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IntroductionThe �Cech-Stone compacti�cation of the real line R seems to have been much lessinvestigated than the space �!. One reason for this is that �! can be attackedwith two kinds of weapons: Boolean algebraic and topological. The space �R is acontinuum, so it is not susceptible to Boolean algebraic treatment. Be that as itmay, �R deserves more of our attention than it has received so far. In an e�ortto catch this attention I have tried to give a coherent overview of our knowledgeof �R at this time.There have been several interesting developments in �R recently. As an answerto a well-known question of van Douwen, Yu [1991] constructed an autohomeo-morphism of R� that maps a remote point to a non-remote point. Another recentresult is actually about !�; it is well-known that the principle NCF implies that!� can be covered by nowhere dense P -sets; in [1991a] Zhu has shown that NCFin fact implies that !� can be covered by a chain of nowhere dense P -sets. Theproof makes essential use of the structure of the family of subcontinua of R� .Acknowledgements. I would like to thank several people for providing me withmaterial to write about.Jan van Mill kindly gave me access to the unpublished work of Eric van Douwen(hereafter cited as `van Douwen's notes')Jiang-Ping Zhu sent me his preprints on continua in R� ; as the reader will see,many results of van Douwen were rediscovered by him, mostly with di�erent proofs.Michel Smith provided me with a preprint of Joseph Yu's work on autohomeo-morphisms of R� .1. Notation and conventionsAlthough as a rule we introduce a notion when we �rst need it there are somethings that should be said right at the beginning.The �Cech-Stone compacti�cation probably needs no introduction any more butwe �x our notation anyway. The properties of �X that we use are (i) every con-tinuous function from X to the unit interval Ihas a continuous extension over �Xand (ii) if A and B are closed subsets of X then cl�X A \ cl�X B = cl�X(A \ B).Property (ii) is valid only for normal spaces but since we are dealing with sub-spaces of R there will arise no problem with this. We shall denote the space �X nXinvariably by X� and we call it the (�Cech-Stone) remainder of X .We shall freely identify the points of �X with maximal �lters of closed sets; ifx 2 �X then x corresponds toFx = fF � X : F is closed in X and x 2 cl�X Fg:That Fx is a �lter follows from property (ii) above. Thus, a base for a point of �Xis actually a base for the �lter Fx. We trust that the reader will see through thisusage. 319



320 K. P. Hart / �R [ch. 9The spaces that we deal with | H and M (M is de�ned below in subsection 2.1)| are �-compact and locally compact. This has several useful consequences fortheir remainders: if X is locally compact then X� is compact and if X is in addition�-compact then X� is an F -space in which every nonempty G�-set has nonemptyinterior. The characteristic property of F -spaces is that bounded continuous func-tions de�ned on F�-subsets can be extended over the whole space. This means forus that if A is an F�-subset of X� then A = �A. We shall use this fact a fewtimes in this article (Proposition 2.12, Theorem 6.5 and the construction of thecontinuum K8 in Section 10).The book Gillman and Jerison [1976] is one of the basic references for �X .1.1. Some notationWe need to agree on a minimum of notation beforehand. The closure of a set Ais usually denoted clX A, where X is the ambient space. Sometimes it will beconvenient to use just a bar over the set in question. We expect no confusion.If U is an open set in a space X then ExU will be the largest open subset of �Xwhose intersection with X equals U : in formula ExU = �X nX n U .Finally there is the space that it is all about: the half line H = [0;1). We useH rather than R because R� is merely the topological sum of two copies of H � .1.2. ContinuaA continuum is a compact and connected Hausdor� space. Again, most of thenotions will be de�ned when their time comes but we should de�ne here one of thecentral notions in our investigations. A point x of a continuum X is said to be acut point if the space X n fxg is not connected. This is equivalent to saying thatthere are two non-degenerate closed sets F and G such that F \G = fxg.The reference Kuratowski [1968, Chapter Five] still is the best source for basicmaterial on continua.1.3. Set TheoryWe use no heavy set-theoretic machinery. On two occasions we employ the forc-ing method but not to such an extent that we should explain the notation andterminology involved.The book Kunen [1980] contains all the set theory that we need.2. Sums of continuaIn this section we discuss a general way of constructing continua in �Cech-Stone re-mainders. We start with the following elementary topological lemma. Recall thata map between topological spaces is said to be monotone if every �ber of it isconnected.2.1. Lemma. Let f : X ! Y be a perfect and monotone map. Then the map�f : �X ! �Y is also monotone.



x2] Sums of continua 321tu It su�ces to show that �f (z) is connected for every z 2 Y �. So let z 2 Y � andwrite �f (z) as the disjoint union of two closed sets A and B. Using normalityof �X �nd open sets U and V around A and B respectively, whose closures aredisjoint. As the open set U [ V contains � (z) there is an open set O in �Ycontaining z such that �f [O] � U [ V ; after shrinking U and V a bit we may aswell assume that �f [O] = U [ V .The set (U [ V ) \X is saturated with respect to f : it equals f [O \ Y ]. Sincef (y) is connected for every y 2 Y and since U and V are disjoint open sets in �Xwe see that f (y) is contained in U or V for every y 2 O. Therefore U \X andV \ X are saturated with respect to f as well. We conclude that U 0 = f [U \ X ]and V 0 = f [V \X ] are disjoint open sets in Y ; moreover O \ Y = U 0 [ V 0.We claim that U 0 \ V 0 \O = ?. To see this consider x 2 O and assume x 2 U 0.Let g : �Y ! Ibe continuous such that g(x) = 1 and g[�Y nO] � f0g. Using g wede�ne h : Y ! [�1; 1] byh(y) = � g(y) if y 2 Y n V 0, and�g(y) if y 2 Y n U 0.Observe that h is continuous and that jhj = g � Y , hence j�hj = g. Now h(y) =g(y) � 0 for y 2 U 0 so that �h(x) = g(x) = 1; on the other hand h(y) = �g(y) fory 2 V 0, hence �h(y) � 0 for all y 2 V 0. We see that x 62 V 0.Assume for example that z 62 V 0. Now V � V \X � �f [V 0], because V \X =f �V 0�. But then B � V \ �f (z) = ?. It follows that �f (z) is connected. tuWe use this lemma to produce many continua in �Cech-Stone remainders. Firstwe introduce some notation. Let X =Ln2!Kn be a topological sum of continua.The map from X to ! that sends Kn to n will indiscriminately be denoted by �.The following corollary to Lemma 2.1 identi�es the components of �X .2.2. Corollary. The components of �X are the �bers of the map ��.Thus, for every point u of �! the �ber �� (u) is a continuum, we usually denoteit by Ku. Note that Ku = \U2u cl�X [n2UKn:We extend the Ku notation to cover sequences hFnin of closed sets of X that satisfyFn � Kn for every n. In this case we let Fu = TU2u cl�X Sn2U Fn.If hxnin is a sequence of points in X such that xn 2 Kn for all n then xu denotesthe point u� limn xn (note that xu is the unique accumulation point of hxninin Ku). The following lemma provides us with cut points in the continua Ku.2.3. Lemma. Let hxnin be a sequence of points in X such that xn 2 Kn forall n and let u 2 !�. Then xu is a cut point of Ku if and only if the set fn :xn is a cut point of Kng belongs to u.tu One direction is easy: if, without loss of generality, for every n one can writeKn = Fn [Gn where Fn and Gn are non-trivial closed sets with intersection fxngthen Ku = Fu [Gu and Fu \Gu = fxug.



322 K. P. Hart / �R [ch. 9For the other direction let U and V be open sets in �X that both intersect Kusuch that U \ V \Ku = ? and Ku n (U [ V ) = fxug. It follows immediately thatthe set A = fn : U \Kn 6= ? 6= V \Kn and xn 62 U [ V gbelongs to u. A moment's reection should show that �n 2 A : fxng = Kn n (U [V )	 also belongs to u. tu2.1. The space MWe now consider a special case, one that will be very important in the study of H � .We de�ne M = ! � I. We shall write In for fng � I and Iu for the �ber of u. Toadd to the confusion we also write xu = u� limn hn; xni if hxnin is a sequence in I.In addition we put 0u = u� limn 0 and 1u = u� limn 1.The reason for our interest in M is that it provides a lot of subcontinua of H � . Forconsider an embedding e of M into H such that limn e(n; 0) =1. Then �e embeds�M into �H and M � into H � so that we get a copy of Iu in H � for every u in !�.We shall see later that these continua determine virtually the whole structure ofthe whole family of subcontinua of H � . We shall call them standard subcontinuaof H � .Another way of embedding the components of M � into H � uses a very simplequotient map of M � onto H � . The shift on ! is the map � de�ned by �(n) = n+1;we denote its extension to �! by � as well.2.4. Theorem. If in M � one identi�es, for every u 2 !�, the point 1u with 0�(u)then the quotient space is homeomorphic with H � .tu The proof is easy once one realizes that H is the quotient of M that one obtainsby identifying hn; 1i with hn+ 1; 0i for every n and that the restriction to H � of the�Cech-Stone extension of this quotient map is exactly the map from the theorem. tuThis quotient map embeds every Iu into H � because, as is easily seen, it is one-to-one on each Iu.2.2. Properties of the continua IuLet us �x a point u of !�. We shall determine some elementary properties of Iu.The following theorem identi�es the more obvious cut points of Iu. It is a directconsequence of Lemma 2.3.2.5. Theorem. If hxnin is a sequence in (0; 1) then the point xu is a cut pointof Iu.We use Pu to denote the set of all points xu for sequences hxnin in I. This setadmits a natural linear order:xu <u yu iff fn : xn < yng 2 u:The following proposition summarizes the relevant information about Pu.



