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A CONNECTED F-SPACE

KLAAS PIETER HART

ABSTRACT. We present an example of a compact connected F-space with a
continuous real-valued function f for which the set Qy = J{Int f~ (z) : € R}
is not dense. This indirectly answers a question from Abramovich and Kitover
in the negative.

INTRODUCTION

The purpose of this note is to give a positive answer to Problem 4 from [1].
The problem asks whether there are a compact and connected F-space K and a
continuous real-valued function f on K such that the set €1y is not dense in K,
where Q; = J{Int f(z) : « € R}. If K is such a space then the vector lattice
C(K) has a maximal d-independent system that is not a d-base, which answers
Problem 1 from the same paper in the negative.

As defined in [1] a d-independent system in a vector lattice X is a subset D with
the property that for every band B in X, for every finite subset F' of D and every
choice {cq : d € F'} of non-zero scalars the condition ), . cqd L B implies d L B
for all d € F. A d-independent system D is a d-basis if for every x € X one can
find a full system B of pairwise disjoint bands and a subset {yg : B € B} of X
such that for each B the element yp is a linear combination of members of D and
r—yp L B.

In topological terms a d-independent system in C(K) is a subset D such that for
every nonempty open subset O the family of nonzero members of {d | O : d € D}
is linearly independent. The d-independent set D is a d-basis if for each g € C(K)
there is a pairwise disjoint family O of open sets with a dense union and such that
for every O € O the restriction g [ O is a linear combination of finitely members of
{d]O:de D}.

As observed in [1] for our example K the set {1}, consisting of just the constant
function with value 1, is maximally d-indepent in C(K). Indeed, if g is not constant
then its image g[K] is a nontrivial interval; we let ¢ be its mid-point. Because
K is an F-space the closed sets cl g™ [(—oo,t)] and clg™ [(t, oo)] are disjoint and
because K is connected they do not cover K. The nonempty open set Int ¢ (¢) now
witnesses that {1, g} is not d-independent. The continuous function f, on the other
hand, witnesses that {1} is not a d-basis, for clearly any ‘d-linear combination’ g
of {1} must have its set , dense in K.
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1. THE EXAMPLE

Let S be the unit square, i.e., S = [0,1]?. We consider the product S = w x S,
its Cech-Stone compactification 3S and the extension 7 of the map 7 : S — w,
defined by m(n,z) = n.

For each free ultrafilter u € fw \ w the fiber S, = f7* (u) is a continuum —
see, e.g., [2]. As it is a closed subset of the Cech-Stone remainder S* it is also a
compact F-space.

The function f : S — [0,1], defined by f(n,z,y) = z is clearly continuous; we
write f, for the restriction of 5f to S,. We shall find a continuum K in S, such
that g = f,, | K is as required, i.e., Q4 is not dense in K.

We need to describe the boundaries of the fibers of f. We define Ly = f;(t) N
c f[0,t)] and Ry, = fo(t) Nel fi7[(t,1]]; note that Lo = Ry = 0.

Lemma 1.1. For each t € (0,1) the sets Ly and R; are exactly the components of
the boundary Fr f7(t) of fi(t).

Proof. Because S, is an F-space the closed sets L; and R; are disjoint; they co-
ver Fr f~(t) and, because S, is connected, both are nonempty. This shows that
Fr () has at least two components.

To finish we show that L; and R; are connected. For this we first observe that
the ‘rectangle’ Ps, = S, Ncl(w x [s,7] x [0,1]) is connected whenever s < r. This
in turn implies that L, ; = cl US<T<t P . is connected whenever s < t. It is readily
verified that L; =, <t Ls,¢, hence Ly is connected as the intersection of a chain of
continua. By symmetry R; is also connected. U

This argument also shows that Ry = Fr £ (0) and L; = Fr £ (1) are connected.

We need some more notation. We denote by B,, the intersection of S,, with the
closure, in 8S, of w x [0,1] x {0} — the bottom line of S,, — and likewise the top
line T, is Sy, Neclgs(w x [0,1] x {1}). The continuum K will be defined as the union
of the bottom line of S, and a family of vertical continua, each of which meet both
the bottom and top lines.

To define this family we define sequences (X,)q and (fy ) of closed sets and
functions respectively, by recursion. To begin let Xg = S,,. Given X, put f, =
fu | Xo and define X411 = Xo \ U, Into f (t), where Int,, is the interior operator
in X,. If a is a limit we just let X, = ﬂﬁ<a Xg.

Lemma 1.2. For every o and every t the intersections X, N Ly and X, N Ry are
nonempty

Proof. The proof is by induction on a.

