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CUT POINTS IN ČECH-STONE REMAINDERS
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Abstract. We investigate cut points of subcontinua of βR \ R. We find,
under CH, the topologically smallest type of subset of R that can support
such a cut point. On the other hand we answer Question 66 of Hart and van

Mill’s Open problems on βω [Open Problems in Topology (J. van Mill and

G. M. Reed, eds.), North-Holland, Amsterdam, 1990, pp. 97–125] by showing
that it is consistent that all cut points are trivial (in a sense to be made precise

in the paper).

Introduction

In this paper we study some types of points of H∗, where H is the half line [0,∞).
It is well known that H∗ is an indecomposable continuum. As such it does not have
any cut points, but it does have sub cut points, i.e., points that are cut points of
some subcontinuum.

To find sub cut points one only has to look in ω∗: for each n let In be the interval
[n − 1/4, n + 1/4] and for u ∈ ω∗ put Iu =

⋂
U∈u cl

⋃
n∈U In. It is readily verified

that Iu is a continuum and that u is a cut point of it. This argument shows that
every point that is in the closure of a closed and discrete subset of H (a so-called
near point) is in fact a sub cut point.

On the other hand, H∗ also has points that are not sub cut points; such points
were found by van Douwen in [2] and van Mill and Mills in [7]. This gives a clear
cut reason why the space H∗ is not homogeneous: there are points with visibly
different topological behaviour.

It can also be shown that if x is a sub cut point of H∗ then there are a discrete
sequence 〈In : n ∈ ω〉 of closed intervals in H and a u ∈ ω∗ such that x is a cut point
of Iu.

These results prompted further investigation of the structure of the continua Iu.
One question — mentioned as Question 66 (or Problem 265) in Hart and van Mill
[5]—was whether every cut point of Iu is of the form u-lim xn, where 〈xn : n ∈ ω〉
is a sequence such that xn ∈ In for all n; for clearly every such point is a cut point
of Iu. Let us call such points trivial cut points. We shall abbreviate u-lim xn by xu

(the u-th term of the sequence).
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Nontrivial cut points were constructed by Baldwin and Smith in [1] and by Zhu
in [9] using Martin’s Axiom for Countable posets and CH, respectively.

The main result of our paper shows that in Laver’s model for the Borel Conjecture
(Laver [6]) no Iu has a nontrivial cut point. This confirms a conjecture mentioned
in the paper of Hart and van Mill.

The paper is organized as follows: In Section 1 we summarize some known facts
about cut points of Iu, needed in Section 2. We also prove, under CH, a result that
shows that every Iu may have a nontrivial cut point and that also identifies, in some
sense, the topologically smallest type of set that can support a nontrivial cut point
(Proposition 1.4 and Theorem 1.5 will give a meaning to the phrase ‘topologically
smallest’). In Section 2 we prove our main result and interpret it in terms of H∗.

The survey in [4] will provide proofs for statements not proven here. In that
paper a sub cut point is called a weak cut point. The term sub cut point seems
more appropriate.

1. Various kinds of cut points

For convenience we consider the space M = ω × I, where I = [0, 1]. We write
In = {n} × I and we interpret Iu accordingly.

As we shall have no reason to take a union of a sequence of intervals in I itself
we shall relieve our notational burden somewhat by agreeing that

⋃
n[an, bn] means⋃

n{n} × [an, bn], whenever
〈
[an, bn] : n ∈ ω

〉
is a sequence of intervals in I.

We begin by giving the most convenient—for us—characterizations of cut
points in the continua Iu. Let x ∈ Iu. We define two subsets Ax and Bx of Iω

as follows:
Ax =

{
a ∈ Iω : x ∈ cl

⋃
n∈ω

[
a(n), 1

]}
and

Bx =
{

b ∈ Iω : x ∈ cl
⋃
n∈ω

[
0, b(n)

]}
,

where the closures are taken in βM of course.
Now if x is of the form xu for some sequence 〈xn : n ∈ ω〉 in Iω then Ax ∩ Bx

consists exactly of those sequences 〈yn : n ∈ ω〉 for which there is U ∈ u such that
x(n) = y(n) for all n ∈ U . Otherwise the intersection of Ax and Bx is empty.