x2] Sums of continua 3232.6. Proposition. The set Pu n f0u; 1ug is a dense set of cut points of Iu and itssubspace topology is the same as the order topology induced by <u.tu That every point of Pu is a cut point of Iu is the content of Theorem 2.5. Toshow that Pu is dense we let U be an open subset of �M such that U \ Iu 6= ?.It follows that A = fn : U \ In 6= ?g is an element of u. For every n 2 A choosean interval (an; bn) in In that is contained in U and let tn = (an + bn)=2. Thentu 2 U \ Pu.Observe that if tu 2 U \ Pu would have been given in advance we could havepicked an and bn in such a way that tn 2 (an; bn) � U . This then shows thattu 2 (au; bu) � U \ Pu so that the subspace topology on Pu is contained in theorder topology.For the reverse inclusion simply note that the interval [0u; xu) is exactly Pu nGuand hence open in the subspace topology, where Gu has the established meaningonce we set Gn = fng � [xn; 1] for all n. The interval (xu; 1u] is likewise open. tuThis proposition and Theorem 2.5 give rise to the following de�nition.2.7. Definition. Let au and bu be points of Pu with au <u bu. The intervalfrom au to bu in Iu, denoted [au; bu], is the set of those points of Iu that are in theclosure of Sn[an; bn].If x is any point of Iu then we de�ne the layer of x to be the intersection of allintervals that contain x. We denote this layer by Lx.We collect some useful properties of layers and intervals.2.8. Proposition. Let au and bu be points of Pu with au <u bu and let x be apoint of Iu.1. The interval [au; bu] is homeomorphic with Iu.2. The interval [au; bu] is irreducible between au and bu.3. [au; bu] = [0u; bu]\ [au; 1u]; hence Lx is the intersection of all intervals of theform [0u; bu] or [au; 1u] that contain it.4. The layers of the points in Pu are one-point sets.It follows that each layer is a continuum: it is the intersection of a directed familyof continua.Using Proposition 2.8 we extend the order <u to the whole set of layers in thefollowing way: Lx <u Ly iff there is a point au 2 Pu such that Lx � [0u; au] andLy � [au; 1u]. This is equivalent to saying that x and y have elements F and Grespectively such that fn : F\In < G\Ing belongs to u. Notations like [0u; Lx) willhave the obvious meaning (in this case it is the union of the set of layers below Lx).The following lemma establishes an important continuity property of the ex-tended ordering <u.2.9. Lemma. Let x 2 Iu n f0u; 1ug. The closure of the interval [0u; Lx) is theinterval [0u; Lx] ( = [0u; Lx) [ Lx).tu If x 2 Pu then this follows from the fact that Pu is dense in Iu and that itssubspace topology is its order topology.



324 K. P. Hart / �R [ch. 9Assume x 62 Pu. A moment's reection should convince us that it su�ces toshow x 2 [0u; Lx). Let V be an open neighbourhood of x in �M and let A = fn :V \ In 6= ?g. The set A is in u. For n 2 A let an = infft : hn; ti 2 V g andbn = supft : hn; ti 2 V g. Consider the interval [au; bu]; it clearly contains x, hencethe whole set Lx. Since x 62 Pu we can �nd du 2 Pu with au <u du <u Lx. Wemay assume that an < dn for n 2 A; therefore we can choose, for n 2 A, a pointtn 2 (an; dn) such that hn; tni 2 V . But then tu 2 V \ [0u; Lx). This su�ces byregularity of the space �M . tuIt goes (almost) without saying that a similar formula holds for the closureof (Lx; 1u]. We also note that the intervals [0u; Lx) and (Lx; 1u] are connectedsince each is the union of an increasing chain of intervals.2.10. Corollary. The decomposition of Iu into layers is upper semicontinuousand the quotient topology is exactly the order topology from the ordering <u.We denote the quotient space obtained in this way by Xu; it is readily seen thatXu is the Dedekind completion of Pu. For later use we give a description of thosesubcontinua of Iu that meet at least two layers.2.11. Theorem. Let K be a subcontinuum of Iu that meets two di�erent layers.Then there are two points x and y of Iu with Lx <u Ly such that K = [Lx; Ly].Moreover, K is irreducible between p and q whenever p 2 Lx and q 2 Ly.tu Consider the quotient map q : Iu! Xu. The image q[K] is connected and con-tains, by assumption, at least two points. It follows that q[K] is a non-degenerateinterval of Xu, say with endpoints Lx and Ly. We claim that K = [Lx; Ly]in Iu. Indeed, since q � Pu is one-to-one we must have [Lx; Ly] \ Pu � K. As[Lx; Ly] \ Pu = [Lx; Ly] and also K � [Lx; Ly] we get K = [Lx; Ly].The irreducibility follows easily: any continuum meeting Lx and Ly must contain[Lx; Ly] \ Pu. tuTo �nish this section let us prove that Iu contains non-trivial layers.2.12. Proposition. Let hanin be a strictly increasing sequence in Pu and letB = fb 2 Pu : an <u b for all ng. ThenL =\�[an; b] : n 2 !; b 2 B	is a non-trivial layer of Iu.tu That L is a layer follows from the fact that Pu is dense in the ordering <u. Sincethe set D = fan : n 2 !g is relatively discrete its closure is homeomorphic to �!,but D nD � L. tu2.13. Remark. Layers may also be de�ned in a purely topological way: �rst wegive an alternative de�nition of the ordering <u: we say x �u y iff every continuumthat contains 0u and y also contains x. The layer of x is now the set of those points yfor which x �u y and y �u x. It is not overly di�cult to show that we get thesame layers back.



x3] A nice base for �H 325This clearly demonstrates that layers are topologically invariant: any homeo-morphism between continua Iu and Iv must map layers to layers.Notes for Section 2.Lemma 2.1 is probably folklore, but I did not �nd it in the literature. It appears invan Douwens's notes.The space �M and the continua Iuwere studied extensively byMioduszewski in [1978].The results of Subsections 2.1 and 2.2 are taken from that paper.The de�nition of layers as given in Remark 2.13 was carried out for metric irreduciblecontinua in Kuratowski [1968, p. 199].3. A nice base for �HTime and time again we shall need nice open sets in �H and H � . In this sectionwe shall describe such sets and show that there are indeed enough of them.Let U and V be open subsets of �H that both meet H � , whose closures aredisjoint and assume that inf U < inf V . We shall de�ne, inductively, two sequenceshanin and hbnin in H and use these to construct nice open sets around U and V .Let a0 = inf U . If n is even we let bn = supfx 2 U : (a0; x) \ V = ?g andan+1 = inffx 2 V : x > bng. If n is odd we reverse the roles of U and V .We note that an < bn < an+1 for every n because the closures of U and V aredisjoint. Also, because U and V both meet H � , the construction will never stopand both sequences will converge to in�nity.Now let U1 = Sn(a2n; b2n) and V1 = Sn(a2n+1; b2n+1). We consider the setsExU1 and ExV1. Since U \ H � U1 and V \ H � V1 we know that U � ExU1 andV � ExV1. Furthermore the closures|in H|of U1 and V1 are disjoint, hence soare the closures|in �H|of ExU1 and ExV1.Let us call open sets like ExU1 and ExV1 that come from discrete sequences ofopen intervals standard open sets. We summarize the foregoing discussion in thefollowing lemma.3.1. Lemma. If U and V are open subsets of �H that both meet H � and whose clo-sures are disjoint then they can be separated by standard open sets whose closuresare disjoint as well.We shall often use the following consequence of this lemma.3.2. Proposition. If F and G are disjoint closed subsets of H � then they canbe separated by standard open sets with disjoint closures. In particular, if U isan open subset of H � containing F then there is a standard open set O such thatF � O � U .4. H � is indecomposableWe begin by recalling the de�nition of indecomposable continua.



326 K. P. Hart / �R [ch. 94.1.Definition. A continuum is said to be indecomposable if it can not be writtenas the union of two proper subcontinua.It is an instructive exercise to show that a continuum is indecomposable iff everyproper subcontinuum of it is nowhere dense. We shall mostly use indecomposabilityin this form.4.2. Theorem. The space H � is an indecomposable continuum.tu We must show that every proper subcontinuum of H � is nowhere dense.Let K be a proper subcontinuum of H � and take a point x in H � nK. ApplyProposition 3.2 to K and x to obtain sequences hanin and hbnin such that an <bn < an+1 for all n and K � ExO, where O = Sn(an; bn).Consider the following collection of subsets of !:u = �A � ! : K � cl�H F (a; b; A)	;where F (a; b; A) denotes the set Sn2A[an; bn]. From the fundamental propertycl�H (F \ G) = cl�H F \ cl�H G we deduce that u is a �lter. In fact, because K isconnected, if A � ! then either A 2 u or ! nA 2 u. We see that u is an ultra�lter.Now let O be any open subset of �H such that O \ K 6= ?; we must showthat O n K intersects H � . The set A = fn : O \ (an; bn) 6= ?g is in u becauseO intersects K. Split A into two in�nite sets A1 and A2. One of these sets, sayA1, is not in u. But then we may use it to �nd a point in O \ H � n K: choosexn 2 O \ (an; bn) for n 2 A1 and consider the closure of fxn : n 2 A1g. tuNotes for Section 4.Theorem 4.2 was proved by Woods in [1968] and Bellamy in [1971]. The proof givenhere appears in van Douwen's notes.5. Standard subcontinuaLooking back at the proof of Theorem 4.2 we see that we actually constructed anembedding of the space M into H : the map de�ned by '(n; x) = an + x(bn � an).Its extension �' : �M ! �H is also an embedding. The reader will verify withoutdi�culty that the continuum K is contained in the continuum �'[ Iu].We get one more justi�cation for our interest in standard subcontinua: everyproper subcontinuum is contained in a standard subcontinuum.To make dealing with them a bit easier we introduce some notation. If hanin andhbnin are sequences in H such that an < bn < an+1 for all n and limn an =1 thenwe denote the points u� lim an and u� lim bn by au and bu respectively; this con-forms with the convention adopted in Section 2. We de�ne a homeomorphism of Monto Sn[an; bn] as above. Furthermore, since Iu is irreducible between 0u and 1u,the continuum �'[ Iu] is irreducible between au and bu. Because of this we shalldenote �'[ Iu] by [au; bu]. As we shall see, the standard subcontinua really dobehave like intervals; this is another reason why we adopted the interval notation.Finally, as in the proof of Theorem 4.2, we shall writeF (a; b; A) = [n2A[an; bn];



