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Abstract. We prove that if every family in (ωω,≤∗) of size less than c is
bounded then there exists a point p in Q∗ such that p generates an ultrafilter
in the set-theoretic sense on Q and such that p has a base consisting of sets that
are homeomorphic to Q. This is a partial answer to Question 30 (Problem 229)
in [1].

1. Gruff ultrafilters

Let X be a metrizable space without isolated points. We shall call a point p

of the Čech-Stone remainder X∗ gruff if it generates an ultrafilter on the set X ;
conversely, an ultrafilter on the set X will be called gruff if it has a base consisting
of closed sets of the space X . Thus we are able to speak unambiguously about gruff
ultrafilters on X .

It is easily seen that every point in X∗ that contains a discrete set is gruff. On
the other hand, there is no gruff remote point, as every gruff ultrafilter contains a
nowhere dense set. E. van Douwen in [2] studied the question whether there can
exist a gruff ultrafilter which does not contain a scattered set; such an ultrafilter
is said to be crowded. One of the reasons for this is that such ultrafilters provide
examples of particularly nice points of X∗ that are totally non-remote: if p is a
crowded gruff ultrafilter and if A ∈ p then there is B ∈ p such that B is nowhere
dense in A.

It is not difficult to see that there are no crowded gruff ultrafilters on the real
line R: Every closed non-scattered set is of cardinality c and so a crowded gruff
ultrafilter would be uniform and would therefore be generated by more than c sets.
However, R has only c closed sets, so no family of closed sets can generate a uniform
ultrafilter.

The situation is somewhat different if we consider the space Q of rational num-
bers. E. van Douwen proved in [2] that under CMA (Martin’s Axiom for countable
posets) there are crowded gruff ultrafilters on Q. We shall show that the existence
of gruff ultrafilters on Q follows from b = c, where b is the minimal cardinality of
an unbounded subset in (ωω,≤∗). This is of interest because it shows that there
are gruff ultrafilters in Laver’s model for the Borel Conjecture; CMA is certainly
false in that model.

Theorem 1. If b = c then there exists a crowded gruff ultrafilter on Q.

We shall need two lemmas proved by E. van Douwen in [2], albeit in a slightly
different form. Let us call a nonempty set without isolated points crowded.
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Lemma 2. Every crowded and unbounded subset of Q has a closed, crowded and

unbounded subset.

Proof. Let F be a crowded and unbounded subset of Q. Let U be a countable
clopen base for Q which is closed under finite unions and consists of bounded sets.
Consider the countable poset P defined by

〈p, U〉 ∈ P iff p ∈ [F ]<ω, U ∈ U and p ∩ U = ∅

ordered by

〈p, U〉 ≤ 〈q, V 〉 iff p ⊇ q and U ⊇ V.

Consider

D = {Cx : x ∈ Q} ∪ {Dn : n ∈ ω} ∪ {Ex,n : x ∈ Q, n ∈ ω},

where Cx =
{

〈p, U〉 ∈ P : x ∈ p ∪ U
}

, Dn =
{

〈p, U〉 ∈ P : (∃x ∈ p) |x| > n
}

and

Ex,n =
{

〈p, U〉 ∈ P : x ∈ p ⇒ (∃y ∈ p) 0 < |x − y| < 2−n
}

. The family D is a
countable family of dense subsets of the poset P; hence, by the Rasiowa-Sikorski
Theorem, there is a filter G on P that meets them all. Define

K =
⋃

{

p : (∃U ∈ U) 〈p, U〉 ∈ G
}

and

W =
⋃

{

U : 〈∅, U〉 ∈ G
}

.

Clearly K ⊆ F and K ∩ W = ∅. For every x ∈ Q we have G ∩ Cx 6= ∅ so
K ∪ W = Q. It follows that K is closed. It is also easily seen that K is crowded
and unbounded.

Lemma 3. Let F be a free filterbase consisting of closed and crowded sets which

extends the filter of co-bounded clopen sets. Define, for R ⊆ Q and F ⊆ Q,

KR(F ) =
⋃

{L ⊆ F : L is crowded and L ⊆ L ∩ R}.

