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CECH-STONE REMAINDERS

OF SPACES THAT LOOK LIKE [0;1)

ALAN DOW AND KLAAS PIETER HART

Abstract. We show that many spaces that look like the half line H = [0;1)

have, under CH, a

�

Cech-Stone-remainder that is homeomorphic to H

�

. We

also show that CH is equivalent to the statement that all standard subcontinua

of H

�

are homeomorphic.

The proofs use Model-theoretic tools methods like reduced products and

elementary equivalence.

Introduction

The purpose of this note is to answer (partially) some natural questions about

the

�

Cech-Stone remainder of the real line or rather the remainder of the space H =

[0;1) as the remainder of R is just a sum of two copies of H

�

.

Our �rst result says that, under CH, the space H

�

is, to a certain extent, unique:

if X is a space that looks a bit like H then X

�

and H

�

are homeomorphic. To `look

a bit like H ' the space X must be a connected ordered space with a �rst element,

without last element, of countable co�nality and of weight at most c. The weight

restriction is necessary, because if the weight of X is larger than c then so is the

weight of X

�

and therefore X

�

cannot be homeomorphic with H

�

.

As a consequence various familiar connected ordered spaces have a

�

Cech-Stone

remainder that is homeomorphic to H

�

. So the remainders of the lexicographic

ordered square (minus the vertical line on the right) and of any Suslin line are

homeomorphic to H

�

.

The second result is concerned with the so-called standard subcontinua of H

�

:

take a discrete sequence hI

n

i

n

of closed intervals in H and put, for any u 2 !

�

,

I

u

=

T

U 2 u cl

�

S

n2U

I

n

�

. Then I

u

is a standard subcontinuum of H

�

.

We show that CH is equivalent to the statement that all standard subcontinua

are homeomorphic. This solves Problem 264 from Hart and van Mill [1990].

Our �nal result shows that certain subcontinua of the standard subcontinua are

homeomorphic to H

�

; the precise statement is in Section 3, here su�ce it to say

that these continua are natural candidates for being homeomorphic to H

�

.

As may be expected we shall not directly construct homeomorphisms between

the spaces in question|it's too hard to take care of 2

!

1

points in !

1

steps|but

we show that the spaces have isomorphic bases for the closed sets (isomorphic as
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2 ALAN DOW AND KLAAS PIETER HART

lattices). That this works follows from the results of Wallman from [1938], to be

described in Section 1 below.

A few words on how we show that the bases are isomorphic as lattices: We

implicitly and explicitly use a powerful result from Model Theory which says that

under quite general circumstances various structures are isomorphic. In each case

the bases are identi�ed as reduced products of families of easily described lattices.

The factors of these products are pairwise elementary equivalent and hence so are

the products themselves. Furthermore these products satisfy an certain saturation

property. The combination of elementary equivalence and this saturation property

implies that the lattices are isomorphic. A more detailed explanation can be found

in Section 3.

The paper is organized as follows. Section 1 contains some preliminary remarks.

In Section 2 we prove the �rst result, the proof is self-contained (i.e., requires no

model theory). In Section 3 we prove the results about the standard subcontinua,

here we appeal to standard fact from Model Theory to keep the proofs pleasantly

short. The �nal Section 4 deals with a special case of Theorem 2.1 that can be

proved under weaker assumptions.

1. Preliminaries

1.1. Sums of compact spaces. We shall be dealing with sums of compact spaces

a lot, so it's worthwhile to �x some notation. So let X =

L

n2!

X

n

be a topological

sum of compact spaces; we always take

S

n2!

fng�X

n

as the underlying set of the

space. The map q : X ! ! de�ned by q(n; x) = n extends to �q : �X ! �!. We

shall always denote the �ber of u 2 !

�

under the map �q by X

u

.

1.2. The half line. Our main objects of interest are the half line H = [0;1) and

its

�

Cech-Stone remainder H

�

. The space H

�

is a quotient of another space|that

is somewhat easier to handle|by a very simple map.

Indeed, consider the space M = ! � I|the sum of ! many copies of the unit

interval I. The map �

H

: M ! H de�ned by �

H

(n; x) = n+ x maps M onto H and

the map �

�

H

= ��

H

� M

�

maps M

�

onto H

�

.

A key point in our proof is to see what kind of identi�cations are made by �

�

H

, so

we take a better look at the components of M

�

. Because !