x5] Standard subcontinua 327whenever A � !. We observe that[au; bu] = \U2u cl�H F (a; b; U):It follows that [au; bu] does not change if we change hanin and hbnin on a set notin u. We shall use this fact quite often.For later use we sharpen the statement that every subcontinuum is contained ina standard subcontinuum a bit.5.1. Theorem. If K is a proper subcontinuum of H � and U a neighbourhoodof K then there is a standard subcontinuum L of H � such that K � L � U .The proof is implicit in the proof of Theorem 4.2; apply Proposition 3.2 to Kand U and observe that the standard subcontinuum found in this way is containedin U .The following corollary is quite handy in many situations. Using it we shall show,for example, that H � is hereditarily unicoherent.5.2. Corollary. Let K be a proper subcontinuum of H � . Then K is the inter-section of the family of all standard subcontinua containing it.The following theorem will be the key to practically the whole structure theoryof the subcontinua of H � . Its proof is a bit technical but certainly worth the e�ort.5.3. Theorem. Let K = [au; bu] and L = [cv ; dv] be standard subcontinua of H �with a nonempty intersection. Then one of the following three cases occurs:1. au; bu 2 L; in this case K � L and there is a �nite-to-one map ' : ! ! !such that '(u) = v.2. au 2 L and bu 62 L; then there is a permutation ' of ! such that '(u) = v andK [ L is the standard subcontinuum [cv; bu]. If au = dv then K \ L = faug,otherwise K \ L is the standard subcontinuum [au; dv ]. (The case au 62 Land bu 2 L is similar.)3. au; bu 62 L; then cv ; dv 2 K and we are in Case 1 with the roles reversed.In short, the union of two standard subcontinua is a standard subcontinuum andso is their intersection unless it is a one-point set.tu For every V 2 v we let AV (BV ) be the set of n with an 2 F (c; d; V ) (bn 2F (c; d; V ) respectively). We consider three cases.Case 1. Here we have AV ; BV 2 u for all V 2 v. We must show that [au; bu] �[cv; dv ]. After changing the sequences on sets not in u or v respectively we may aswell assume that an; bn 2 F (c; d; !) for all n.De�ne ';  : ! ! ! by demanding that an 2 [c'(n); d'(n)] and bn 2 [c (n); d (n)].It is clear that '(n) �  (n) � '(n+ 1) for all n. Let A = �n : '(n) =  (n)	.If A 2 u then we get F (a; b; A \ AV \ BV ) � F (c; d; V ) for all V 2 v and weconclude that [au; bu] � [cv; dv ]. The map ' is �nite-to-one on A and it maps uto v. We can make some inessential changes to de�ne it on the whole of !.The assumption ! n A 2 u leads to a contradiction. For let fin : n 2 !g be themonotone enumeration of ! n A and put P = f'(i0);  (i1); '(i2);  (i3); : : :g and



328 K. P. Hart / �R [ch. 9Q = f (i0); '(i1);  (i2); '(i3); : : :g. Since the set F �c; d; ! n (P [ Q)� contains nopoints an or bn with n 2 ! nA we must have P [Q 2 v. On the other hand bothAP \ BP and AQ \ BQ are empty, so that neither P nor Q belongs to v. This isthe desired contradiction.Case 2. Now we have AV 2 u for all V 2 v, but some BV is not in u.We may assume that an 2 F (c; d; !) and bn 62 F (c; d; !) for all n. LetP = �m : 9n �an 2 [cm; dm]�	;then P 2 v because A!nP = ?.The map ' : ! ! P de�ned by an 2 [c'(n); d'(n)] is one-to-one since we musthave c'(n) � an � d'(n) < bn < c'(n+1)for all n. It follows quite easily that v = '(u). If we now let en = c'(n) andfn = d'(n) for all n then we get eu = cv , fu = dv and [au; bu] [ [cv ; dv] = [eu; bu].Furthermore, if fn : an = d'(n)g 2 u then [au; bu] \ [cv ; dv] = faug and iffn : an < d'(n)g 2 u then [au; bu] \ [cv; dv ] = [au; fu].Case 3. Now there is V0 2 v such that AV0 ; BV0 62 u. Let U0 = ! n (AV0 [ BV0).Consider any U 2 u contained in U0. The set V = fm 2 V0 : [cm; dm]\F (a; b; U) 6=?g belongs to v, but because U � U0 we know that [cm; dm] is contained in [an; bn]as soon as it intersects that set. We see that F (c; d; V ) � F (a; b; U) and we concludethat [cv; dv ] � [au; bu]. tuWe see that the standard subcontinua really do behave like intervals. The fol-lowing lemma provides further evidence. A family of sets is called linked if everytwo elements of it have a nonempty intersection. It is easy to see, for example, thatevery linked family of closed intervals in I has a nonempty intersection.5.4. Lemma. The intersection of a �nite linked family of standard subcontinua isa one-point set or a standard subcontinuum.tu We prove the lemma by induction on the number n of elements of the family.For n = 2 we have Theorem 5.3; and the induction step reduces to the casen = 3 as follows: If fK1; : : : ;Kn+1g is linked then the family fKi \Kn+1 : i � ngconsists of standard subcontinua and possibly a one-point set. To show that thislast family is linked we apply the case n = 3 to every triple hi; j; n+ 1i.Finally then let fK1;K2;K3g be a linked family of standard subcontinua. ThenK1 [ K2 is a standard subcontinuum and hence so is (K1 [K2) \K3. But thenthe closed sets K1 \K3 and K2 \K3 must intersect and since these are standardsubcontinua the intersection K1 \K2 \K3 is a standard subcontinuum or a one-point set. tu5.5. Corollary. The intersection of every linked family of standard subcontinuais a continuum.tu By the lemma every �nite intersection from the family is again a standard sub-continuum, or a singleton. So the intersection is the intersection of a downwarddirected family of continua, hence a continuum. tu



x5] Standard subcontinua 329This corollary allows us to conclude that H � is hereditarily unicoherent. Werecall that a continuum X is said to be unicoherent if whenever it is written asthe union of two subcontinua | X = K [ L | the intersection of K and L isconnected. A hereditarily unicoherent continuum is one in which every subcontin-uum is unicoherent, equivalently in which the intersection of any two subcontinuais connected if nonempty. Using the same argument as in the proof of Corollary 5.5we can prove that in a hereditarily unicoherent continuum the intersection of everylinked family of subcontinua is again a continuum.5.6. Theorem. The continuum H � is hereditarily unicoherent.tu Let K and L be subcontinua of H � with nonempty intersection. Since H � isindecomposable we may assume that K and L are both proper subcontinua. ByCorollary 5.2 we may take families LK and LL of standard subcontinua with in-tersection K and L respectively. Then LK [ LL is a linked family of standardsubcontinua with intersection K \ L so that K \ L is a continuum. tuWe now prove a nice structure theorem for decomposable subcontinua of H � .To begin we note that standard subcontinua and their non-degenerate intervalsare decomposable (as we will see later layers are indecomposable). The structuretheorem shows that these are the only decomposable subcontinua of H � . We beginwith a lemma.5.7. Lemma. Let K and L be proper subcontinua of H � and assume that the setsK \ L, K n L and L nK are nonempty. Then there is a standard subcontinuumof H � such that K and L are non-degenerate intervals of it.tu Fix points x 2 K n L and y 2 L nK. Take standard subcontinua K+ and L+around K and L respectively such that x 62 L+ and y 62 K+. By Theorem 5.3the union K+ [ L+ is a standard subcontinuum, denote it by [au; bu]. Now x isnot in L+, but L+ contains K \ L. It follows that K meets two di�erent layersof [au; bu]: the layer of x and a layer in L+. Now apply Theorem 2.11 to K. Theargument for L is the same of course. tu5.8.Theorem. LetK be a subcontinuum of H � . Then eitherK is indecomposableor there is a standard subcontinuum such that K is a non-degenerate interval of it.In particular if K is decomposable then K is irreducible between two points and ithas a dense set of cut points.tu If K is decomposable then the previous lemma immediately implies that K is anon-degenerate interval of some standard subcontinuum. tuThe following consequence of Lemma 5.7 will play a role in our investigation ofcut points of subcontinua of H � .5.9. Theorem. If K and L are subcontinua of H � that intersect and if one of Kand L is indecomposable then K � L or L � K.An easy consequence of this theorem is the following.5.10. Theorem. Let K and L be subcontinua of H � such that K is a propersubset of L and L is indecomposable. Then there is a standard subcontinuum Msuch that K �M � L.



330 K. P. Hart / �R [ch. 9tu Take x 2 L n K and let M be a standard subcontinuum around K such thatx 62 M . Since clearly M intersects L and L is not contained in M we must haveM � L. tu5.11. Corollary. Every subcontinuum of H � contains a standard subcontinuumand hence no subcontinuum of H � is hereditarily indecomposable.tu The �rst part follows from Theorems 5.8 and 5.10. The `hence' is justi�ed bythe fact that standard subcontinua are decomposable. tuNotes for Section 5.The results in this section are all taken from van Douwen's notes. Standard subcontinuaappear implicitly in Gillman and Jerison [1976, 10N].Theorem 5.6 was proved by Gillman and Henriksen in [1956, Corollary 4.10] byalgebraic means; they established an algebraic property of the ring C�(R) and showedthat, in general, a normal space X is hereditarily unicoherent if C�(X) has this property.Some of the results of this section have been rediscovered in recent years.The material in this section also appears in Zhu [191a], with di�erent proofs.The fact that no subcontinuum of H � is hereditarily indecomposable was established bySmith in [1987a] using a somewhat more complicated argument than the one presentedhere. In [1988] Smith showed that much more is true: no power of H � contains a heredi-tarily indecomposable subcontinuum. This is in strong contrast with the metric situation:it was proved by Bing in [1951] that every two-dimensional metric continuum containsa hereditarily indecomposable subcontinuum. It is also in contrast with the situation for(R2)�: It was shown by Smith in [1987b] that if X = Ln2!Kn is a sum of hereditar-ily indecomposable continua then every continuum Ku is hereditarily indecomposable aswell. Apply this to a discrete (in�nite) collection of pseudoarcs in the plane; one getshereditarily indecomposable subcontinua in (R2)�.6. Layers and other indecomposable continuaThis section is devoted to the study of some properties of layers in standard sub-continua. As a byproduct of these investigations we get insight in the structure ofthe indecomposable subcontinua of H � as well.Let L be a layer of Iu. We let AL be the set of sequences hanin in I for whichau <u L; if L = fxug for some xu 2 Pu then AL = �hanin : au < xu	, otherwiseAL = �hanin : L � [au; 1u]	. Likewise BL denotes the set of sequences hbnin forwhich L <u bu.The continuity properties of <u imply thatL =\�[au; bu] : hanin 2 AL and hbnin 2 BL	:From this it follows that if L is not of the form fxg with x 2 Pu then the pairhAL; BLi determines a gap in Pu, i.e., there is no sequence hcnin such that au <ucu <u bu for all hanin 2 AL and hbnin 2 BL.We can use AL and BL to identify a nice local base at L in �M .



