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EFIMOV’S PROBLEM

KLAAS PIETER HART

Introduction

In their memoir [1, page 54] Alexandroff and Urysohn asked “existe-il un espace
compact (bicompact) ne contenant aucun point (κ)?” and went on to remark “La
resolution affirmative de ce problème nous donnerait une exemple des espaces com-
pacts (bicompacts) d’une nature toute differente de celle des espaces connus jusqu’à
présent”. The ‘compact’ of that memoir is our countably compact, ‘bicompact’ is
‘compact Hausdorff ’ and a κ-point is one that is the limit of a non-trivial conver-
gent sequence. A look through the examples in [1] will reveal a few familiar classics:
the ordinal space ω1 and the corresponding Long line, the double circumference, the
Tychonoff plank (in disguise), the lexicographically ordered square, and the Double
Arrow space. The geometric nature of the constructions made the introduction of
non-trivial convergent sequences practically unavoidable and it turns out that the
remark was quite correct as we will see below.

The question was answered by Tychonoff [20] and Čech [4] using the very same
space, though their presentations were quite different. Tychonoff took for every x ∈
(0, 1) its binary expansion 0.a1(x)a2(x) . . . an(x) . . . (favouring the one that ends in
zeros), thus creating a countable set

{
an : n ∈ N

}
of points in the Tychonoff

cube [0, 1](0,1), whose closure is the required space. Čech developed what we now
call the Čech-Stone compactification, denoted βX, of completely regular spaces
and showed that βN, where N is the discrete space of the natural numbers, has no
convergent sequences.

A natural question is whether one has to go to such great lengths to construct
a compact Hausdorff space without convergent sequences. This then is Efimov’s
problem, raised in [10].

Efimov’s problem. Does every infinite compact Hausdorff space contain either a 397 ?
non-trivial convergent sequence or else a copy of βN?

It should be noted that Efimov raised his problem not in the context sketched
above but as part of a program to determine when Čech-Stone compactifications
of discrete spaces were embeddable in certain compact Hausdorff spaces.
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For the rest of this note all convergent sequences will be assumed to be non-
trivial, so that adjective will not be used. Basic information about βN may be
found in [8].

1. Attacking the problem

Efimov’s problem may of course be cast in the form of an implication: If a
compact Hausdorff space does not contain any convergent sequences must it then
contain a copy of βN?

Let us consider an infinite compact Hausdorff space X that does not contain any
convergent sequences. As any infinite Hausdorff space, it does contain an infinite
relatively discrete subspace; we take a countably infinite subset of that subspace and
identify it with N. The sequence 〈n〉n does not converge, so we can take two distinct
accumulation points, x0 and x1, of N. Take neighbourhoods U0 and U1 of x0 and x1

respectively with disjoint closures and put A0 = U0 ∩N and A1 = U1 ∩N. Thus we
find that in an infinite compact Hausdorff space without convergent sequences every
countably infinite discrete subset has two infinite subsets with disjoint closures. To
get a copy of βN one should construct an infinite discrete subset with the property
that any two disjoint subsets have disjoint closures. To appreciate how difficult this
may be we continue our construction.

We have our two disjoint subsets of N with disjoint closures. We iterate the
procedure above and determine, recursively, a family {As : s ∈ <ω2}, where <ω2 is
the binary tree of finite sequences of zeros and ones, that satisfies

• if s ⊆ t then At ⊆ As, and
• cl As∗0 ∩ cl As∗1 = ∅.

Using this family one defines, for every point x in the Cantor set ω2, a closed set
Fx =

⋂
n cl Ax�n. By construction the (nonempty) closed sets Fx are disjoint and

we see that the cardinality of X must be at least c. In fact, with some care one can
arrange matters so that

• F =
⋃

x Fx is closed, and
• mapping the points of Fx to x gives a continuous map from F onto ω2.

Using the Tietze-Urysohn theorem one can employ this map to obtain a continuous
surjection from X onto the unit interval I or even the Hilbert cube ωI. As we
will see below what is needed is a continuous map onto the Tychonoff cube cI;
however, näıvely, the Hilbert cube is best possible. Though the construction above
can be continued for (at least) ω1 many steps to show that N has at least 2ℵ1 many
accumulation points, the examples below show that it will not necessarily yield a
map onto the next cube ω1I.