The statement is clearly true for @ = 0 and the case @ = 1 is covered by
Lemma 1.1, whose proof also establishes the successor step in the induction. Indeed,
to show that X,41 N L; # ) we note that, by the inductive assumption we know
that Ps, N X, meets L, and R,, whenever s < ¢ < r. Therefore L, ; N X, # 0 for
all s < t; using compactness we find that L; N\ X1 = [, (Ls,:NXa) is nonempty.

The case of limit « follows using compactness as well. O

Lemma 1.3. FEvery component of X, meets both B, and T,.

Proof. This is clear when @ = 0 and as in the previous lemma we draw inspiration
from the proof of Lemma 1.1 for the argument in the successor step. Observe first
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that a component of X1 is necessarily a subset of some L; or R;: these sets are
the components of X;.

Let C be a component of L; and let O be an arbitrary clopen neighbourhood
of C'in Ly N X441; choose open sets U and V in S, with disjoint closures such that
O CU and (LN Xa41) \ O C V. There is an s such that Ls; N X, CUUV.
Choose r € (s,t) such that some component, D, of X, N (L, U R,) meets U; then
D C U and it follows that U intersects both B, and T,. Because O and U were
arbitrary it follows that C' must meet B, and T, as well.

In case a is a limit and C' a component we have C' = (5_,, Cg, where Cg is the
component of Xz that contains C'; the Cs’s form a chain and all of them intersect
B, and T, and hence by compactness so does C. (]

There will be a minimal ordinal § such that Xs = X541 (some information on §
will be given in the next section). This means that Ints f;~ (t) = 0 for all ¢.

Our continuum K is the union of B, and Xs. Because all components of Xy
meet B, we know that K is indeed connected. Because each component meets
T, we know that K reaches all the way up to T,; by the choice of § we get that
Intg g~ (t) C B, for all t. Thus Q, C B, and the latter set is certainly not dense
in K.

2. A REMARK AND A QUESTION

The first (and erroneous) version of K was simply By, UJy.,<q Bt UUg<req Lt
After I realized that the restriction of f to this subspace did not provide an example
it became clear that the procedure of removing interiors of fibers had to be itera-
ted, which lead to the sequence (X,),. We can provide some information on the
ordinal ¢ at which the sequence becomes constant.

Proposition 2.1. § < ¢t

Proof. Let B be a base for 5, of cardinality ¢. For every a < § there is a B, € B
such that § # B, N X, C X, \ Xay1. Clearly @ — B, is one-to-one, which
establishes that |§] < c. O

The F-space property implies that é cannot be a successor ordinal, nor an ordinal
of countable cofinality.

Lemma 2.2. If a < ¢ then X, \ Xot+1 meets every Ly and every Ry.

Proof. This is basically a consequence of the homogeneity of the unit interval. If
h :[0,1] — [0,1] is a homeomorphism then it induces an autohomeomorphism h,,
of S, via the map (n,z,y) — (n,h(z),y) from S to itself. The map h, simply
permutes the fibers f< (¢) and it is relatively straightforward to show by induction
that h,[X.] = X, for all @. There are enough maps h to ensure that once X\ Xo+1
meets one L; (or one R;) it meets all L, and all R;. O

Proposition 2.3. ¢§ is not a successor ordinal.

Proof. Let o« < §, we show that a +1 < §. Fix ¢t € (0,1) and let (), be a
sequence in [0,1] that converges to t from above. By Lemma 2.2 we can pick
Xy € Ly, N X4 \ Xoy1 for each n.

Clearly every point in the closure of {z,}, belongs to X,+1 N R;; we show
that none belong to Xst2. To see this observe that the F,-sets F' = {x,}, and
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G=f— [(t7 1]] are separated in Sy, i.e., cl FNG = () = FNeclG. Using normality in
the form of Urysohn’s Lemma one can find a continuous function h : S, — [—1,1]
such that A[F] C [-1,0) and h[G] C (0,1]. But now the F-space property applies
to show that cl FNclG = 0. O

In a similar way we can prove the following.
Proposition 2.4. The ordinal § has uncountable cofinality.

Proof. We choose an increasing sequence {c, ), of ordinals below J; we show that
lim,, o, < 6.

As in the previous proof we fix ¢ € (0,1) and a sequence (t,), converging to ¢
from above. As before we choose z,, € Ly, N X, \ Xq, 1 for all n.

As in the previous proof the F-space property now ensures that every point in
the closure of {x,}, belongs to X, \ Xqt1- O

We deduce that § must be at least w; but the following question remains.

Question 1. What is the exact value of 67
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