x6] Layers and other indecomposable continua 3316.1. Lemma. If O is open in �M and L � O then there are hanin 2 AL, hbnin 2 BLand U 2 u such that L � cl�M F (a; b; U) � O:tu This follows by compactness; L is the intersection of sets of the desired form. tuFrom now on we let L be a layer not of the form fxg for any x 2 Pu. We shallsee that L is an indecomposable continuum; this is trivial if L is a one-point set;to show it for the other layers will require some work.We begin by analyzing the situation in Case 1 of Theorem 5.3 more carefully.We have two standard subcontinua [au; bu] and [cv ; dv] such that [au; bu] � [cv; dv ].We also have a �nite-to-one map ' : ! ! ! such that '(u) = v. The proof ofTheorem 5.3 shows that, without loss of generality, [an; bn] � [c'(n); d'(n)] for all n.Next we apply Theorem 5.8 to deduce that [au; bu] is either contained in a layerof [cv; dv ] or that it is an interval of [cv ; dv]. The following lemma tell us how wecan see which case holds by looking at the map '.6.2. Lemma. The map ' is one-to-one on some element of u if and only if [au; bu] isan interval of [cv; dv ].tu Suppose ' is one-to-one on some element U of u, without loss of generality U = !.Consider the sequences henin and hfnin de�ned by en = c'(n) and fn = d'(n).It should be clear that eu = cv , fu = dv and [eu; fu] = [cv; dv ]. After thisreindexing it follows immediately that [au; bu] is an interval of [cv ; dv].Now assume that ' is one-to-one on no element of u. Let hxnin be any sequencewith xn 2 [cn; dn] for all n. Divide ! into three sets as follows:U1 = fi : if '(i) = n then xn < aig;U2 = fi : if '(i) = n then xn > big; andU3 = ! n (U1 [ U2):Observe that ' is one-to-one on U3 (if i 2 U3 then x'(i) 2 [ai; bi]), so that eitherU1 2 u or U2 2 u. But this means that either [au; bu] � [cv; xv ] or [au; bu] � [xv ; dv ].Since this holds for all sequences hxnin we conclude that [au; bu] is contained ina layer of [cv ; dv]. tuNow we are ready to show that non-trivial layers of standard subcontinua areindecomposable.6.3. Theorem. Every layer of Iu is an indecomposable continuum.tu Since one-point layers are trivially indecomposable we consider a layer L with atleast two points. A consequence of Theorem 5.8 is that a decomposable continuumcontains a standard subcontinuum with (relative) nonempty interior. We see thatit su�ces to show that every standard subcontinuum of L is nowhere dense in L.Let 
[ci; di]�i be a sequence of intervals in M and let v 2 !� be such that[cv; dv ] � L. Let ' be the map determined by [ci; di] � I'(i). By Lemma 6.2 themap ' is not one-to-one on any element of v.



332 K. P. Hart / �R [ch. 9To begin we observe that for every hanin 2 AL, every hbnin 2 BL and everyU 2 u the set �i : [ci; di] � F (a; b; U)	is in v. Next we consider for V 2 v and hanin, hbnin and U as above the sequenceof numbers hmnin2U de�ned bymn = ����i 2 V : [ci; di] � [an; bn]	���:This sequence must be unbounded since otherwise we could divide V into �nitelymany sets on which ' would be one-to-one; but none of these sets would be in v.Now let O be open in M such that O\[cv ; dv] 6= ?. The set VO = fi : O\[ci; di] 6=?g belongs to v. We split VO into two in�nite pieces V0 and V1 as follows. In everyinterval In that contains some of the [ci; di] these intervals lie ordered by the orderof Iu (formally, if [ci; di]; [cj ; dj ] � In say i <n j iff maxfci; dig < minfcj ; djg).For such n put into V0 those i which are even numbered in <n and put the oddnumbered i into V1. Using the above observation on unbounded sequences it is nowstraightforward to show that the closures of O \Si2V0 [ci; di] and O \Si2V1 [ci; di]both meet L. One of these sets is disjoint from [cv ; dv].Since L is a regular topological space this �nishes the proof. tuWe can also show that there are indecomposable subcontinua of H � that are notlayers of standard subcontinua. The construction relies on the following lemma.6.4. Lemma. Let K be a linearly ordered family of indecomposable subcontinuaof H � , and let L = TK. Then L is indecomposable and if L is a layer of somestandard subcontinuum then L 2 K.tu Let M be any standard subcontinuum containing L. By Theorems 5.8 and 5.9every K 2 K either contains M or is contained in a layer of M .This immediately implies that L is contained in a layer of every standard sub-continuum containing it and hence indecomposable. It also implies that L 2 K ifL is a layer of some M , because some K 2 K has to be contained in M hence in alayer, but this layer must be L. tu6.5. Theorem. There is an indecomposable subcontinuum of H � that is not alayer of any standard subcontinuum.tu Apply Proposition 2.12 and Theorem 5.10 in�nitely many times to �nd a se-quence hKnin of continua such that Kn+1 is a non-trivial layer of a standardsubcontinuum of Kn. By Theorem 6.3 every Kn is indecomposable.By the previous lemma the intersection TnKn is an indecomposable continuumthat is not a layer of any standard subcontinuum. tuNote that TnKn can not be a one-point set either: pick xn 2 Kn nKn+1 forevery n and let D = fxn : n 2 !g. The set D is relatively discrete so its closure ishomeomorphic with �!, but also D nD � TnKn.Notes for Section 6.Lemma 6.1 was proved by Mioduszewski in [1978]; using it Mioduszewski showed thatthe decomposition of M � into layers is upper-semicontinuous (cf. Corollary 2.10).



x7] Cut points and nonhomogeneity of H � 333Theorem 6.3 appears in van Douwen's notes, but without proof. van Douwen used itto deduce Theorem 6.5.Theorem 6.3 was rediscovered by Smith in [191] and Zhu in [1991b]. In [191a] Zhurediscovered Theorem 6.5.7. Cut points and nonhomogeneity of H �In this section we will give a clear cut reason why H � is not homogeneous, byexhibiting two points with easily de�ned di�erent topological behaviour.A point of a continuum X is said to be a weak cut point of X if it is a cut pointof some subcontinuum of X .Our goal then will be to �nd a weak cut point of H � and another point that isnot a weak cut point.A large family of weak cut points is the following. We shall call a point x of H �a near point if it is in the closure of some closed and discrete subset of H . If apoint is not near then we call it a far point.The following theorem is a direct consequence of Theorem 2.5.7.1. Theorem. Every near point of H is a weak cut point of H � .It remains to �nd a point that is not a weak cut point. The following lemmashows that we only have to worry about standard subcontinua.7.2. Lemma. Let z be a weak cut point of H � . Then z is a cut point of somestandard subcontinuum.tu Let K be a subcontinuum such that z is a cut point of K. Then K is decompos-able and hence a non-degenerate interval in some standard subcontinuum M . Butthen z is also a cut point of M . tuThe following proposition tells us how we can recognize cut points of standardsubcontinua by looking at their layers.7.3. Proposition. A point x of Iu n f0u; 1ug is a cut point if and only if its layeris a one-point set.tu If Lx = fxg then �[0u; Lx); (Lx; 1u]	 is a partition of Iu n fxg into disjoint opensets.On the other hand if Lx 6= fxg then [0u; Lx) n fxg and (Lx; 1u] n fxg havea nonempty intersection. Since both sets are connected their union Iu n fxg isconnected as well. tuWe see that a point is a weak cut point iff it determines a one-point layer insome standard subcontinuum.To �nd a point that is not a weak cut point we consider a maximal chain K ofnon-degenerate indecomposable subcontinua of H � . The intersection of K consistsof exactly one point. To see this we note thatTK is indecomposable by Lemma 6.4.If it were non-degenerate then we could �nd a standard subcontinuum of it and adda non-trivial layer of this continuum to the family K, contradicting the maximality.Let y be the point of TK.



334 K. P. Hart / �R [ch. 97.4. Theorem. The point y is not a weak cut point.tu We must show that whenever M is a standard subcontinuum of H � that con-tains y, the layer of y in M is non-degenerate.So let M be standard with y 2 M . Using Theorem 5.9 we deduce that theremust be a K 2 K such that K � M . But this K must be contained in a layerof M , and it must be the layer of y which therefore is non-trivial. tuThe converse of this theorem also holds: if y is not a weak cut point then it isthe intersection of a chain of nondegenerate indecomposable continua. By Theo-rem 5.9 the family Ky of nondegenerate indecomposable continua that contain y isa chain. By Lemma 6.4 the intersection of Ky is indecomposable. To see that theintersection is exactly fyg we combine Theorem 5.10, Lemma 7.2, Proposition 7.3and Theorem 6.3.It is interesting to note that non weak cut points can also be constructed directlyfrom H . For this we consider the familyF = fF : F is closed and m(H n F ) <1g:Thus F consists of those closed sets whose complement has �nite Lebesgue measure.It is clear that F is a �lter of closed sets. A point of H � that extends this �lter iscalled a large point. Since closed and discrete subsets of H are countable it followsright away that large points are far.We shall show that large points are not weak cut points either. In the proof weuse the following characterization, in terms of AL and BL, of when L is a one-pointset. This characterization is somewhat more amenable to set theory than the resultfrom Proposition 7.3. We shall use it in Section 8.We recall that a null sequence is a sequence that converges to zero.7.5. Proposition. The layer L consists of one point if and only if for everypositive null sequence hxnin in (0; 1) there are hanin 2 AL and hbnin 2 BL suchthat fn : bn � an < xng 2 u.tu With every null sequence hxnin we associate three closed sets F0, F1 and F2 thatcover M , as follows. Choose a sequence hknin in N such that 1=kn < xn. For n 2 !and i < 3 we letFi;n =[n�(3j + i)=3kn; (3j + i+ 1)=3kn� : j < kno:The sets Fi;n divide the interval I into three pieces. We let Fi = Sn Fi;n for i < 3.If L = fpg is a one-point layer and hxnin is a null sequence then one of thesets Fi, say F0, is not in p. We can therefore �nd a set of the form F (a; b; U), withhanin 2 AL and hbnin 2 BL, that is disjoint from F0. But this readily implies thatbn � an < 2xn=3 for all n 2 U .If L contains two distinct points p and q take elements F and G of p and qrespectively that are disjoint. The set U = fn : F \In 6= ? 6= G\Iug belongs to u.Now if hanin 2 AL and hbnin 2 BL then the set V of those n for which [an; bn]meets both F \ In and G \ Iu also belongs to u. However for these n we musthave bn � an � d(F \ In; G \ In); we see that any null sequence hxnin satisfyingxn < d(F \ In; G \ In) will do. tu