To get a copy of βN inside X more is needed, as Efimov himself established in [10]
when he characterized the spaces that do contain such a copy. On the one hand the
space βN admits a continuous map onto the Cantor cube c2 and thence onto the
Tychonoff cube cI; the Tietze-Urysohn theorem may then be applied to produce a
continuous map from the ambient space onto this cube. On the other hand assume
that X maps onto cI. Since the cube contains a copy of βN, a standard argument
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produces a closed subset F of X and an irreducible map from F onto βN. Because
βN is extremally disconnected this map is a homeomorphism.

It follows that the following statements about a compact Hausdorff X are equiv-
alent:

(1) X contains a copy of βN,
(2) X maps onto cI,
(3) some closed subset of X maps onto c2, and
(4) there is a dyadic system

{
〈Fα,0, Fα,1〉 : α < c

}
of closed sets in X.

The dyadic system satisfies, by definition,
• Fα,0 ∩ Fα,1 = ∅ for all α, and
•

⋂
α∈dom p Fα,p(α) 6= ∅, whenever p is a finite partial function from c to 2.

To deduce 4 from 3 simply set Fα,i = f←
(
π←α (i)

)
, where f is the map onto c2

and πα is the projection onto the αth coordinate. Conversely, this same formula
implicitly defines a continuous map from

⋂
α<c(Fα,0 ∪ Fα,1) onto c2.

In [18] Shapirovskĭı added another condition to this list: there is a closed set F
such that πχ(x, F ) ≥ c for all points of F . Here πχ(x, F ) is the π-character of x
(in F ): the minimum cardinality of a family U of non-empty open sets such that
every neighbourhood of x contains an elements of U (the elements of U need not
be neighbourhoods of x).

2. Counterexamples

There are several consistent counterexamples to Efimov’s problem. This of course
precludes an unqualified positive answer and leaves us with two possibilities: a real,
ZFC, counterexample or the consistency of a positive answer.

Here is a list of the better-known counterexamples.
(1) For every natural number n there is a compact Hausdorff space Xn with

the property that every infinite closed subset has covering dimension n. As
both the convergent sequence and βN are zero-dimensional neither can be
a subspace of Xn. This example was constructed by Fedorčuk in [11] using
the Continuum Hypothesis (CH).

(2) Another example, this time with the aid of ♦, was constructed by Fedorčuk
in [12]. The space is a compact S-space of size 2c without convergent
sequences. As βN is not hereditarily separable it cannot be embedded into
this space.

(3) Yet another counterexample was constructed by Fedorčuk in [13] using a
principle he called the Partition Hypothesis. In present day terms this is
the conjunction of s = ℵ1 and 2ℵ0 = 2ℵ1 . Here s is the splitting number, the
minimum cardinality of a splitting family, that is, a family S of subsets of N
such that for every infinite subset A of N there is S ∈ S such that both A∩S
and A \S are infinite. Fedorčuk’s principle holds in the Cohen model. The
title of [13] makes it completely clear why this is a counterexample to
Efimov’s question: no convergent sequences and the space is simply too
small to contain βN.
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(4) In [6] Dow weakened Fedorčuk’s hypothesis substantially, at the cost of
a more elaborate construction, to the conjunction of cf

(
[s]ℵ0 ,⊂

)
= s and

2s < 2c. The former equality says that there are s many countable subsets
of s so that each countable subset of s is contained in one of them.

All four counterexamples arise as limits of suitable inverse systems, where at each
stage some or all convergent sequences are dealt with. In the first two constructions
the CH allows one to do some (clever) bookkeeping so that every potential conver-
gent sequence in the limit is dealt with at some intermediate stage. In the third
and fourth example the inverse system is ω1 long but at every stage all convergent
sequences in the space constructed that far are dealt with; the cofinality assumption
on s enables one to do this by splitting just s objects. The final space then has at
most 2s points, so that the power assumption prevents βN from being a subspace.

