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c-20 Function Spaces

Given topological spaces X and Y we use C(X,Y ) to de-
note the set of all continuous maps from X to Y . One can
define various topologies on C(X,Y ) – one can always take
the discrete and indiscrete topologies – but for a workable
theory of function spaces there should be some relation with
the given topologies on X and Y .

1. Desirable topologies

One approach starts with the set Y X of all maps from X
to Y and the observation that there is a natural bijection bet-
ween Y X×Z and (Y X )Z : to f : X × Z → Y associate the map
Λ( f ) : Z → Y X , defined by

Λ( f )(z)(x) = f (x, z).

The best one can hope for is that Λ induces a bijection bet-
ween C(X × Z ,Y ) and C(Z ,C(X,Y )). This problem splits
naturally into two subproblems and hence into two definiti-
ons.

A topology on C(X,Y ) is said to be proper [E] or split-
ting [2] if for every space Z the map Λ maps C(X ×

Z ,Y ) into C(Z ,C(X,Y )). If, conversely, Λ−1 always maps
C(Z ,C(X,Y )) into C(X × Z ,Y ) then the topology is called
admissible [E], jointly continuous [Ke, N] or conjoining
[2]. A topology that has both properties is called acceptable
[E].

Every topology weaker than a proper topology is again
proper and every topology stronger than an admissible to-
pology is again admissible. Every proper topology is weaker
than every admissible topology, hence there can be only one
acceptable topology.

Also, a topology on C(X,Y ) is admissible iff it makes
the evaluation map ( f, x) 7→ f (x) from C(X,Y ) × X to Y
continuous. Furthermore, the join of all proper topologies
is proper, hence there is always a largest proper topology
on C(X,Y ).

2. The topology of pointwise convergence

The topology of pointwise convergence τp is simply the
subspace topology that C(X,Y ) receives from the product
topology on Y X . The name comes from the fact that a
net ( fα)α∈D converges with respect to τp iff it conver-
ges pointwise. In keeping with the other articles on this
topology, we write C p(X,Y ) to indicate that we use τp .
This topology is proper but in general not admissible: g ∈

C(Z ,C p(X,Y )) means that Λ−1(g) is separately conti-
nuous, whereas Λ−1(g) ∈ C(X × Z ,Y ) means that it is
jointly continuous.

3. The topology of uniform convergence

If Y is a metric space or, more generally, a uniform space
then one can define on C(X,Y ) the topology of uniform
convergence τu , which can be defined by stipulating that a
net of functions converges with respect to τu iff it converges
uniformly, i.e., in the metric case fα → f iff for every ε > 0
there is an α such that d( fβ(x), f (x)) < ε whenever β > α
and x ∈ X . In the case of a uniform space this becomes: for
every entourage U there is an α such that ( fβ(x), f (x)) ∈ U
whenever β > α and x ∈ X . A local base at f is given by
sets of the form B( f,U ) = {g: ( f (x), g(x)) ∈ U for all x},
where U runs through the family of entourages.

This topology is admissible but in general not proper:
Consider f :R × R → R defined by f (x, y) = xy; the map
Λ( f ) :R → Cu(R,R) is not continuous.

4. The compact-open topology

The previous topologies are, in general, not acceptable. This
is, to some extent, to be expected as neither depends on the
topology of X (though the set C(X,Y ) does depend on X ).
The compact-open topology τc does depend on the topolo-
gies of both X and Y . It is defined by specifying a subbase:
we take all sets of the form

[K , O] =
{

f : f [K ] ⊆ O
}

where K runs through the compact subsets of X and O
through the open sets of Y . We write Cc(X,Y ) to indicate
that C(X,Y ) carries the compact-open topology.

The compact-open topology is always proper; it is ad-
missible and hence acceptable if X is locally compact and
Hausdorff. Local compactness is the crucial property as one
can show that C(Q,R) carries no acceptable topology and,
stronger, if X is completely regular and C(X,R) carries an
acceptable topology then X is locally compact.

5. Properties and relations

Any property that is productive and hereditary is transfer-
red from Y to C p(X,Y ), this includes the separation axioms
up to and including complete regularity. The same holds for
Cc(X,Y ); this follows because τp ⊆ τc (for properties below
regularity) but requires extra proof for the other properties.