x8] The existence of non-trivial cut points 3357.6. Theorem. A large point is not a cut point of any standard subcontinuum.tu Let z be a large point and let M be a standard subcontinuum containing it. LetL be the layer of z in M . Since every element of z must have in�nite measure wecan apply Proposition 7.5 with any convergent series to conclude that L is not aone-point set. tuNotes for Section 7.Theorems 7.1 and 7.4 are taken from van Douwen's notes. In [191a] Zhu rediscoveredTheorem 7.4 and showed that its converse holds.Proposition 7.5 is a variation of Lemma 2.1 of Zhu [191b].In [1980] van Mill andMills showed that near points have a slightly stronger cut pointproperty than the one given here: there are a subcontinuum K and a neighbourhood Uof K such that the point is a cut point of every continuum between K and U . Theythen went on to show that large points do not have this property. Note however that, byLemma 7.2, this property is only formally stronger.Large points were given as examples of far points by Fine and Gillman in [1962]; theycredited W. F. Eberlein with the construction. As a point of interest we note that largepoints are not remote: consider the complement of a dense open set of measure 1.8. The existence of non-trivial cut pointsThe reader may certainly have wondered why Corollary 7.3 does not say that apoint is a cut point of Iu iff it is an element of Pu, and likewise why Lemma 7.2does not simply identify the weak cut points as the near points of H . The answeris: `because that statement is not true in general'. As we shall see in Theorem 8.3,Martin's Axiom for Countable posets (MAC) implies the existence of a point uof !� for which there are cut points of Iu outside Pu. When mapped into H � viasome embedding, these become weak cut points that are not near.Let us call cut points of Iu that are not points of Pu non-trivial cut points of Iu.In our investigations into the nature of cut points we shall need the conceptof a remote point. A point of X� is said to be a remote point of X if it is notin the closure|in �X|of any nowhere dense subset of X . It is well-known thatR has remote points. We shall give a proof of this fact later in this section forcompleteness and to contrast it with the proof of Theorem 8.3.Let us investigate what non-trivial cut points should look like. By Lemma 6.1 weknow convenient local bases for non-trivial cut points. Let us restate this lemmain terms of closed sets: If x is a non-trivial cut point and F is a closed set notin x then there are hanin 2 Afxg, hbnin 2 Bfxg and U 2 u such that F (a; b; U) isdisjoint from F . The converse is also true: if the sets F (a; b; U) determine a localbase at x then x is a cut point because these sets are a local base at the layer of x.This does not quite mean that a cut point, when viewed as a closed ultra�lter,must have a base of sets of the form F (a; b; U), as we shall see momentarily. Letus note that a non-trivial cut point that has a base of sets of the form F (a; b; U)must be a remote point. The converse is also true as the following result shows.8.1. Proposition. A non-trivial cut point is a far point of M . It is a remotepoint if and only if it has a base consisting of sets of the form F (a; b; U).



336 K. P. Hart / �R [ch. 9tu Let x be a non-trivial cut point of Iu and let D � M be closed and discrete.For every n the set D \ In is �nite, enumerate it as fdn;i : i < kng (in increasingorder). Put De = fdn;2i : i � kn=2g and Do = D nDe. One of these sets, say Do, isnot in x. There is a neighbourhood F (a; b; U) of x disjoint from Do. Because eachinterval (an; bn) is convex it contains at most one point of D; but x is not in Pu sonow we can �nd a neighbourhood of it that is disjoint from D.To prove the second statement assume x is remote and let F 2 x. We must �ndU , hanin and hbnin such that F (a; b; U) � F . Since x is remote it is not in theclosure of the boundary of F . Take a neighbourhood F (a; b; U) of x that is disjointfrom the boundary of F . We can assume that [an; bn] meets F for every n 2 U .But since [an; bn] is connected and meets F but not its boundary it can not meetthe complement of F as well. We conclude that F (a; b; U) � F . tuLet us call a non-trivial cut point with a base of sets of the form F (a; b; U)a narrow remote point. This name is inspired by Proposition 7.5, and also bythe proof of Theorem 8.4 because the remote points constructed there will beanything but narrow: their elements tend to be spread out more and more over theintervals In.We shall now construct two kinds of non-trivial cut points in some Iu, one willbe remote the other will not. We construct the points from a special remote pointof the space ! � C ; this remote point will have a base of clopen sets.Let B be the canonical clopen base for C . This base is indexed by the set S=Sn2! n2 of all �nite 0-1-valued sequences: if s 2 S then Bs = fx 2 C : s � xg.8.2. Theorem. MAC implies that there are a free ultra�lter u on !, and a point xin (! � C )� such that x has a base consisting of sets of the formS(U; f) = [n2Ufng �Bf(n);where U 2 u and f is a function from ! to S.tu Let hF� : � < ci count the family of closed subsets of ! � C . By induction on �we shall �nd U� and f� such that the family �S(U�; f�) : � < c	 has the �niteintersection property and such that for every �S(U�; f�) � F� or S(U�; f�) \ F� = ?: (�)To avoid having to check irrelevant details we assume that Fn = !�C , Un = [n; !)and fn(i) = hi for all n < ! (and all i). We start the induction at !. Let  � ! andassume everything has been found up to but not including . We are to constructU and f . We shall use the subposet P of Fn(!;B) consisting of those �nitepartial functions p from ! into B that satisfy8n 2 dom(p) [Bp(m) � F or Bp(m) \ F = ?]: (��)This poset is clearly countable. We de�ne some dense subsets of P: for a �nitesubset E of  and an n 2 ! we let DE;n be the set of those elements of P for which



x8] The existence of non-trivial cut points 337there is an m 2 dom(p) such that m � n, m 2 T�2E U� andBp(m) � \�2EBf�(m):The set DE;n is easily seen to be dense: there are in�nitely many m for which theintersection \�2E S(U�; f�) \ �fmg � C �is nonempty. Now let G be a �lter on P that meets all sets of the form DE;n andlet f = SG. Clearly f is a function that satis�es (��). Let A = fm 2 dom(f) :Bf(m) � Fg and B = dom(f) n A . We claim that one of A and B can beused as U . Clearly both S(A ; f) and S(B ; f) satisfy (�). By construction thefamily �S(U�; f�) : � < 	 [ �S(dom(f); f)	has the �nite intersection property; but then so does at least one of the familiesthat we get when we replace dom(f) by A or B respectively. This concludesthe induction step and the construction of u and x. tuWe now use u and x to create non-trivial cut points that are externally di�erent:one is a remote point of M , the other is not.8.3. Theorem. If u and x are as in the previous theorem then there are non-trivialcut points y and z of Iu such that y is a remote point of M and z is not remote.tu Consider the following two maps from C to I: o(x) = Pn2! xn � 2�(n+1) ande(x) = Pn2! 2xn � 3�(n+1). Of course o is the usual two-to-one surjection of Conto I and e is the usual homeomorphism of C onto the familiar middle-third set.We shall simply identify C and the middle-third set and pretend that e is theidentity map. The crucial property of both o and e is that for every s 2 S the setso[Bs] and e[Bs] are order-convex in I and C respectively.Consider the maps from ! � C to M induced by o and e; we shall denote theseby o and e also. We claim that the points y = �e(x) and z = �o(x) are as required.We deal with y �rst. Let F � M be closed and assume that F 62 y. We maychoose U 2 u and a function f such that F \ S(U; f) = ?. Take n 2 U and letCf(n) be the convex hull of Bf(n) in In and note that Bf(n) = Cf(n) \ C . Weclaim that F \ Cf(n) is covered by �nitely many complementary intervals of C n .This follows from the fact that the intersection F \ Cf(n) \ C n = F \ Bf(n) isempty. The �nite set of endpoints of these intervals we denote by wn. The setW = Sn2U wn is closed and discrete in ! � C and hence there are V 2 u and gsuch that S(V; g) � S(U; f) nW . Take the convex hull of S(V; g), this set is of theform S(V; a; b), disjoint from F and an element of y.We conclude that y is a non-trivial cut point of Iu. Since y is in the closureof ! � C , it is not a remote point of M .In the same way it can be shown that z has a base consisting of sets of theform F (a; b; U) (the images of the sets S(U�; f�)), so that it is a non-trivial cut point



338 K. P. Hart / �R [ch. 9of Iu that is also a remote point of M . The only fact that really needs checking isthat �o (z) = fxg.Let t 6= x, and let F 2 t and S(U; f) 2 x be disjoint. Take an element S(V; g)of x, contained in S(U; f) that contains none of the endpoints of S(U; f) (theendpoints in the order-theoretic sense). A moment's reection should convince usthat F \ o �o[S(V; g)]� = ?, and this implies that �o(t) 6= x. tuNow that we know that non-trivial cut points may exist the question ariseswhether they really exist. The full answer to this question is not known yet. Whatwe do know is that narrow remote points need not exist: there are none in Laver'smodel for the Borel Conjecture.For those who are familiar with Laver forcing the following should su�ce as asketch of the argument.Let hP� : � < !2i be a countable support iteration of Laver forcing. Assumethat in M!2 there is a narrow remote point x, say x 2 Iu. There is an � < !2 suchthat, in M�, x � � is a narrow remote point. Let hA;Bi be the gap in Pu�� thatdetermines the layer fx � �g in Iu��.Consider any sequence hcnin in I, from M!2 . There is a closed nowhere denseset C of M , coded in M�, such that hn; cni 2 C for all n. Because x � � is narrowwe can �nd a 2 A, b 2 B and U 2 u � � such that F (a; b; U) \ C = ?. Weconclude that hA;Bi will determine, in M!2 , a gap in Pu; hence it must determinethe layer fxg.On the other hand, if f : ! ! ! is the Laver real added at stage � then forevery null sequence x from M� there is N such that xn > 1=f(n) for all n > N . Itnow follows from Proposition 7.5 that hA;Bi can not determine a one-point layerin M!2 .This shows that something like MAC is needed in the proof of Theorem 8.2.To �nish this section we will give a proof that R has remote points. The readershould contrast these `real' remote points with narrow remote points.8.4. Theorem. The space R has remote points.tu Let D denote the family of all closed nowhere dense subsets of R. Our aim is to�nd a family F = fFD : D 2 Dg of closed sets with the �nite intersection propertyand such that FD \D = ? for all D 2 D. Any closed ultra�lter extending F mustbe a remote point. We shall construct the sets FD in pieces, as follows.To begin we let B = fBi : i 2 !g be the set of open intervals with rationalintervals. Furthermore we take a discrete family fIn : n 2 !g of open intervalsin R, for example In = (2n; 2n + 1). For every D 2 D and every n 2 ! we shall�nd a closed set FD;n � On such that FD;n \D = ?.After this we shall let FD = Sn2! FD;n. To ensure that the resulting family Fhas the �nite intersection property we shall|for a �xed n|construct the FD;n insuch a way that every n of them have a nonempty intersection (in other wordsfFD;n : D 2 Dg has the n-intersection property). That this su�ces is readily seen.It remains to construct the sets FD;n. These will be made up of closures ofelements of B. We collect the possible candidates:K(D;n) = fi 2 ! : Bi \D = ? and Bi � Ing:



x9] Mapping a remote point to a near point 339We shall choose, for each D, a natural number iD;n and we shall putFD;n =[fBi : i 2 K(D;n) and i � iD;ng:We do this in an n + 1-step `closing-o� argument': For a �xed D let iD;0 =minK(D;n) and given iD;m for m < n determine iD;m+1 as follows: For ev-ery s 2 ! with Bs � On there is a ts 2 K(D;n) with Bts � Bs because D isnowhere dense. Let iD;m+1 be the �rst element of K(D;n) above iD;m and all tsfor s � iD;m.We verify the n-intersection property. Let fDi : i < ng be a family of closednowhere dense subsets of X . We assume that the indexing is such that iDj ;j �iDk;j whenever j < k. Now we set s(0) = iD0;0, and given s(j) � iDj ;j we lets(j + 1) = minft 2 K(Dj+1; n) : Bt � Bs(j)g. Since s(j) � iDj ;j � iDj+1;j we seethat s(j + 1) � iDj+1;j+1. We get a decreasing sequenceBs(0) � Bs(1) � � � � � Bs(n�1);and we conclude that Bs(n�1) � \j<nFDj ;n:Of course Bs(n�1) 6= ?. tuIn the next section we will apply the knowledge acquired in this section to solvea long outstanding problem from the theory of remote points: we shall constructan autohomeomorphism of H � that maps a remote point to a near point.Notes for Section 8.Proposition 8.1 was proved by Zhu in [1991b].The proof of Theorem 8.2 is a minor modi�cation of the construction of a narrow remotepoint by Baldwin and Smith in [1986].Non-trivial cut points that are not remote points were found, assuming CH, by Zhuin [1991b].The consistency of the non-existence of narrow remote points was established by Zhuin [191b]. Laver's model for the Borel Conjecture is from Laver [1976].Theorem 8.4 is a special case of the main theorem of van Douwen [1981a] and Chaeand Smith [1980] which states that every space with a countable �-base has a remotepoint.9. Mapping a remote point to a near pointIn this section we shall see how, in certain situations, one may map a remotepoint of H � to a non-remote point. It should be pointed out that this is a majorfeat: the homeomorphism that accomplishes this can not be of the form �f forsome autohomeomorphism of H . It is generally quite hard, if not impossible, toconstruct such non-trivial homeomorphisms of �Cech-Stone remainders.The idea is quite simple: we take a point u of !�, take two cut points of Iu andmap one to the other by an autohomeomorphism of M � . Once this is done, use



340 K. P. Hart / �R [ch. 9the quotient mapping of Theorem 2.4 to turn this autohomeomorphism into oneof H � .Of course this is easier said than done and a lot of care will have to go into thechoice of u and the cut points x and y of Iu for this to have any chance of success.The point u of !� will be a P -point of character !1 and the cut points x and ywill have character !1 as well. We recall that u is a P -point if it satis�es thefollowing condition: if hUnin is a sequence of elements of u then there is U 2 usuch that U is almost contained in every Un, which means that U nUn is �nite forevery n. We write A �� B to denote that A is almost contained in B.Since u is a P -point of character !1 we can �nd a base hU� : � < !1i for u suchthat U� �� U� whenever � < � < !1.Since the character of x is !1, the co�nality of [0u; x) and the coinitiality of (x; 1u]are both !1 (use Proposition 2.12 to see that these numbers are uncountable).Therefore we can �nd sequences ha� : � < !1i in Afxg and hb� : � < !1i in Bfxg,such that a�;u <u a�;u <u b�;u <u b�;u if � < � < !1 and fxg = T�[a�;u; b�;u].Of course similar sequences hc� : � < !1i and hd� : � < !1i can be found for thepoint y.We can, upon shrinking the sets U� somewhat, assume that U�+1 is always asubset of U� (rather than almost a subset) and thata�(n) < a�(n) < b�(n) < b�(n) and c�(n) < c�(n) < d�(n) < d�(n)for all but �nitely many n 2 U� whenever � < �. If � = �+1 we can even assumethat these inequalities hold for all n 2 U�. We shall writeF� = cl�M F (a�; b�; U�) \ M � ;and G� = cl�M F (c�; d�; U�) \ M �for every �.9.1. Lemma. The family fF� : � < !1g is a local base for M � at x and so isfG� : � < !1g at y.tu Let O be open in �M such that x 2 O. By Lemma 6.1 we can �nd U 2 u,a 2 Afxg and b 2 Bfxg such that Cl�M F (a; b; U) � O.Find � such that U� �� U and a(n) < a�(n) < b�(n) < b(n) for all n 2 U�.From this it follows immediately that F� � O \ M � .To �nish the proof we should show that every F� is a neighbourhood of x in M � .However, one readily veri�es that F�+1 \ (M � n F�) = ?, so that x 2 IntF� forall �. tuNow we are ready for the construction of the autohomeomorphism of M � thatmaps x to y.We shall construct a sequence hh� : � < !1i of autohomeomorphisms of �M suchthat the following conditions are satis�ed:1. For every n 2 N and every � we have h�(n; 0) = hn; 0i and h�(n; 1) = hn; 1i,hence h�(0u) = 0u and h�(1u) = 1u for every u 2 !�,



x9] Mapping a remote point to a near point 3412. for every � we have h�[M � n F�] = M � nG�, and3. if � < � < !1 then h� � (M � n F�) = h� � (M � n F�).Once we have this sequence we can de�ne h : M � ! M � by combining the mapsh� � (M � n F�) and sending x to y. It is clear that h is one-to-one and onto. Thath is a homeomorphism follows because it is a homeomorphism on every set M � nF�and because it maps F� onto G� for every �.The construction of the h� will be by induction. There is no loss of generality inassuming that U0 = !, that a0 and c0 are identically zero and that b0 and d0 areidentically one.We shall construct the h� on M of course and let �Cech and Stone do the rest.Our demands on the h� are as follows:1. The map h� is piecewise linear and monotone on every In and if n 2 U� thenh��a�(n)� = c�(n) and h��b�(n)� = d�(n), and2. if � < � < !1 then for all but �nitely many n 2 U� the functions h� and h�agree on the intervals [0; a�(n)] and [b�(n); 1].It should be clear that these conditions are su�cient.To start the induction we let h0 be the identity. Now assume that we haveconstructed h for  < � and that all the demands are met for � <  < �.In the successor case, say � = �+1, we know that a�(n) < a�(n) < b�(n) < �(n)and c�(n) < c�(n) < d�(n) < d�(n) for all n 2 U�. We let h� agree with h� onthe In with n 62 U�. If n 2 U� we let h� agree with h� on [0; a�(n)][ [b�(n); 1] buton [a�(n); b�(n)] we make sure that h��a�(n)� = c�(n) and h��b�(n)� = d�(n). Astraightforward check will show that h� is as required.If � is a limit we let h�i : i 2 !i be a strictly increasing sequence of ordinals thatconverges to �. We assume that �0 = 0. From the way we chose the U� we knowthat for every i we havea�i(n) < a�(n) < b�(n) < b�i(n) and c�i(n) < c�(n) < d�(n) < d�i(n) (�)for all but �nitely many n 2 U�. Choose a strictly increasing sequence hniii ofnatural numbers with n0 = 0 such that for every i: if n 2 U� and n � ni thenn 2 U�i and the inequalities (�) hold.Now we de�ne h�. If n 62 U� and n 2 U�inU�i+1 then h� agrees with h�i on In. Ifn 2 U� and ni � n < ni+1 then we let h� agree with h�i on [0; a�i(n)][ [b�i(n); 1]but on [a�i(n); b�i(n)] we make sure that h��a�(n)� = c�(n) and h��b�(n)� =d�(n). It is again straightforward to check that this h� is as required.It now remains to show that this situation can actually occur.One possibility is to assume the Continuum Hypothesis and do the proof ofTheorem 8.2 with a bit of extra care so as to make the ultra�lter u a P -point.Theorem 8.3 will then give us two non-trivial cut points of Iu: one remote, theother non-remote. We conclude that we can map a remote point to di�erent kindsof non-remote points: far and near.Another possibility is to turn the proof of Theorem 8.2 into an iterated forcingconstruction.



342 K. P. Hart / �R [ch. 9We shall try to be brief. For a point x of (!� C )� we can consider the followingposet Px. Its elements are pairs hF; fi, where F is a �nite subset of x and f is a�nite partial function from ! to S. Such an f determines a clopen subset of !� C :Cf = [n2dom(f)fng �Bf(n):We order Px byhF; fi � hG; gi iff F � G; f � g and Cf n Cg �\G:This de�nes a ccc poset. Indeed, two elements with the same second coordinatesare compatible: hF [G; fi � hF; fi ; hG; fi.Observe that Px is not very interesting if x is not remote: as soon as F hasa nowhere dense element, no element hF; fi can be extended by enlarging thecoordinate f .Now assume that x is remote. Then the following types of sets are dense in Px:DP = �hF; fi : P 2 F	;where P 2 x andEn = �hF; fi : there is an m � n such that m 2 dom(f)	;where n 2 !. For the DP observe that always 
F [ fPg; f� � hF; fi. For the Enwe use that for any hF; fi the set TF meets in�nitely many of the sets fmg � Cin a set with nonempty interior.Now let G be generic on Px and setfG =[nf : 9F �hF; fi 2 G�o:The set XG = S(dom(fG); fG) is a noncompact clopen set and it is such thatXG n P is compact for every P 2 x. Also note that dom(fG) is almost containedin every element of the ultra�lter u = fU : U � C 2 xg.Start with any model M of ZFC and set up a �nite support iterated forcingconstruction hP� : � < !1i as follows. At every stage we let _x� be a P�-name fora remote point and we let P�+1 = P� �P _x� . The set added by P _x� will be denotedby X�.The remote point x� is chosen in such a way that X� 2 x� for every � < �. Itis not too hard to show that this can always be done (use Theorem 8.4).In the end we get a point x in (! � C )� generated by the family fX� : � < !1gand its associated ultra�lter u on !. The point u is a P -point of !� and x is aremote point of ! � C that is just like the remote point from Theorem 8.2. To itwe may apply the proof of Theorem 8.3.In this way we get the consistency with :CH of an autohomeomorphism of H �that moves a remote point to a non-remote point.