Let A ⊆ Q. Then either for R = A or for R = Q \ A the collection

F+ = F ∪
{

KR(F ) : F ∈ F
}

is a free filterbase consisting of closed, crowded and unbounded sets.

Proof. First we show that for every F ∈ F the set KR(F ) is either empty or closed
and crowded. Assume KR(F ) is non-empty. Then it is crowded, being a union of

crowded sets. It also satisfies KR(F ) ⊆ KR(F ) ∩ R and hence we have

KR(F ) ⊆ KR(F ) ∩ R ⊆ KR(F ) ∩ R,

so KR(F ) is closed.
Observe that KR(F ) ⊆ KR(G) if F ⊆ G. Now it is easy to see that for every F ∈

F there is R ∈ {A, Q\A} such that KR(F ) is unbounded. For suppose both KA(F )
and KQ\A(F ) are bounded. Let H ∈ F be such that H ⊆ F \

(

KA(F )∪KQ\A(F )
)

.
Then both KA(H) and KQ\A(H) are empty, which is impossible.

Now we show that for either R = A or R = Q\A the set KR(F ) is unbounded for
every F ∈ F . If it were not true then there are F, G ∈ F with KA(F ) and KQ\A(G)
both bounded. Let H ∈ F be such that H ⊆ F ∩ G. Clearly, KA(H) ⊆ KA(F )
and KQ\A(H) ⊆ KQ\A(G), hence KA(H) and KQ\A(H) are both bounded, which
is a contradiction.
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Let R ∈ {A, Q \ A} be such that KR(F ) is closed, crowded and unbounded for
every F ∈ F and let F+ = F ∪

{

KR(F ) : F ∈ F
}

. To show that F+ is a filterbase

it suffices to show that
{

KR(F ) : F ∈ F
}

is a filterbase because KR(F ) ⊆ F for
all F . But if F0 ∈ [F ]<ω then there is G ∈ F such that G ⊆

⋂

F0; then also
KR(G) ⊆

⋂
{

KR(F ) : F ∈ F0

}

.

Proof of Theorem 1. Let {Aξ : ξ ∈ c} enumerate P(Q). By transfinite recursion
on ξ ∈ c we shall construct families Fξ ⊆ P(Q) such that for every ξ, η ∈ c

(i) if ξ < η then Fξ ⊆ Fη,
(ii) Fξ is a free filterbase on Q consisting of closed, crowded and unbounded

subsets of Q;
(iii) Fξ is of cardinality less than c, and
(iv) there is F ∈ Fξ+1 such that F ⊆ Aξ or F ∩ Aξ = ∅.

It is easily seen that F =
⋃

ξ∈c
Fξ is a base of a crowded gruff ultrafilter.

We proceed to the construction. Let

F0 =
{

[n,∞) : n ∈ ω
}

.

This guarantees that every filter extending F0 is free and consists of unbounded
sets. If ξ < c is a limit ordinal we let Fξ =

⋃

η∈ξ Fη; note that |Fξ| < c because
c = b is regular.

Suppose Fξ is a free filterbase consisting of closed, crowded and unbounded
subsets of Q and of cardinality less than c. We have to decide Aξ. By Lemma 3
there is R ∈ {Aξ, Q\Aξ} such that F+

ξ = Fξ∪
{

KR(F ) : F ∈ Fξ

}

is a free filterbase
consisting of closed, crowded and unbounded sets. Enumerate the complement of R:

Q \ R = {xn : n ∈ ω}.

For every F ∈ F+
ξ let F̃ be a closed, crowded and unbounded subset of F ∩ R;

such a set exists by Lemma 2 because KR(F ) = KR(F ) ∩ R ⊆ F ∩ R and so F ∩R

contains a crowded unbounded set. Define fF ∈ ωω by

fF (n) = min
{

m ∈ ω : (xn − 2−m, xn + 2−m) ∩ F̃ = ∅
}

.

The set

C(fF ) = Q \
⋃

n∈ω

(

xn − 2−fF (n), xn + 2−fF (n)
)

is a closed superset of F̃ , hence unbounded and not scattered.
Consider the family E =

{

fF : F ∈ F+
ξ

}

. Because b = c and |E| < c the family E

is bounded. Let g ∈ ωω be such that g ∗≥ fF for every F ∈ F+
ξ and let

C(g) = Q \
⋃

n∈ω

(

xn − 2−g(n), xn + 2−g(n)
)

.