�

is zero-dimensional and

because I

u

is connected for every u we know exactly what the components of M

�

are: the sets I

u

.

Furthermore, each I

u

has a natural top and bottom: we call the point 0

u

=

u-limhn; 0i the bottom point and 1

u

= u-limhn; 1i the top point. The continuum I

u

has many cut points: for every sequence hx

n

i

n

in (0; 1) the point x

u

= u-limhn; x

n

i

is a cut point of I

u

and this set of cut points is dense. It follows that I

u

is irreducible

between 0

u

and 1

u

, which means that there is no proper subcontinuum of I

u

that

contains 0

u

and 1

u

.

We can put a preorder on I

u

: say x 6

u

y iff every subcontinuum of I

u

that

contains 0

u

and y also contains x. The layer of the point x is the set fy : y 6

u

x and x 6

u

yg. This order is continuous in the sense that fy : y 6

u

xg is the

closure of fy : y <

u

xg. We shall use this order in the proof of Theorem 3.2.

We turn back to the map �

�

H

; using standard properties of the

�

Cech-Stone com-

pacti�cation one can easily prove the next lemma (if u 2 !

�

then u + 1 is the

ultra�lter generated by fU + 1 : U 2 ug).
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Lemma 1.1. For every u 2 !

�

the map �

�

H

identi�es the points 1

u

and 0

u+1

and

these are the only identi�cations made.

The continua I

u

govern most of the structure of H

�

; they are known as the

standard subcontinua of H

�

. More information on H

�

can be found in the survey

Hart [1992].

1.3. Wallman spaces. As mentioned above we construct the homeomorphisms

indirectly via isomorphisms between certain lattices of closed sets of the spaces in

question.

This is justi�ed by the results of Wallman from [1938]; Wallman generalized

the familiar Stone duality for Boolean algebras and zero-dimensional spaces to a

duality for lattices and compact spaces. We brie
y describe this `Wallman duality'.

If L is a lattice then a �lter on L is a subset F such that 0 62 F , if x

1

; x

2

2 F

then x

1

^ x

2

2 F and if x

1

2 F and x

1

6 x

2

then x

2

2 F . An ultra�lter on L is

just a maximal �lter. The set X

L

of ultra�lters on L is topologized by taking the

family of all sets of the form x

+

= fF : x 2 Fg with x 2 L as a base for the closed

sets of X

L

. The space X

L

is always compact, it is Hausdor� iff L satis�es a certain

technical condition.

If B is a base for the closed sets of a compact Hausdor� space then B satis�es

this condition. Thus, X = X

B

whenever B is a (lattice) base for the closed sets

of B. It is now easy to see that two compact Hausdor� spaces with isomorphic

(lattice) bases for the closed sets are homeomorphic.

2. Remainders of spaces that look like H

This section is devoted to a proof of the result mentioned in the introduction,

namely

Theorem 2.1 (CH). Let X be a connected ordered space with a �rst element, with

no last element, of countable co�nality and of weight c. Then X

�

and H

�

are

homeomorphic.

We shall construct the homeomorphism indirectly, via spaces that are mapped

onto H

�

and X

�

respectively.

Remember from 1.2 that H

�

is the quotient of M

�

obtained by identifying

1

u

and 0

u+1

for every u 2 !

�

and that the map is called �

H

.

We can construct a similar situation for X

�

: take a strictly increasing and co�nal

sequence ha

n

i

n

in X with a

0

= minX . For every n let J

n

= [a

n

; a

n+1

] and consider

the sum Y =

L

n

J

n

. The map � : Y ! X de�ned by �(n; x) = x identi�es

hn; a

n+1

i and hn+ 1; a

n+1

i for every n.

As in the case for H

�

and M

�

the only identi�cations made by �

�

= �� � Y

�

are

of u-lim

n

hn; a

n+1

i and u-lim

n

hn + 1; a

n+1

i = u+ 1- lim

n

hn; a

n

i for every u 2 !

�

.

In other words, for every u 2 !

�

the top point of J

u

is identi�ed with the bottom

point of J

u+1

. We denote the top point of J

u

by t

u

and the bottom point by b

u

.

This gives rise to the following lemma.

Lemma 2.2. If h : M

�

! Y

�

is a homeomorphism that maps I

u

to J

u

and more-

over maps 1

u

to t

u

for every u then h induces a homeomorphism from H

�

onto X

�

.

