stone-Cech
remainder of a half-line, order ideals of sequences, and slenderness of groups.
Transactions of the American Mathematical Society, 300, 557-581.

BrLass, A. and S. SHELAH.
[1987] There may be simple Py,- and Pg,-points and the Rudin-Keisler ordering may
be downward directed. Annals of Pure and Applied Logic, 33, 213-243.
[1989] Near Coherence of Filters I1I: a simplified consistency proof. Notre Dame
Journal of Formal Logic, 30, 530-538.

BrROWNER WINSLOW, A.
[1980] Continua in the Stone-Cech remainder of R?. Pacific Journal of Mathematics,
90, 45-49.

CHAE, S. B. and J. H. SMITH.
[1980] Remote points and G-spaces. Topology and its Applications, 11, 243-246.

VAN DOUWEN, E. K.
[1977] Subcontinua and nonhomogeneity of SR —RT. Notices of the American
Mathematical Society, 24, TTT-G114, p. A-559.
[1981a] Remote points. Dissertationes Mathematicae, 188, 1-45.
[1981b] The number of subcontinua of the remainder of the plane. Pacific Journal of
Mathematics, 97, 349-355.

Dow, A.
[1984] On ultra powers of Boolean algebras. Topology Proceedings, 9, 269-291.

FINE, N. J. and L. GILLMAN.
[1962] Remote points in SR. Proceedings of the American Mathematical Society,
13, 29-36.
GILLMAN, L. and M. HENRIKSEN.

[1956] Rings of continuous functions in which every finitely generated ideal is
principal. Transactions of the American Mathematical Society, 82, 366—391.

GILLMAN, L. and M. JERISON.
[1976] Rings of Continuous Functions. Graduate Texts in Mathematics 43.
Springer-Verlag, Berlin etc. Original edition: University Series in Higher
Mathematics, Van Nostrand, Princeton, N. J., 1960.

HAUSDORFF, F.
[1914] Grundziige der Mengenlehre. Chelsea Publishing Company, New York.
Reprint from 1978 of original edition published in Leipzig.

KUuNEN, K.
[1980] Set Theory. An Introduction to Independence Proofs. Studies in Logic and
the foundations of mathematics 102. North-Holland, Amsterdam.

KUNEN, K., J. vAN MILL, and C. F. MILLS.
[1980] On nowhere dense closed P-sets. Proceedings of the American Mathematical
Society, 78, 119-123.
KurATOWSKI, K.
[1968] Topology II. PWN—Polish Scientific Publishers and Academic Press,

Warszawa and New York.



352 K. P. HArT / BR [CH. 9

LAVER, R.
[1976] On the consistency of Borel’s Conjecture. Acta Mathematica, 137, 151-169.

MAZURKIEWICZ, S.
[1927] Sur les continus indécomposables. Fundamenta Mathematicae, 10, 305-310.

VAN MILL, J. and C. F. MILLS.
[1980] A topological property enjoyed by near points but not by large points.
Topology and its Applications, 11, 199-209.

MIODUSZEWSKI, J.

[1978] On composants of SR —R. In Topology and Measure I, Part 2. (Zinnowitz,
1974), J. Flachsmeyer, Z. Frolik, and F. Terpe, editors, pages 257-283.
Ernst-Moritz-Arndt-Universitat zu Greifswald.

[1980] An approach to SR\ R. In Topology (Budapest, 1978), A. Csaszér, editor,
Colloquia Mathematica Societatis Janos Bolyai 23, pages 853-854.
North-Holland, Amsterdam.

Rubin, M. E.

[1970] Composants and BN. In Proc. Wash. State Univ. Conf. on Gen. Topology,

pages 117-119, Pullman, Washington.
SHELAH, S. and J. STEPRANS.

[1988] PFA implies all automorphisms are trivial. Proceedings of the American
Mathematical Society, 104, 1220-1225.

SMITH, M.
[1976] Generating large indecomposable continua. Pacific Journal of Mathematics,
62, 587-593.

[1986] The subcontinua of 3[0,00) — [0,00). Topology Proceedings, 11, 385-413.
Erratum: Ibid 12 (1987) 173.

[1987a] ﬁ([O7 oo)) does not contain nondegenerate hereditarily indecomposable
continua. Proceedings of the American Mathematical Society, 101, 377-384.

[1987b] ﬁ(X — {:p}) for X not locally connected. Topology and its Applications, 26,
239-250.

[1988] No arbitrary product of ﬁ([O, oo)) — [0, 00) contains a nondegenerate
hereditarily indecomposable subcontinuum. Topology and its Applications,
28, 23-28.

[190cc] Layers of components of ,6’([07 1] x N) are indecomposable. Proceedings of the
American Mathematical Society. to appear.

Woobs, R. G.
[1968] Certain properties of X \ X for o-compact X. PhD thesis, McGill
University (Montreal).

Yu, J. Y.-C.
[1991] Automorphism in the Stone-Cech remainder of the reals. Preprint.

ZHu, J.-P.

[1991a] A remark on nowhere dense P-sets. Preprint.

[1991b] On indecomposable subcontinua of 3[0,00) — [0,00). To appear in
Proceedings of General Topology and Geometric Topology Symposium
(Tsukuba, 1990).

[19cca] Continua in R*. Topology and its Applications. to appear.

[19ccb] A note on subcontinua of [0, 00) —[0,00). Proceedings of the American
Mathematical Society. to appear.