We shall show that for every F ∈ F+
ξ the set C(g) ∩ F contains a closed, crowded

and unbounded set.
Let F ∈ F+

ξ . The set C(fF ) \C(g) is bounded; hence there is a clopen bounded

set D containing C(fF ) \ C(g). Clearly F̃ \ D is closed, crowded and unbounded.

We also have F̃ ⊆ C(fF ) and F̃ ⊆ F , hence F̃ \ D ⊆ C(fF ) \ D ⊆ C(g) and so

F̃ \ D is a closed, crowded and unbounded subset of F ∩ C(g).
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For every F ∈ F+
ξ let F ′ ⊆ C(g) ∩ F be closed and crowded such that the set

C(g) ∩ F \ F ′ is scattered. The existence of such a set follows from the Cantor-
Bendixson Theorem. The family

Fξ+1 = F+
ξ ∪ {F ′ : F ∈ F+

ξ }

is as required.

2. n-gruff ultrafilters

Let n be a positive natural number. A point p in Q∗ is said to be n-gruff if it is
the intersection of n ultrafilters on Q.

The existence of crowded n-gruff ultrafilters on Q follows from CMA, as shown
by E. van Douwen in [2]. By slightly modifying the proof of Theorem 1 it is not
difficult to show that the same can be proved under b = c:

Theorem 4. If b = c then there exists a crowded n-gruff ultrafilter on Q.

The proof of Theorem 4 is almost identical to that of Theorem 1 so we will
indicate only the main differences.

Let B be a family of subsets of Q. A set F ⊆ Q is said to be B-good if F ⊆ F ∩ B

for every B ∈ B.
Fix a collection H of n disjoint dense subsets of Q such that

⋃

H = Q. Observe
that every H ∈ H must be crowded and unbounded.

Lemma 5. Every crowded, unbounded and H-good subset of Q has a closed, crowded,

unbounded and H-good subset.

Proof. The proof is almost the same as the proof of Lemma 2. The only difference
is the choosing of the dense subsets Dn and Ex,n:

Dn =
{

〈p, U〉 ∈ P : (∀H ∈ H) (∃x ∈ p ∩ H) |x| > n
}

and

Ex,n =
{

〈p, U〉 ∈ P : x ∈ p ⇒ (∀H ∈ H) (∃y ∈ p ∩ H) 0 < |x − y| < 2−n
}

.

Lemma 6. Let F be a free filterbase consisting of closed, crowded and H-good sets

and which extends the filter of co-bounded clopen sets. Define, for F ⊆ Q, H0 ⊆ H
and R ⊆ H0,

KR(F ) =
⋃

{L ⊆ F : L is crowded and HR − good},

where HR =
(

H \ {H0}
)

∪ {R}. Let A ⊆ H0. Then either for R = A or for

R = H0 \ A the collection

F+ = F ∪
{

KR(F ) : F ∈ F
}

is a free filterbase consisting of closed, crowded, unbounded and H-good sets.

Proof. Follow the proof of Lemma 3. It is easily seen that we can also guarantee
H-goodness.
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Proof of Theorem 4. Fix an enumeration of
⋃

H∈H P(H):
⋃

H∈H

P(H) = {Aξ ⊆ Q : ξ ∈ c}.

By transfinite recursion on ξ ∈ c we construct families Fξ ⊆ P(Q) such that for
every ξ, η ∈ c they satisfy the conditions (i), (ii), (iii) in the proof of Theorem 1
together with

(iv)∗ there is F ∈ Fξ+1 such that F ∩H ⊆ Aξ or F ∩Aξ = ∅, where H ∈ H is such
that Aξ ⊆ H , and

(v) each F ∈ Fξ is H-good.

The construction is now exactly the same as in the proof of Theorem 1 except that
Lemmas 5 and 6 guarantee H-goodness of the elements of the filterbases Fξ. Also
note that (iv)∗ ensures that the restriction of F to H generates an ultrafilter on H

for each H ∈ H, and that F is the intersection of those ultrafilters because H is a
finite partition of Q.
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