A simpler version of the third space was given by van Douwen and Fleissner in [5]
using 2ℵ0 = 2ℵ1 plus a version of s = ℵ1 for the Cantor set ω2: there should be a
family {Uα : α < ω1} of open sets such that for every convergent sequence s there
is an α for which s ∩ Uα and s \ cl Uα are infinite. This example is indeed simpler
than the others: after copying the sets Uα to each cube β2 (where ω ≤ β < ω1)
one can simply write down a formula for the example, as a subspace of the Cantor
cube ω12. Indeed, choose, for each β ≥ ω, a homeomorphism hβ : ω2 → β2 and, for
all α, put Uβ,α = hβ [Uα]. Furthermore let b : ω1 × ω1 → ω1 be a bijection with the
property that b(α, β) = γ implies β ≤ γ. Now the space X is the subspace of ω12
consisting of those points x that satisfy

x
(
b(α, β)

)
= 0 implies x � β ∈ cl Uβ,α

and
x
(
b(α, β)

)
= 1 implies x � β ∈ cl Vβ,α

where Vβ,α = β2 \ cl Uβ,α.

3. Is there still a problem?

The condition cf
(
[s]ℵ0 ,⊂

)
= s in used in Dow’s example is quite weak; indeed, if

it were false an inner model with a measurable cardinal would have to exist. This
is explained in [16]: if there is any cardinal κ of uncountable cofinality for which
cf

(
[κ]ℵ0 ,⊂

)
> κ then the Covering Lemma fails badly: not just for L but for any

inner model that satisfies the Generalized Continuum Hypothesis.
One might therefore be tempted to conclude that Efimov’s problem is all but

solved, especially in the absence of large cardinals. However, that completely disre-
gards the necessary inequality 2s < 2c; without it the guarantee that the example
does not contain βN is gone. We are thus lead to consider situations where 2s = 2c,
or even s = c. The best-known of these is of course when Martin’s Axiom (MA)
holds and, indeed, it is not (yet) known what the effect of MA+¬CH (or even PFA)
is on Efimov’s problem.

Question 1. Does MA + ¬CH (or PFA) imply that a compact Hausdorff space? 398
without convergent sequences contains a copy of βN?
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As noted above, this is equivalent to asking whether such a space admits a
continuous map onto cI. Also, as shown below, under MA every countable and
discrete subset of a compact Hausdorff space without convergent sequences has
2c accumulation points. As such a space does admit a continuous map onto ωI
and considering the adage “MA makes cardinals below c countable”, it may be
worthwhile to investigate the following weaker question first.

Question 2. Does MA + ¬CH (or PFA) imply that a compact Hausdorff space 399 ?
without convergent sequences maps onto ω1I or even onto each cube κI for κ < c?

In case Question 1 has a positive answer it becomes of interest how much of MA
is actually needed. The equalities s = c and t = c seem to suggest themselves as
possible candidates; the former by the rôle of 2s < 2c in the examples of Fedorčuk
and Dow and the latter by the fact, shown below, that a countable discrete set in a
compact Hausdorff space without convergent sequences has at least 2t accumulation
points. The meaning of t will be explained below.

In the CH-type constructions mentioned in Section 2, where one deals with one
convergent sequence at a time, the preferred thing to do is to blow up the limit to
a larger set, every point of which will be an accumulation point of the sequence.
The most frugal thing to do would be to split the limit into just two points. This is
called a simple extension and an inverse limit construction where at each step one
performs a simple extension never leads to a space that can be mapped onto ω1I
unless the initial space in the system already does so. In Boolean algebraic form
this result is due to Koppelberg [17]; in [6] one finds a topological proof and the
following question. The definition of ‘simple extension’ in [6] does not mention the
two-point limitation but it is used in the proof.

Question 3. Is it consistent that every such simple inverse limit contains a con- 400 ?
vergent sequence? Does PFA imply this?

The jump from a convergent sequence to βN is a large one. The construction in
Section 1 suggests that the following question, raised by Hušek in [14], may have a
positive answer.

Question 4. Does every compact Hausdorff space contain either a convergent se- 401 ?
quence of length ω or one of length ω1?

A (non-trivial) convergent sequence of length α in a space X, where α is some
(limit) ordinal is an injective map x : α + 1 → X such that every neighbourhood
of x(α) contains {x(γ) : β ≤ γ < α} for some β < α.

This question is intimately related to Efimov’s problem: it was shown in [3] (and
announced in [19]) that βN contains a ‘truly’ non-trivial convergent sequence of
length ω1: there is a convergent sequence x : ω1 + 1 → βN such that x(ω1) /∈
cl{x(γ) : γ < β} for all β < ω1.