x10] The number of subcontinua of H � 343Notes for Section 9.The results from this section are due to Yu [1991]; except for the iterated-forcing con-struction, this is an elaboration of Exercise VIII A10 from Kunen [1980]. To the best ofmy knowledge this is the �rst non-trivial homeomorphism of H � .In [1980] van Mill and Mills exhibited, assuming CH, a remote point x of H suchthat h(x) is remote for every autohomeomorphism h of H � .10. The number of subcontinua of H �In this section we make a beginning with the topological classi�cation of the propersubcontinua of H � . It will become clear that our knowledge is still quite limited.We discuss the known ZFC results �rst; we will �nd nine di�erent continua. Infact, we show that every standard subcontinuum contains at least eight topologi-cally di�erent subcontinua. This suggests obvious questions, we will save these forSection 13.Let Iu be any standard subcontinuum.10.1. Lemma. Let hanin and hbnin be sequences in Pu such thatan �u an+1 <u bn+1 �u bnfor all n. Then there is x 2 Pu such that an <u x <u bn for all n.tu Choose a decreasing sequence hUnin of elements of u with empty intersectionsuch that satisfying U0 = ! andan(i) � an+1(i) < bn+1(i) � bn(i); (i 2 Un+1):Next de�ne x by x(i) = 12�an(i) + bn(i)� for i 2 Un n Un+1. tuNow we are ready to de�ne the eight subcontinua of Iu. There will be six intervalsand two indecomposable continua.To begin we let K1 = Iu. Next we take a strictly increasing sequence haninin Pu with limit layer L1 (cf. Proposition 2.12) and we set K2 = [0u; L1] andK3 = [L1; 1u]. Take another strictly increasing sequence hbnin in Pu, this timeabove L1 and let L2 be its limit layer; put K4 = [L1; L2]. Choose yet anothersequence hcnin in Pu \ [L1; L2], strictly decreasing with limit layer L3. We setK5 = [L3; L2] and K6 = [L1; L3]. Finally we let K7 = f0ug and K8 = L1.It is clear that K7 is di�erent from K8 and that both are di�erent from K1through K6.To distinguish the �rst six continua we observe that any homeomorphism betweenthem should map layers to layers because layers are indecomposable. Furthermorewe note that each Ki has two distinguished end layers: the only layers that, whenremoved, leave Ki connected. These end layers should therefore be mapped toend layers.We inspect the end layers: K1 has two one-point end layers and K2 and K3each have one but in K2 the other end layer is a G�-set and in K3 it is not|byLemma 10.1. We can distinguish K4, K5 and K6 by the number of end layers thatare G�-sets.



344 K. P. Hart / �R [ch. 9To �nd our ninth continuum we have to do some more work. The continuum K9will be indecomposable and non-degenerate. To distinguish it from K8 we negatethe following property that K8 has: every nonempty G� subset has nonemptyinterior, or using complements: no proper F� subset is dense. To see that K8 hasthis property, we note that the space [0u; L1) is �-compact and locally compactand that, because M � is an F -space, we have [0u; L1] = �[0u; L1).We shall construct a strictly increasing sequence hMnin of indecomposable con-tinua and let K9 = SnMn. Clearly K9 is a continuum: SnMn is connected.Since Mn is nowhere dense in Mn+1 for every n, the set SnMn is a proper denseF�-subset of K9. To see that K9 is indecomposable, consider a proper subcontin-uum K. If K is disjoint from every Mn then K is nowhere dense in K9, becauseit misses a dense subset. On the other hand, if it meets some Mn then it must becontained in one of them, because we have Mk � K or K � Mk for every k � nand SkMk � K is impossible.For the construction of the continua Mn we need the notion of a Q-point. Apoint u of !� is said to be a Q-point if for every �nite-to-one function f : ! ! !there is an element of u on which f is one-to-one. It is not too hard to show thatit su�ces to consider monotone functions only.It is easy to �nd non-Q-points. De�ne for example � by �(k) = n iff 2n � k <2n+1 (and �(0) = 0). It is easily seen that the familyf! nA : � is one-to-one on Aghas the �nite intersection property and that no ultra�lter extending it is a Q-point.Using Lemma 6.2 it is straightforward to prove the following lemma.10.2. Lemma. Let [au; bu] be a standard subcontinuum. Then [au; bu] is containedin an indecomposable (proper) subcontinuum of H � if and only if u is not a Q-point.tu Suppose �rst u is a Q-point and let [cv ; dv] be any standard subcontinuumcontaining [au; bu]. We may assume that for every n there is an m such that[an; bn] � [cm; dm]. This de�nes a �nite-to-one map ' from ! to !. Fix U 2 uon which ' is one-to-one. It follows that f(u) = v and that [au; bu] is a intervalof [cv ; dv].We conclude that [au; bu] is not contained in the layer of any other standardsubcontinuum. Since indecomposable subcontinua must be contained in the layerof some standard subcontinuum we see that [au; du] is not contained in any inde-composable subcontinuum of H � .Conversely suppose that u is not a Q-point and �x an increasing �nite-to-onemap ' that is not one-to-one on any element of u. We may assume that ' issurjective. For every n let [cn; dn] be the smallest interval that covers all intervals[ai; bi] with '(i) = n. Finally let v = '(u).Now Lemma 6.2 applies and we can conclude that [au; bu] is contained in a layerof [cv ; dv]. tuOur aim is to construct a sequence hunin in !� such that �(un) = un+1 for all nand � is not one-to-one on any element of any un. Once we have this sequencewe start with a standard subcontinuum [au0 ; bu0 ] and inductively apply the proof



x11] Composants and NCF 345of Lemma 10.2 to �nd standard subcontinua [aun ; bun ] such that for every n thecontinuum [aun ; bun ] is contained in a layer of [aun+1 ; bun+1 ], call this layer Mn.This gives us our sequence hMnin.For the construction of hunin we consider the familyF = nF � ! : 9n�� is one-to-one on �n[! n F ]�o:It is not too hard to verify that F [ �[n; !) : n 2 !	 has the �nite intersectionproperty. Now let u0 be any ultra�lter that extends F and set un = �n(u0) forn > 0. It should be clear that hunin is as required.If one is willing to go beyond ZFC a bit more can be said. First we quote atheorem due to Dow. If � and � are regular cardinals then a h�; �i-gap in anordered set is a pair of sequences S = hx� : � < �i, T = hy� : � < �i such thatS is increasing, T is decreasing, S is below T and there is no element x such thatx� < x < y� for all � < � and � < �.10.3. Theorem (Dow). If � � c is a regular uncountable cardinal then there is anultra�lter u� such that Pu� has a h!; �i-gap, but no h!; �i-gap for any � < �.Using this theorem we can �nd nonhomeomorphic standard subcontinua of H � ,one for every regular uncountable cardinal that is not larger than c: if � < � thena layer in Iu� that corresponds to an h!; �i-gap can not be mapped to any layerof Iu�. For this to be of any use we must assume :CH of course.To �nd di�erent indecomposable subcontinua of H � one can use the followingtheorem.10.4. Theorem (Zhu). Assume that c is regular and satis�es 2<c = c, and let � bea regular uncountable cardinal less than or equal to c. If one adds � Cohen realsthen in the resulting model there is, in some Iu, a layer in which the intersectionof fewer than � open sets has nonempty interior and in which there is also a pointof character �.Notes for Section 10.Lemma 10.1 is well-known; it is a basic fact about ultrapowers of R.The continua K1 through K8 were found by Smith in [1986]. In [1977] van Douwenannounced �ve di�erent subcontinua: two indecomposable (K8 and K9) and three decom-posable, distinguished by the number of one-point end layers. In his notes van Douwenalso considered the number of G�-sets among the end layers. The construction of K9given here is due to Zhu [191a].The existence of Q-points is independent of ZFC: on the one hand it is straightfor-ward to construct a Q-point assuming the Continuum Hypothesis; on the other hand theprinciple NCF (see Section 11) implies that no Q-points exist.Theorem 10.3 was proved by Dow in [1984].11. Composants and NCFSince H � is an indecomposable continuum it becomes interesting to study its com-posants.



346 K. P. Hart / �R [ch. 911.1. Definition. Let X be an indecomposable continuum. The relation `x andy are contained in a proper subcontinuum of X ' is an equivalence relation on X .The equivalence classes under this relation are called the composants of X .The relation above is clearly reexive and symmetric; indecomposability guar-antees that it is also transitive. An obvious question is what the number of com-posants of an indecomposable continuum can be. In the metric case this number isalways c and in the non-metric case there are examples of continua with one, twoor 2� composants for any in�nite �.We shall see that the number of composants of H � is determined completely bya combinatorial property of the set !�.11.2. Theorem. Every composant of H � contains a point of !�.tu Consider the quotient map q from M � onto H � from Theorem 2.4. There is apoint u 2 !� such that x 2 q[ Iu]. The standard subcontinuum q[ Iu] connectsx and u. tuBy this theorem we can concentrate on the composants of the points of !�. Tobe able to characterize when two points of !� are in the same composant of H � wemake the following de�nition.11.3.Definition. Two points u and v of !� are said to be nearly coherent if thereare �nite-to-one maps f and g from ! to ! such that f(u) = g(v).This notion has proved itself useful in various circumstances. The principleNCF (Near Coherence of Filters), which says that any two points of !� are nearlycoherent, implies that many objects have a simple structure. It is not too hard toshow that u and v are nearly coherent iff there is one non-decreasing surjection fsuch that f(u) = f(v).The following theorem shows the connection between NCF and the composantsof H � .11.4. Theorem. Let u; v 2 !�. Then u and v are in the same composant of H �if and only if they are nearly coherent.tu For the �rst implication assume that u and v are contained in some standardsubcontinuum K of H � . Take sequences hanin and hbnin in H such that an <bn < an+1 for all n, and an ultra�lter w such that K = [aw; bw]. We may assumethat ! is covered by the intervals [an; bn]. Now de�ne f : ! ! ! by f(i) = n iffi 2 [an; bn]. This map is �nite-to-one and it maps u and v to w.To prove the converse we let f be �nite-to-one and non-decreasing such thatf(u) = f(v) = w for some w 2 !�. We let In be the smallest interval contain-ing f (n). It should now be clear that u; v 2 Iw and hence that u and v are inthe same composant. tuThis theorem implies that the number of composants of H � is equal to the numberof equivalence classes of !� under the relation of near coherence (that this is indeedan equivalence relation follows from the theorem).This number depends on extra axioms of set theory. On the one hand CH impliesthat there are 2c equivalence classes and on the other hand the principle NCF is