Thus the trivial cut points of Iu are characterized by the fact that Ax∩Bx 6= ∅.
The following proposition characterizes the nontrivial cut points in terms of Ax

and Bx. If U is an open subset of M then Ex U denotes the largest open subset
of βM whose intersection with M is U . Let us call a sequence 〈rn : n ∈ ω〉 that
consists of positive reals and converges to 0 a null sequence.

Proposition 1.1. Let x be a point of Iu for which Ax∩Bx = ∅. Then the following
are equivalent:

(1) The point x is a cut point of Iu.
(2) The sets of the form Ex

⋃
n∈U

(
a(n), b(n)

)
, where U ∈ u, a ∈ Ax, and

b ∈ Bx, form a local base at x.
(3) For every null sequence 〈rn : n ∈ ω〉 there are a ∈ Ax and b ∈ Bx such that

the set U =
{
n : b(n)− a(n) < rn

}
belongs to u.

Proofs can be found in Hart [4] and Zhu [10].
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Before we continue we would like to insert a remark that may take away the
confusion that tends to be caused by condition (2) in the previous proposition.

Remark 1.2. Consider the following two conditions that one may impose on a
point x of Iu for which Ax ∩Bx = ∅:

(α) If F is closed in M and x 6∈ cl F then there are a ∈ Ax, b ∈ Bx, and U ∈ u
such that F (a, b, U) =

⋃
n∈U

[
a(n), b(n)

]
is disjoint from F .

(β) If F is closed in M and x ∈ cl F then there are a ∈ Ax, b ∈ Bx, and U ∈ u
such that F (a, b, U) is contained in F .

Note that condition (α) is equivalent to condition (2) in Proposition 1.1 and hence
characterizes nontrivial cut points. Condition (β) on the other hand is stronger
than (α) but not equivalent to it; in [9, 10] Zhu calls points that satisfy (β) simple
cut points.

In Section 2 we shall need the following variation of condition (3):

Lemma 1.3. A point x of Iu with Ax ∩ Bx = ∅ is a cut point if and only if for
every f ∈ ωω with f(n) > 0 for all n there is g ∈ ωω with g(n) < f(n) for all n
and such that the closed set

⋃
n

[
g(n)/f(n),

(
g(n) + 1

)
/f(n)

]
belongs to x.

Proof. The condition of the lemma clearly implies condition (3) of Proposition 1.1.
For the other direction fix f and pick a ∈ Ax and b ∈ Bx such that b(n)−a(n) <

1/f(n) for all n. Now choose g such that g(n) 6 a(n) · f(n) < g(n) + 1 for all n.
Then either g or g + 1 will do. �

We now investigate how close to trivial a nontrivial cut point can be.
A consequence of condition (3) in Proposition 1.1 is that a nontrivial cut

point is not in the closure of any closed discrete subset of M, i.e., every nontrivial
cut point is a far point. (A far point is a point that is not near.)

Indeed, if D is closed and discrete in M then Dn = D ∩ In is finite for every n.
For each n let rn be the minimum distance between two adjacent points of Dn

(rn = 1 if Dn = ∅). Now let x be a nontrivial cut point of Iu and take a ∈ Ax and
b ∈ Bx such that b(n)−a(n) < rn for all n. Then

⋃
n

(
a(n), b(n)

)
picks at most one

point from each Dn; but this gives us a set that, by definition, x has to avoid.
On the other hand, under CH or weaker one can find nontrivial cut points that

are in the closure of nowhere dense subsets of M (see Hart [4] or Zhu [9]; Theorem 1.5
provides another example).