Hušek’s question has an affirmative answer under CH, see [14]; Fedorčuk’s S-
space is a counterexample to the stronger version, with a ‘truly’ non-trivial ω1-
sequence.
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4. Larger cardinals

In [10] Efimov considered the general problem of characterizing when a space
contains a copy of βκ, where κ is any infinite cardinal with the discrete topology.
The characterization of embeddability of βN given by Efimov as discussed in Sec-
tion 1 remains valid in the general situation, as does Shapirovskĭı’s characterization
of being able to map a space onto a Tychonoff cube of a given weight.

Many generalizations of Efimov’s problem suggest themselves but they will never
be as succinct as the original question. Given an uncountable cardinal κ an auda-
cious question would be: Does every compact Hausdorff space contain either the
Alexandroff (one-point) compactification ακ of κ or a copy of βκ?

This would also be a foolish question: an arbitrary compact Hausdorff space
need not contain a relatively discrete subset of cardinality κ. A better question
would therefore be

Question 5. Does every large enough compact Hausdorff space contain either the? 402
Alexandroff compactification ακ of κ or else a copy of βκ?

This of course begs the question what ‘large enough’ should mean. Therefore one
should first investigate for what class of spaces Question 5 actually makes sense.
The answer will have to involve some kind of structural description of ‘large enough’
because for every cardinal κ the ordinal space κ + 1 contains neither αω1 nor βω1,
so that size alone does not seem to matter.

Efimov’s question is a structural question in disguise: if a compact Hausdorff
space does not contain a convergent sequence then can one find a dyadic system
of cardinality c? One may disregard the structural part and concentrate on the
cardinality part only to get a weaker version of Efimov’s question:

Question 6. If in a compact Hausdorff space every countable and discrete set has? 403
more than one accumulation point must there be such a set with 2c accumulation
points?

The näıve construction from Section 1 shows that one always gets at least 2ℵ1

accumulation points and, näıve though it may be, it does show that the answer
to this question is positive under MA: one gets a family {Fs : s ∈ <c2} of closed
sets indexed by the complete complete binary tree of height c and such that always
Fs∗0 ∩ Fs∗1 = ∅; in this way one obtains a pairwise disjoint family {Fx : x ∈ c2}
of nonempty closed sets, all contained in the derived set of the initial countable
and discrete set. To be precise, the construction can be continued all the way up
to the cardinal t, which is, by definition, the minimum cardinal κ for which there
is a sequence 〈Aα : α < κ〉 of infinite subsets of N such that Aα ⊂∗ Aβ whenever
β < α but for which no infinite set A exists with A ⊂∗ Aα for all α. This shows,
as promised above, that the discrete set has at least 2t accumulation points.

One cannot simply copy Question 6 to larger cardinals: if α is a compact ordinal
space and D a (discrete) subset of uncountable size κ then D has κ many accu-
mulation points. However, we can build the partial result on Question 6 into its
translation. The strongest version that we get is the following.
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Question 7. Let κ be an infinite cardinal. For what compact Hausdorff spaces X ? 404
is the following implication valid? If |Dd| > κ for all discrete subsets of size κ then
|Dd| ≥ 22κ

for some discrete subset of size κ.

Here Dd denotes the set of accumulation points of D. Various (weaker) versions
of this question can be obtained by inserting |Dd| ≥ λ in the antecedent and
|Dd| ≥ µ into its consequent for cardinals λ and µ that satisfy κ < λ < µ ≤ 22κ

.
A related notion was defined by Arkhangel′skĭı in [2]: denote by g(X) the supre-

mum of cardinalities of closures of discrete subsets of the space X; Arkhangel′skĭı
asked whether g(X) = |X| for compact Hausdorff spaces. The following question
combines this with a sup = max problem.

Question 8. When does a compact Hausdorff space X have a discrete subset D 405 ?
such that |cl D| = |X|?

Efimov [9] showed that this is true for dyadic spaces (provided every inaccessible
cardinal is strongly inaccessible); in [7] Dow shows that relatively small (cardinality
at most ℵω) compact Hausdorff spaces of countable tightness do have such discrete
subsets and also gives some consistent examples of compact Hausdorff spaces X of
cardinality ℵ2 with g(X) ≤ ℵ1; and in [15] Juhász and Szentmiklóssy showed that
the GCH implies that every compact Hausdorff space of countable tightness has a
discrete subset whose closure is as large as the space itself.

Acknowledgement. Thanks to Alan Dow for his help in improving some of the
questions raised in this note.
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