Proof. The maps � �h and �

H

have exactly the same �bers. Both are closed, being

continuous between compact spaces, hence quotient mappings. Hence H

�

(the

quotient of M

�

by �

H

) and X

�

(the quotient of M

�

by ��h) are homeomorphic.
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Our e�orts then will be directed towards constructing a homeomorphism between

M

�

and Y

�

that satis�es the assumptions of Lemma 2.2.

Rather than constructing a homeomorphism we shall construct two bases B and C

for the closed sets of M

�

and Y

�

respectively and an isomorphism between them

that will induce the desired homeomorphism.

To construct B we consider the lattice generated by the closed intervals in I. It

is a base for the closed sets of I.

We let L

n

be the corresponding lattice for I

n

. The product lattice L =

Q

n

L

n

corresponds in a natural way to a base for the closed sets of M . The reduced product

L

�

=

Q

n

L

n

=�n|obtained by identifying x and y whenever fn : x(n) 6= y(n)g is

�nite|will then correspond in a natural way to a base for the closed sets of M

�

.

This will be the base B.

In a similar way we �nd C: let K

n

be the lattice generated by the closed intervals

of J

n

and consider K =

Q

n

K

n

and the reduced product K

�

=

Q

n

K

n

=�n. The

lattice corresponds to a base C for the closed sets of Y

�

.

Finding an isomorphism between L

�

and K

�

is the same thing as �nding a bijec-

tion ' between L and K such that for all x; y 2 L we have x 6

�

y iff '(x) 6

�

'(y),

where x 6

�

y means that fn : x

n

6 y

n

g is co�nite.

To ensure that the induced homeomorphism maps I

u

to X

u

for every u, it su�ces

to ensure that whenever y = '(x) the sets fn : x

n

= ?g and fn : y

n

= ?g as well

as the sets fn : x

n

= I

n

g and fn : y

n

= X

n

g di�er by a �nite set only.

Furthermore, to get h(0

u

) = b

u

and h(1

u

) = t

u

for every u we simply map

the closed set b

M

=

�

hn; 0i : n 2 !

	

to b

X

=

�

hn; a

n

i : n 2 !

	

and the set

t

M

=

�

hn; 1i : n 2 !

	

to t

X

=

�

hn; a

n+1

i : n 2 !

	

. We leave it to the reader to

check that this will indeed su�ce.

We shall construct a bijection ' from L to K that satis�es the following condi-

tions:

(�) '(b

M

) = b

X

and '(t

M

) = t

X

, and

(�) for every x and y in K there is an N 2 ! such that for every n > N the sets

of endpoints of '(x)(n) and '(y)(n) have the same con�guration as the sets

of endpoints of x(n) and y(n). By this we mean the following.

1. The closed sets x(n) and '(x)(n) have the same number of intervals and

the families of intervals are similar in that if the ith interval of x(n)

consists of one point then so does the ith interval of '(x)(n) and vice

versa. The same is demanded of y(n) and '(y)(n).

2. If fa

i

: i < kg, fb

j

: j < lg, fc

i

: i < kg and fd

j

: j < lg are the sets

of endpoints of x(n), y(n), '(x)(n) and '(y)(n) respectively (all sets in

increasing order) then for all i < k and j < l we have a

i

<;=; > b

j

iff

c

i

<;=; > d

j

.

Condition (�) is one of the demands made at the outset; in combination with (�)

it ensures that for example the sets fn : x(n) = I

n

g and fn : '(x)(n) = X

n

g di�er

by a �nite set.

Condition (�) also readily implies that x 6

�

y iff '(x) 6

�

'(y) for all x; y 2 K .

By CH we can construct ' in an induction of length !

1

; but rather than setting

up the whole bookkeeping apparatus we show how to perform a typical inductive

step. So assume we have a bijection ' : A ! B that satis�es (�) and (�), where
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A and B are countable subsets of K and L respectively with t

M

; b

M

2 A and

t

X

; b

X

2 B.

Let hx

i

i

i

be an enumeration of A and let y

i

= '(x

i

) for all i. We show how to

�nd '(x) for an arbitrary x 2 K n A (the task of �nding '

�1

(y) for y 2 L n B is

essentially the same).