x11] Composants and NCF 347consistent with ZFC. We see that the number of composants of H � can not bedetermined in ZFC.We �nish this section with an interesting application of the results presented inthis paper to the space !�The problem is to cover !� with `small' P -sets. A P -set in a topological space isone with the property that the intersection of countably many of its neighbourhoodsis again a neighbourhood of it. A P -point is a point x such that fxg is a P -set. Forpoints of !� we now have two notions of P -point; see Section 9. It is well-knownthat these notions are the same. It is easy to see that a compact space in whichevery point is a P -point must be �nite, hence not every point of !� is a P -point.One may therefore wonder whether compact spaces may be covered with `small'P -sets. We take small to mean closed and nowhere dense. It turns out thatunder CH the space !� can not be covered with closed nowhere dense P -sets. Onthe other hand, a well-known consequence of NCF is that !� can be covered withnowhere dense P -sets. This can be seen as follows: NCF implies that for everyu 2 !� there is a �nite-to-one map ' : ! ! ! such that v = '(u) is a P -point. Itis readily seen that the set �' (v) is a closed nowhere dense P -set of !�.Using some of the results on subcontinua of H � one can prove the followingstrengthening of this observation.11.5. Theorem (Zhu). NCF implies that !� can be covered by a chain of nowheredense P -sets.The proof of this theorem relies on the following lemma.11.6. Lemma. Let u be a P -point of !� and let 
[an; bn]�n be a discrete sequenceof intervals in H . Then !� \ [au; bu] is a nowhere dense P -set of !�.tu We assume that an < bn < an+1 for all n and de�ne ' : ! ! ! by '(i) =minfn : i � bng. Then !� \ [au; bu] = A� \ �' (u), where A = ! \Sn[an; bn]. tuProof of Theorem 11.5. We construct a sequence hu�i� of P -points and corre-sponding standard subcontinua K� such that K� � K� whenever � < � and suchthat H � = S�K�.By NCF we may pick a P -point u0. We let K0 be determined by u0 and 
[n; n+1=2]�n.At a successor stage, given u� and K�, we apply the proof of Lemma 10.2 (andNCF) to �nd a �nite-to-one map '�, a P -point u�+1 and a standard subcontin-uum K�+1 such that K� is contained in a layer L� of K�+1 and u�+1 = '�(u�).If � is a limit consider the union S<�K = S<� L . If this union equals H �then stop, otherwise pick a point x 2 H � that is not in the union. By NCF (H �has one composant) we may �nd a standard subcontinuum K�, determined by aP -point u�, containing both u0 and x. Now apply Theorem 5.9 to conclude thatS<�K � K� (in fact the closure of the union is indecomposable and hencecontained in a layer of K�).This construction will stop before the cardinal number (2c)+ and thus produceour chain hK� \ !�i� of nowhere dense P -sets covering !�. tu



348 K. P. Hart / �R [ch. 911.7. Remark. Consider the sequence hu�i� constructed in the proof above.What we have seen is that whenever � < � there is a �nite-to-one map ' such that'(u�) = u� (use Lemma 10.2) and for every u 2 !� are an � and a �nite-to-onemap  such that  (u) = u�.Let us consider the following ordering on !�: say u � v iff there is a �nite-to-onemap ' such that '(v) = u (this is almost the Rudin-Keisler order).Now by de�nition NCF says that the ordered set h!�;�i is downward directed.What we have seen is that it is equivalent to the formally much stronger statementthat there is a linearly ordered coinitial subset in this ordering. Indeed, the usualconsistency proofs for NCF produce exactly such sets.11.8. Remark. It may seem strange that the structure of a continuum may havee�ect on the structure of !�, a zero-dimensional space. The proof of Theorem 11.5uses the structure of H � in an essential way: the saving feature at the limit stageis that indecomposable subcontinua are either disjoint or comparable. I don't seehow this may be translated into a direct argument that would avoid H � altogether.Notes for Section 11.In [1927] Mazurkiewicz proved that every metric indecomposable continuum containsa Cantor set K no two points of which lie in the same composant. This more than showsthat the number of composants of a metric indecomposable continuum equals c.Non-metric indecomposable continua with one or two composants were constructed byBellamy in [1978] and in [1976] Smith constructed for every in�nite � an indecomposablecontinuum with 2� composants.In [1970] M. E. Rudin constructed a family of 2c points in !� such that no two ofthem are near coherent, and then proved one half of Theorem 11.4 (points that are in thesame composant are near coherent). In [1978] Mioduszewski proved the same half andin [1980] essentially announced the converse.The papers from [1986] and [1987] by Blass survey many applications of NCF. Proofsof its consistency can be found in Blass and Shelah [1987, 1989].Theorem 11.5 is due to Zhu [1991a]. For a proof that, under CH, the space !� can notbe covered by nowhere dense P -sets see Kunen, van Mill and Mills [1980]. Anothermodel in which !� can be covered by nowhere dense P -sets can be found in Balcar,Frankiewicz and Millls [1980].12. Miscellanea from van Douwen's notesIn this section I collect some results from van Douwen's notes that do not seem to�t elsewhere.The �rst result shows once more that H � is indecomposable.12.1. Theorem. Let F be a proper closed subset of H � with nonempty interior.Then F has a closed subset homeomorphic to !� that is a retract of F .tu Apply Proposition 3.2 twice, �rst to F and a point not in F to obtain sequenceshanin and hbnin such that F � F (a; b; !)� and then to a point in the interiorof F and the closed set clH� (H � n F ) to �nd sequences hcnin and hdnin such thatF (c; d; !)� � F . We may assume that every interval [cm; dm] is contained in someinterval [an; bn].



x13] Some questions 349De�ne r : F (a; b; !) ! F (c; d; !) as follows: for every n let mn be the �rst msuch that [cm; dm] � [an; bn] if such an m exists, otherwise let mn be minimalsubject to cm > bn. Now map, for every n, the interval [an; bn] to the point cmn .The map r is a retraction of F (a; b; !) onto fcmn : n 2 !g. Its extension �r is aretraction of F (a; b; !)� onto fcmn : n 2 !g�; it retracts F onto this set as well. tuWe conclude that closed sets with nonempty interior have 2c components, themaximum number possible.The second result shows that, although proper subcontinua of H � are nowheredense, they may stretch out over a long distance.12.2. Theorem. Let fUn : n 2 !g be a sequence of nonempty open subsetsof H � . Then there is a proper indecomposable subcontinuum of H � that meetsevery set Un.tu For each n choose a discrete subset Dn of H � such that D� � Un. Next �nda discrete sequence hIn : n 2 !i of closed and nondegenerate intervals such thatIn \ Dm 6= ? whenever n � m. It follows immediately that every standard sub-continuum Iu intersects every Un.By Lemma 10.2 any non Q-point u will provide us with an indecomposablecontinuum that meets every Un. tu13. Some questionsIn this section we collect some questions that are suggested by the results presentedin this survey.13.1. Question (Van Douwen). Is there in some Iu a non-trivial cut point?This question needs no real motivation; once one identi�es the obvious cut pointsone wonders whether there are more of them. By Lemma 7.2 this question askswhether there is a weak cut point of H � that is not a near point. We note thatTheorem 8.3 provides a conditional positive answer. On the other hand, none ofthe results in this paper say something about the other end of the spectrum.13.2.Question. Is there an ultra�lter u such that Iu has no nontrivial cut points?In Section 10 we discovered nine topologically di�erent subcontinua of H � . Itseems unlikely that this is the best one can say in ZFC.13.3.Question. What is the number of topologically di�erent subcontinua of H �?The `right' answer to this question should be: 2c. We remark that the remainderof R2 does indeed have 2c di�erent subcontinua. This was established by BrownerWinslow in [1980] and van Douwen in [1981b].The number of subcontinua can be at least c; if one adds enough Cohen reals thenone can �nd c di�erent continua in H � . This follows from Theorems 10.3 and 10.4.Theorem 10.3 gives better information: there are always at least as many standardsubcontinua of H � as there are regular cardinals below (or equal to) c; it also gives apositive answer, under :CH, to the following question; one would like a ZFC resultof course.



350 K. P. Hart / �R [ch. 913.4. Question. Are there u and v in !� such that Iu and Iv are nonhomeomor-phic.?Let us note however that the Continuum Hypothesis implies that for any twoultra�lters u and v the sets Pu and Pv are isomorphic as ordered sets. The pointis that these sets satisfy Lemma 10.1, i.e., they are �1-sets. It is an old result ofHausdorff from [1914] that any two �1-sets of cardinality !1 are isomorphic.In connection with the result of Yu, Section 9, the following questions come tomind.13.5. Question. Is there, in ZFC, a non-trivial homeomorphism of H �?For the space !� the answer is negative, see Shelah and Stepr�ans [1988].Should this question have a positive answer then the following question becomesinteresting as well:13.6. Question. Determine whether the `real' remote points of van Douwen(Theorem 8.4) can be mapped to non remote points by an autohomeomorphismof H � .As a �rst try one may consider large points. There are two reasons to do this:(i) both kinds of points have fairly concrete descriptions and (ii) neither kind ofpoint is a weak cut point (so there is no obvious reason why large points can't bemapped to remote points).It follows from Lemma 6.1 that the decomposition into layers is upper semi-continuous on the whole space M � . It induces, via the quotient map of Lemma 2.4,an upper semi-continuous decomposition of H � . The quotient of H � obtained in thisway looks a lot like a solenoid. It would be interesting to investigate the structure ofthis space, for example its dynamical properties. This would probably necessitatean investigation of the ordered continua Xu de�ned right after Corollary 2.10.ReferencesBalcar, B., R. Frankiewicz, and C. F. Mills.[1980] More on nowhere dense closed P -sets. Bulletin of the Polish Academy ofSciences. Mathematics, 28, 295{299.Baldwin, S. and M. Smith.[1986] On a possible property of far points of �[0;1). Topology Proceedings, 11,239{245.Bellamy, D. P.[1971] An non-metric indecomposable continuum. Duke Mathematical Journal, 38,15{20.[1978] Indecomposable continua with one and two composants. FundamentaMathematicae, 101, 129{134.Bing, R. H.[1951] Higher-dimensional hereditarily indecomposable continua. Transactions of theAmerican Mathematical Society, 71, 267{273.
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