To see what kind of sets can still support nontrivial cut points we consider
scattered sets, as these are arguably the topologically smallest type of subsets of R.

We assume the reader is familiar with the notion of a scattered space. We use
X(α) to denote the α-th derived set of X. If X is compact then the last α for which
X(α) 6= ∅ is the scattered height of X, denoted ht(X). Furthermore, if x ∈ X then
the last α for which x ∈ X(α) is called the scattered rank of x.

Consider now a scattered closed subset D of M. We define its scattered height
as ht(D) = supn ht(D ∩ In). We have seen that D cannot support a nontrivial
cut point if D is discrete or, equivalently, if its scattered height is 0. The same can
be said if its scattered height is finite; this follows from the following proposition.

Proposition 1.4. If x is a far point and D is a closed subset of M of finite
scattered height then x 6∈ cl D.



912 ALAN DOW AND K. P. HART

Proof. The argument is by induction on height: If the height of D is k then D(k) is
closed and discrete, hence x is not in its closure and there is a neighborhood, X, of
it that is disjoint from D(k). The scattered height of X ∩D is then at most k − 1,
so by our inductive assumption x is not in the closure of X ∩D. It follows that x
is not in the closure of D. �

The next result shows that this is best possible; under CH there is a closed set of
scattered height ω that supports a nontrivial cut point for every Iu. This theorem
also solves, negatively, Question 13.2 from Hart [4], which asks for an Iu without
nontrivial cut points.

Theorem 1.5 (CH). Take, for each n, a copy Kn of the ordinal space ωn +1 in In.
Then for every u ∈ ω∗ there is a nontrivial cut point of Iu that is in the closure
of

⋃
n Kn.

Proof. We shall construct two sequences 〈aα : α ∈ ω1〉 and 〈bα : α ∈ ω1〉 in Iω such
that:

(1) If α ∈ β ∈ ω1 then aα <∗ aβ <∗ bβ <∗ bα.
(2) For every null sequence 〈rn〉n there is α ∈ ω1 such that bα(n)− aα(n) < rn

for all but finitely many n.
(3) For every x ∈ Iω there is α ∈ ω1 such that x(n) 6∈

[
aα(n), bα(n)

]
for all but

finitely many n.

To avoid cumbersome notation we shall use I(α, n) to denote both
[
aα(n), bα(n)

]
and {n}×

[
aα(n), bα(n)

]
; the context should always dictate which meaning we use.

Consider now the closed set

C = M∗ ∩
⋂

α∈ω1

cl
⋃
n∈ω

I(α, n).

Condition (1) implies that C meets every Iu, condition (2) implies that C ∩ Iu

consists of exactly one point for every u, and condition (3) implies that every
such point is a nontrivial cut point (see Proposition 1.1). To make sure that C
is a subset of the closure of

⋃
n Kn we are forced, by Proposition 1.4, to add the

following condition to our list.

(4) For every α we have limn→∞ ht
(
I(α, n) ∩Kn

)
= ∞.

Now let {xα : α ∈ ω1} list Iω and let {cα : α ∈ ω1} list the set of all null
sequences. During the construction we make sure that for every α the set{

n : xα(n) ∈ I(α, n) and bα(n)− aα(n) > cα(n)
}

is finite.
We start by putting a−1(n) = 0 and b−1(n) = 1 for all n.
Now let α ∈ ω1 and assume everything has been taken care of below α. If α

is a successor or 0 put aα = aα−1 and bα = bα−1. If α is a limit first choose an
increasing cofinal sequence 〈γi : i ∈ ω〉 in α. Then choose an increasing sequence
〈ni : i ∈ ω〉 in ω such that for every i: if n > ni then ht