First �nd an increasing sequence hn

k

i

k

of natural numbers such that whenever

i; j < k and n > n

k

the endpoints of x

i

(n) and x

j

(n) and those of y

i

(n) and y

j

(n)

are in the same con�guration. Using the fact that the intervals I

n

and X

n

are

densely ordered it is now an easy matter to �nd y 2 L such that the endpoints of

x(n) and x

i

(n) and those of y(n) and y

i

(n) have the same con�guration whenever

n

k

6 n < n

k

+ 1 and i < k. We put '(x) = y of course.

This completes the proof of Theorem 2.1.

Remark 2.3. Lemma 2.2 brings up an interesting question. If h : M

�

! Y

�

were just any homeomorphism then it would have to map components of M

�

to

components of Y

�

and thus would induce a map ' from !

�

to !

�

by h[I

u

] = J

'(u)

.

It is readily seen that ' is an autohomeomorphism of !

�

: Note that the set C = fu :

h(0

u

) = t

'(u)

g is clopen so that we may change h by �rst turning the I

u

with u 2 C

upside-down. But then ' merely mirrors the action of h on the set f0

u

: u 2 !

�

g

and hence it is an autohomeomorphism.

The problem is now to �nd an autohomeomorphism of M

�

that permutes the I

u

in the same way as '

�1

permutes the points of !

�

for then we could simply say: if

M

�

and Y

�

are homeomorphic then H

�

and X

�

are homeomorphic. We formulate

this as an explicit question.

Question 2.4. Is there for every autohomeomorphism ' of !

�

an autohomeomor-

phism h of M

�

such that h[I

u

] = I

'(u)

for all u 2 !

�

?

3. More homeomorphic continua

The argument given in Section 2 is actually a careful proof of a special case of

a general Model-Theoretic result. We shall give a brief sketch of this result and

then show how it may be used to show that a few more continua of interest are

homeomorphic.

The result says \elementary equivalent and countably saturated models of size !

1

are isomorphic".

Two models for a theory are said to be elementary equivalent if they satisfy

the same sentences, where a sentence is a formula without free variables. This

may be rephrased in a more algebraic way; two models A and B are elementary

equivalent iff the following holds: if fx

1

; : : : ; x

n

g � A and fy

1

; : : : ; y

n

g � B are

such that for every formula ' with n free variables '(x

1

; : : : ; x

n

) holds in A iff

'(y

1

; : : : ; y

n

) holds in B then for every formula  for which there is an x 2 A such

that  (x

1

; : : : ; x

n

; x) holds there is also a y 2 B such that  (y

1

; : : : ; y

n

; y) holds

(and vice versa of course).

By way of example consider dense linear orders with �rst and last points. Any

two such sets are elementary equivalent: if F = fx

1

; : : : ; x

n

g and G = fy

1

; : : : ; y

n

g

are as in the previous paragraph then we simply know that x

i

6 x

j

iff y

i

6 y

j

and

x

i

is the �rst (last) element iff y

i

is. The conclusion will then be: for every x that

is in a certain position with respect to F then there is a y in the same position with

respect to G.
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A countably saturated model is one in which, loosely speaking, every countable

system of equations has a solution iff every �nite subsystem of it has a solution.

A countably saturated dense linear order is generally known as an �

1

-set: if A

and B are countable and a < b for every a 2 A and b 2 B then there is an x such

that a < x < b for all a and b.

The well-known theorem of Hausdorff from [1914] that under CH any two �

1

-

sets of cardinality c are isomorphic can now be seen as a special case of the general

isomorphism theorem.

The `typical inductive step' from Section 2 may be modi�es that the reduced

product modulo the �nite sets is countably saturated: we were looking for an

element of L

�

that satis�ed the same equations as x and we used the fact that we

could always satisfy any �nite number of these equations.

We refer to the book Chang and Keisler [1977] for the necessary background

on Model Theory.

We shall now use this Model-Theoretic approach to show that many more con-

tinua are homeomorphic, under CH. As noted in the introduction, the �rst result

solves Problem 264 from Hart and van Mill [1990].

Theorem 3.1. The Continuum Hypothesis is equivalent to the statement that all

standard subcontinua of H

�

are homeomorphic.

Proof. One direction was done by Dow in [1984]: under :CH there are u and v

for which I

u

and I

v

are not homeomorphic.

For the other direction we note that we can obtain a base for the closed sets of I

u

simply by taking the ultraproduct L=u. This product is actually an ultrapower

because the L

n

are all the same.