If X is discrete then C(X,Y ) = Y X , and τp and τc coin-
cide with the product topology; this shows that normality
and stronger properties in general do not carry over.
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In case Y is a metric (or uniform) space then τc may also
be described as the topology of uniform convergence on
compact subsets: for every f the sets of the form

B( f, K , ε) =
{
g: (∀x ∈ K )

(
d
(

f (x), g(x)
)
< ε

)}
where K is compact in X and ε > 0 form a local base for τc
at f (with obvious modifications in case of a uniform space).
In particular, if X is compact the compact-open topology and
the topology of uniform convergence coincide.

One obtains a local base also if K runs through a cofinal
family of compact sets. This means that, if Y is a metric
space, τc is a first-countable topology if X is hemicom-
pact, which means that there is a countable cofinal family
of compact sets; in fact τc is even metrizable. In general the
character of τc is the product of the cofinality of the family
of compact sets of X and the weight of the uniform space Y .

The compact-open topology makes C(X,R) into a topo-
logical group; this group is complete in its natural unifor-
mity iff the space X is a kR-space.

6. Compactness in function spaces

Compactness is a very useful property and it is desira-
ble to have characterizations of compactness for subsets
of C(X,Y ). The classical Arzèla–Ascoli Theorem states
that a subset F of C([0,1],R) has a compact closure with
respect to τu if it is equicontinuous and bounded. This theo-
rem admits various generalizations.

If Y is a uniform space we define a subset F of C(X,Y ) to
be equicontinuous if for every entourage U and every x ∈ X
there is one neighbourhood O of x such that ( f (x), f (y)) ∈

U for all f ∈ F and y ∈ O . Then, if X is a k-space a closed
subset F of Cc(X,Y ) is compact iff it is equicontinuous and
for each x the set { f (x): f ∈ F} has compact closure.

A similar result holds for regular Y ; one has to replace
equicontinuity by even continuity, where a subset F of
Cc(X,Y ) is evenly continuous if for every x ∈ X , every
y ∈ Y and every neighbourhood V of y there are neighbour-
hoods U and W of x and y respectively such that for every f
the implication f (x) ∈ W H⇒ f [U ] ⊆ W holds.

As noted above, if Y is metrizable and X is hemi-
compact then Cc(X,Y ) is metrizable. To define a metric
one takes a bounded metric d on Y and a cofinal family
{Kn : n ∈ N} of compact sets in X . For each n the formula
dn( f, g) = sup{d( f (x), g(x)): x ∈ Kn} defines a pseudo-
metric in C(X,Y ). The sum ρ =

∑
n 2−ndn is a metric

on C(X,Y ) that induces the compact-open topology. This
shows that the metric topology on the set H(U ) of holo-
morphic functions on a domain U that one encounters in
complex function theory is the compact-open topology. Thus
the Arzèla–Ascoli theorem provides an inroad to Montel’s
theorem on normal families of analytic functions.

7. The Stone–Weierstrass Theorem

The familiar Stone–Weierstrass Theorem states that for a
compact space X every subring of C(X,R) that contains all
constant functions and separates the points of X is dense
with respect to the topology of uniform convergence.

This theorem characterizes compactness among the com-
pletely regular spaces: if X is not compact then take a point x
in X and a point z in β X \ X ; the subring { f : β f (z) = f (x)}
of C(X,R) is not dense, though it satisfies the conditions in
the Stone–Weierstrass Theorem.

There is also a version of this theorem for general spaces:
any subring as in the Stone Weierstrass theorem is always
dense in Cc(X,R).

8. More topologies

There are many more ways to introduce topologies in
C(X,Y ), we mention two.

Variations on the compact-open topology
Given spaces X and Y one can first specify families K and
O of subsets of X and Y respectively and then simply decree
that {

[K , O]: K ∈K, O ∈O
}

be a subbase for a topology on C(X,Y ). The compact-open
topology arises when K is the family of compact subsets
of X and O the topology of Y ; changing K to the finite sub-
sets of X then yields the topology of pointwise convergence.

Hyperspace topologies
If Y is Hausdorff then the graph of every continuous map
from X to Y is a closed subset of X × Y , so C(X,Y ) is in a
natural way a subset of the hyperspace 2X×Y . Thus, any hy-
perspace topology immediately gives rise to a function space
topology.

The volume [1] contains systematic studies of the some-
what bewildering array of topologies obtained in this way.
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