(
I(γi, n) ∩ Kn

)
> i and if

j < i then aγj
(n) < aγi

(n) and bγj
(n) > bγi

(n).
Now define aα and bα by: if n < n0 then aα(n) = 0 and bα(n) = 1, and:

if ni 6 n < ni+1 then aα(n) = aγi(n) and bα(n) = bγi(n). In either case

limn→∞ ht
([

aα(n), bα(n)
]
∩Kn

)
= ∞.
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Choose, for every n a point yn in
[
aα(n), bα(n)

]
∩ Kn of maximum scattered

rank, say kn, and an interval Jn around yn of length at most cα(n) and contained
in

[
aα(n), bα(n)

]
. Now pick, if kn > 1, a point zn in Jn of rank kn − 1 but not

equal to xα(n). Finally then choose aα and bα in such a way that I(α, n) has zn

in its interior but does not contain xα(n) whenever kn > 1, in the finitely many
cases when kn = 0 the choice of aα(n) and bα(n) is immaterial. This concludes the
proof. �

Remark 1.6. We note that a suitable modification of the arguments of Baldwin
and Smith from [1] can be used to show that under Martin’s Axiom for Countable
posets there is some u ∈ ω∗ for which Iu has a nontrivial cut point that is in the
closure of a scattered set of height ω.

Our stronger assumption of CH yields a stronger conclusion: every Iu has such
a nontrivial cut point.

Let us summarize what kind of nontrivial cut points we can have.
To begin, every nontrivial cut point is a far point and hence not in the closure of

a set of finite scattered height. On the other hand, we just constructed a non-trivial
cut point in the closure of a set of scattered height ω.

The point constructed by Baldwin and Smith is remote, which means that it
is not in the closure of any closed nowhere dense subset of M. Finally, the point
constructed by Zhu is not remote but still quite far—it has a base of perfect sets.
We remark that a cut point is remote iff it is simple, i.e., satisfies condition (β) of
Remark 1.2.

In [10] Zhu showed that in Laver’s model there are no remote cut points; in the
next section we show that in this model there are no nontrivial cut points at all,
by showing that no far point is a cut point.

2. A model without nontrivial cut points

In this section we prove that there are no nontrivial cut points in Laver’s model
for the Borel conjecture. We need to describe Laver’s poset of course.

To begin, a Laver tree is a subtree T of <ωω of the following form: There is a
node sT of T such that for every t ∈ T either sT ⊆ t or t ⊆ sT ; we call sT the
root node of T . Furthermore, if t ∈ T extends sT then the set of i ∈ ω for which
t a i ∈ T is infinite. The set of branches through T is denoted by [T ].

The Laver poset L is the set of Laver trees, ordered by inclusion. If G is a
generic filter on L then it determines a new real, a Laver real, as follows: In V [G]
the intersection

⋂[
T ] : T ∈ G

}
consists of one point f ; this point f is the Laver

real and it determines G because G =
{
T : f ∈ [T ]

}
. The function f goes much

faster to infinity than any function from V and this is what we shall use to destroy
nontrivial cut points.

A crucial property of Laver forcing is the following.

Lemma 2.1. If T ∈ L, F is a finite set in V and T 
 ẋ ∈ F then there are S 6 T
with the same root as T and a ∈ F such that S 
 ẋ = a.

Laver’s model is obtained from a model of CH, using a countable-support iterated
forcing construction of length ω2 where each time one forces with the poset L.

Theorem 2.2. In Laver’s model there are no nontrivial cut points.
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Proof. Let 〈Pα : α 6 ω2〉 be a countable support iteration, where at every stage
Pα+1 = Pα ∗ L̇. We let P = Pω2 and we let G be a generic filter on P.

Finally we assume that, in V [G], x is a far point of M; we must show that x is
not a cut point of the Iu that contains it.

An easy reflection argument will produce an ordinal α < ω2 such that, in the
model V [G � α], the point x � α is a far point of M. We show that, in V [G], there is
no nontrivial cut point extending the filter x�α (in particular, x is not a cut point).

For this we consider the Laver real f , added at the next stage. It induces
partitions of the intervals In:

In =
⋃{[

i/f(n), (i + 1)/f(n)
]

: i < f(n)
}

.