The proof is �nished by noting that L=u and L=v are elementary equivalent (both

are elementary equivalent to L

0

) and countably saturated (Chang and Keisler

[1977, Theorem 6.1.1.]); by the general isomorphism theorem the ultrapowers are

isomorphic.

The next result shows that, again under CH, all layers of countable co�nality

are homeomorphic. Indeed the following, stronger, theorem is true.

Theorem 3.2 (CH). Let ha

n

i

n

be an increasing sequence of cut points in some I

u

and let L be the `supremum' layer for this sequence. Then L is homeomorphic

to H

�

.

Proof. To begin we note that, because I

u

is an F -space, the closed interval [a

0

; L]

is the

�

Cech-Stone compacti�cation of the interval [a

0

; L).

We now follow the proof of Theorem 2.1.

Form the intervals J

n

= [a

n

; a

n+1

] and the topological sum Y =

L

n

J

n

. The

map � : Y ! [a

0

; L) that identi�es hn; a

n+1

i and hn+1; a

n+1

i for every n induces a

map from Y

�

onto L (the restriction of ��). This map is of the same nature as �

�

H

:

it identi�es the top point of J

u

and the bottom point of J

u+1

for every u 2 !

�

.

Our aim is to �nd a homeomorphism h : M

�

! Y

�

that satis�es the assumptions

of Lemma 2.2. We shall do this, again, via an isomorphism between bases for the

closed sets of M

�

and Y

�

respectively.

We shall use the lattice L

�

as a base for M

�

and we make a base for Y

�

as

follows: For each n the interval J

n

is homeomorphic with I

u

and hence it has
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a base K

n

for the closed sets that is elementary equivalent to L

n

. The reduced

product K

�

=

Q

n

K

n

is then a base for the closed sets of Y

�

.

We may now copy the inductive construction of a bijection from L to K from

the proof of Theorem 2.1. The only di�erence is that we can no longer rely on the

linear order of J

n

when we are constructing the images coordinatewise. Instead

we enumerate the countably many formulas from lattice theory with parameters

from A and use elementary equivalence to produce for every x a y such that, as

n gets bigger, there are more and more formulas that x(n) and y(n) both satisfy or

both do not satisfy (for the y's we replace the parameters from A with their images

under ' of course).

Remark 3.3. The lattice K

n

is not the lattice generated by the intervals of J

n

;

indeed, the Wallman space of the latter lattice is a linearly ordered continuum and

in fact the continuum that one gets by collapsing the layers of J

n

to points.

4. A special case

Consider the long line L of length !

1

� !; that is, we take the ordinal !

1

� !

and stick an open unit interval between � and �+ 1 for every � < !

1

� !.

Apparently Eric van Douwen raised the question whether L

�

and H

�

could be

homeomorphic. Theorem 2.1 implies that the answer is yes, under CH.

A slight modi�cation of the methods in Section 2 will show that the answer is

even yes if d = !

1

.

Theorem 4.1. If d = !

1

then L

�

and H

�

are homeomorphic.

Proof. We shall �nd, of course, a homeomorphism h : M

�

! Y

�

of the familiar

kind, where Y = ! � [0; !

1

] and [0; !

1

] denotes the long segment of length !

1

.

Now, because d = !

1

, we may take a sequence hx

�

: � < !

1

i of points in I

!

with

the following properties:

1. For all � and all n we have 0 < x

�

(n) < 1.

2. If � < � then x

�

<

�

x

�

.

3. If x is such that x(n) < 1 for all n then there is an � such that x <

�

x

�

.

It is then an easy matter to de�ne a sequence hh

�

: � < !

1

i of homeomorphisms,

where

h

�

:

[

n

fng � [0; x

�

(n)]! ! � [0; �];

such that

� h

�

�

fng � [0; x

�

(n)]

�

= fng � [0; �] for all � and n, and

� if � < � then h

�

extends h

�

except on a �nite number of vertical lines.

It is then straightforward to check that this sequence induces the desired homeo-

morphism from M

�

onto Y

�

.

Question 4.2. Is d = !

1

equivalent to the statement that L

�

and H

�

are homeo-

morphic?

We note that d = !

1

iff M

�

and Y

�

are homeomorphic; this is so because d = !

1

iff the character of the set of top points of M

�

is !

1

. We have just seen that this

implies that M

�

and Y

�

are homeomorphic; on the other hand if M

�

and Y

�

are

homeomorphic then clearly the set of top points of M

�

has character !

1

.
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