In what follows we shall denote the interval
[
i/f(n), (i + 1)/f(n)

]
by I(n, i).

Our task will be complete once we show that for every g : ω → ω from V [G]
satisfying (∀n ∈ ω)

(
g(n) < f(n)

)
there is an X ∈ x � α disjoint from the set⋃

n I
(
n, g(n)

)
.

The intuition behind this is that f grows so fast that the intervals I
(
n, g(n)

)
become very thin, as thin as points. As x is a far point, we must then be able to
avoid those intervals.

For convenience we drop (as we may) all references to α and simply assume that
we have a far point x in V and show that it has the property mentioned in the
previous paragraph.

So assume that g, from V [G], is a function below the first Laver real f . A straight-
forward application of Lemma 6 from Laver [6] gives us, in V [f ], a function F such
that F (n) is an n-element subset of f(n) and g(n) ∈ F (n) for all n.

In V this gives us a T ∈ L that forces all this:

T 
L (∀n ∈ ω)
(
Ḟ (n) ⊆ ḟ(n) ∧

∣∣Ḟ (n)
∣∣ = n

)
,

and there is a condition p ∈ P, with first coordinate T , such that

p 
P (∀n ∈ ω)
(
ġ(n) ∈ Ḟ (n)

)
.

We will be done once we show that the set of S ∈ L for which there is X ∈ x such
that

S 
L X ∩
⋃{

I(n, i) : i ∈ Ḟ (n), n ∈ ω
}

= ∅
is dense below T . It suffices to find such an S below T (the same argument works
below any other element below T ).

We begin by observing that if t ∈ T and t a i ∈ T then

T � (t a i) 
 ḟ
(
|t|

)
= i,

and hence
T � (t a i) 
 Ḟ

(
|t|

)
⊆ i.

Therefore we may, using Lemma 2.1, assume that we have a partial function H :
T × ω → [ω]<ω such that

T � (t a i) 
 Ḟ
(
|t|

)
= H(t, i).

We enumerate H(t, i) in increasing order as
{
h(t, i, j) : j < |t|

}
and we denote the

interval
[
h(t, i, j)/i,

(
h(t, i, j)+1

)
/i

]
by I(t, i, j). It should be clear that all we need

is a Laver tree S below T and an element X of x such that

(∗) X ∩
(
{n} × I(t, i, j)

)
= ∅
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whenever n, t, i, and j are such that t a i ∈ S, |t| = n, and j < n. This then is the
goal of the rest of the proof.

Let n0 be the length of the root node of T and denote the root node by tn0 . We
shall thin out T by induction on n > n0. At each step, when we have a tree Tn−1,
we choose a node tn of Tn−1 and we make sure that the nodes t0, . . . , tn will be in
the tree Tn. Furthermore the choice will be made in such a way that in the end the
tree T∞ = {tn : n ∈ ω} is a Laver tree with root tn0 (for n < n0 we let tn = tn0 �n).
This amounts to what is generally called a ‘standard fusion argument’; the tn can
be chosen in a very canonical way, described in detail in [6, p. 156].

At step n0 we choose an infinite subset of {i : tn0
a i ∈ T} such that the sequence

of cubes
∏

j<n0
I(tn0 , i, j) converges to a point rn0(tn0) of In0 . After throwing away

the other i’s we end up with the tree Tn0 .
Now let n > n0. Consider the tree Tn−1 and choose tn in Tn−1 as an immediate

successor of some tk with n0 6 k < n. Using the nodes tk we split Tn−1 into
subtrees: if n0 6 k 6 n then Tn,k is the union of all T � t where t is an immediate
successor of tk, but none of the tj for k < j 6 n (note that tk is the root node of
Tn,k).

Fix k between n0 and n. For every t ∈ Lev(Tn,k, n) we choose an infinite subset
of {i : t a i ∈ Tn,k} such that the cubes

∏
j<n I(t, i, j) converge to a point rn(t)

of In and we throw away the parts of Tn,k above the other successors of t. Note
that such a choice is possible because for every fixed t the diameters of the cubes∏

j<n I(t, i, j) converge to 0. We continue down to the level of tk, all the time
thinning out Tn,k further to a tree T ′n,k with the property that for every t with
|tk| 6 |t| < n the sequence 〈

rn(t a i) : t a i ∈ T ′n,k

〉
converges to a point rn(t) ∈ In.

When this is done for every k we piece the trees T ′n,k together to form the tree Tn.

In the end we get the tree T∞ =
⋂

n Tn = {tn : n ∈ ω}. It gives us, for n > n0,
the following picture in In (it may be better to think of this as taking place in In

n):
for every k ∈ [n0, n] a point rn(tk) with a sequence

〈
rn(ta i) : ta i ∈ T∞

〉
converging

to it. Each of the terms of this sequence has a sequence converging to it and so
on until we reach the points above tk that are on level n, then we get sequences of
cubes converging to the corresponding rn(t).

In In we get the finite set of coordinates of the points rn(tk):

Fn =
{〈

n, rn(tk, j)
〉

: n0 6 k 6 n, j < n
}

,

together with sequences converging to them:

Gn =
{〈

n, rn(tk a i, j)
〉

: n0 6 k 6 n, tk
a i ∈ T∞, j < n

}
.

Because x is a far point of M we may find an element X of x that is disjoint
from

⋃
n(Fn ∪Gn) (each Fn ∪Gn has scattered height 1). Our intuition did not let

us down, we will manage to confine g near the set
⋃

n(Fn ∪Gn).
Now we are ready for the final recursive trim.
The points

〈
n0, rn0(tn0 , j)

〉
are not in X, so for all but finitely many i with

tn0
a i ∈ T∞ every interval {n0} × I(tn0 , i, j) is disjoint from X. Discard those

finitely many i.
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Now let tm be one of the surviving direct successors of tn0 . The property that
allows the trimming to continue is that

〈
n, rn(tm, j)

〉
6∈ X for all n > |tm| (for

n > m use the fact that
〈
n, rn(tm, j)

〉
∈ Fn and for n < m use the fact that〈

n, rn(tm, j)
〉
∈ Gn; it’s in the sequence converging to

〈
n, rn(tn0 , j)

〉
).

For every n from |tm| + 1 through m we have to discard those finitely many
successors t of tm for which some

〈
n, rn(t, j)

〉
is in X and any of the finitely many

more t = tm
a i for which

{
|tm|

}
× I(tm, i, j) meets X. For n > m we have〈

n, rn(tm, j)
〉
∈ Fn, hence for all direct successors t of tm we have

〈
n, rn(t, j)

〉
∈ Gn

and so no more trimming of successors of tm is required.
The same strategy applies to nodes higher up in T∞: whenever a node tk has

survived it will lose finitely many direct successors. These successors must be
discarded because of possible nonempty intersections with X in In for |tk| 6 n 6 k.
In the end we get our tree S satisfying (∗). �

To end this paper we show how Theorem 2.2 may be applied in the theory of far
points of H = [0,∞). The theorem implies that in Laver’s model a point of H∗ is a
near point if and only if it is a sub cut point and hence that the set of near points
is topologically invariant in H∗.

This is a partial answer to a question of van Douwen from [3] whether the set of
remote points of H is topologically invariant. Under CH it is not: in [8] Yu showed
that if u is a P -point then any two cut points of Iu can be mapped to each other
by an autohomeomorphism of M∗ that leaves every Iv invariant; so, for example,
a remote point can become a near point. This can then be modified to produce an
autohomeomorphism of H∗ with the same effect.

This suggests the obvious question whether the set of remote points of H∗ is
topologically invariant in Laver’s model.
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