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d-16 Remainders

In full generality a remainder of a space X is a space of
the form Y \ X , where Y is an extension of X , i.e., a space
containing (a homeomorphic copy of) X . Normally the ex-
tension comes from a class of nice spaces, e.g., compact
Hausdorff or completely metrizable and we assume that X is
dense in the extension.

1. Remainders in compactifications

In this section we consider remainders in compactifications,
so we assume X is completely regular and we consider com-
pact Hausdorff extensions. In this case the remainders of X
are the spaces γ X \ X where γ X runs through the family
of compactifications of X . Every remainder is the image of
X∗

= β X \ X (the Čech–Stone remainder) under a per-
fect map – to wit the restriction of the natural map from β X
onto γ X . Unfortunately the converse is not true in general.
It is true if X is locally compact, this is generally known as
Magill’s theorem (see [E, 3.5.13]) but a general characteri-
zation is still lacking.

Fundamental questions that have driven the research in
this area through the years are: what are the properties of X∗,
what are the remainders of specific X , what spaces have
‘nice’ remainders?

The first question is too ambitious as “every space is a
remainder”; indeed, given Y put

X =
(
(ω1 + 1) × βY

)
\

(
{ω1} × Y

)
,

then Y = X∗. Therefore one should modify it with “as a
function of X”. Observe that the space X just constructed
is pseudocompact; this is why one looks for general results
on X∗ in classes that do not contain pseudocompact spaces.
A first such result is that if X is not pseudocompact then
X∗ contains a copy of N∗, which tells us something about
the size of X∗ – at least 2c – and its structure – at least as
complicated as N∗.

This also implies that, for non-pseudocompact X at least,
recognizing the remainders of X is at least as hard as recog-
nizing those of N. In the article on βN and βR in this vo-
lume Parovičenko’s theorem is quoted, which says that un-
der CH the continuous images of N∗, and hence the remain-
ders of N, are precisely the compact spaces of weight c = ℵ1.
In ZFC alone one has to work harder. Thus far the follo-
wing have been shown to be remainders of N: all compact
spaces of weight ℵ1, all separable compact spaces, all per-
fectly normal compact spaces and certain products of spa-
ces from these classes. If f : X → Y is a perfect surjection
then β f −1

[Y ∗
] = X∗ (and conversely); in this case every

remainder of Y is also a remainder of X . Therefore, if X

is the sum of countably many compact spaces then every
remainder of N is a remainder of X . This fact may also be
used to see that, for example, [0,∞) and Rn (where n > 2)
share the same remainders: the map x 7→ ‖x‖ is perfect
from Rn to [0,∞) and there is also a perfect ‘space-filling
curve’ from [0,∞) onto Rn . The remainder R∗ is not con-
nected so the remainders of R form a larger family than those
of [0,∞).

For locally compact spaces Wallman–Shanin compacti-
fications offer a way to recognizing shared remainders: if
B is a Wallman base for the locally compact space X and
w(X,B) is the associated compactification then the remain-
der w(X,B) \ X is the Wallman representation of the quo-
tient lattice of B by the following equivalence relation:
“every element of B contained in A M B is compact”.

There are various other results on shared remainders but
no general pattern has emerged. By way of example we men-
tion that Q, P and S share no remainders: all remainders of Q
are topologically complete, all remainders of P are of first
category and all remainders of S are Baire spaces but not
complete.

Discrete spaces offer an intriguing problem. It is known
that if there are distinct cardinals κ and λ with κ∗ and λ∗

homeomorphic then also ω∗ and ω∗

1 are homeomorphic. It is
still an open question whether “ω∗ and ω∗

1 are homeomorp-
hic” is consistent with ZFC.

A very useful general result on remainders is that whene-
ver X is σ -compact and locally compact (but not compact)
then the remainder X∗ is a compact F -space in which non-
empty Gδ-sets have non-empty interior. This immediately
implies that such X∗ are not homogeneous; in fact if X is
not pseudocompact then X∗ is never homogeneous.

2. Nice remainders

Another line of investigation is to start with a class of ‘nice’
spaces and to see which spaces have compactifications with
a remainder from that class.

Locally compact spaces, and only those, are the spaces
that have finite remainders. Demanding that all remainders
of a space be finite brings us back to pseudocompactness
again. The statement |X∗

| = n translates into: of every n + 1
mutually completely separated closed sets at least one must
be compact. If |X∗

| = 1 then X is called almost compact.
One of the first results on nice remainders is Zippin’s the-

orem that a separable metric space has a compactification
with a countable remainder (in short: it is a CCR space)
iff it is both Čech-complete and rim-compact. Freudenthal
showed that a separable metric space has a compactification
with a zero-dimensional remainder (in short: it is a 0-space)
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iff it is rim-compact. Both proofs provide implications in
the class of completely regular spaces: all CCR spaces are
Čech-complete and rim-compact, and all rim-compact spa-
ces are 0-spaces (although rim-compact spaces needs not
have strongly zero-dimensional remainders).

These implications are, in general, not reversible: there
are 0-spaces that are not rim-compact and the product of
the space of irrationals with an uncountable discrete space is
completely metrizable and zero-dimensional but not a CCR
space. There have been attempts to characterize CCR spaces
and 0-spaces in terms of the set R(X) of points without com-
pact neighbourhoods. Adding separability of R(X) to the ne-
cessary conditions of Čech-completeness and rim-compact-
ness yields a characterization of CCR spaces among metri-
zable spaces. For general spaces adding the assumption that
R(X) is the continuous image of a separable metric space
(a cosmic space) ensures that X is a CCR space. However,
intrinsic properties alone of R(X) will not provide the de-
finitive answer as there are two Čech-complete, even zero-
dimensional, spaces X and Y , with both R(X) and R(Y )
discrete and uncountable, yet X is a CCR space but Y is not.

For 0-spaces some conditions on R(X) suffice to ensure
rim-compactness: local compactness plus zero-dimension-
ality or scatteredness. On the other hand there are spaces
X and Y with R(X) and R(Y ) homeomorphic to the space
of irrationals of which X has a totally disconnected remain-
der but is not a 0-space and Y is a 0-space that is not rim-
compact. Thus, again, a complete solution in terms of R(X)
seems unlikely.

Freudenthal’s proof provides, for rim-compact spaces,
a canonical construction of a compactification with zero-
dimensional remainder, the Freudenthal compactification.
The Freudenthal compactification is the unique perfect
compactification with zero-dimensional remainder and it
is also the minimum perfect compactification. A compacti-
fication αX is perfect if cl Fr O = Fr Ex O for all open sub-
sets of X . This is equivalent to saying that the natural map
from β X onto αX is monotone. In general X has a minimum
perfect compactification µX iff it has some compactification
with a punctiform remainder and in that case µX is also the
maximum compactification with punctiform remainder.

A particularly interesting family is formed by what are
commonly referred to as Ψ -spaces. These are built by taking
a set X and an almost disjoint familyA consisting of counta-
bly infinite sets. The space Ψ (X,A) has X ∪A as its under-
lying set, the points of X are isolated and for A ∈A a typical
basic neighbourhood is of the form {A} ∪ A \ F for some fi-
nite set F . Thus, the set A becomes a converging sequence
with limit A. We concentrate on the case where X = ω and
A is a maximal almost disjoint (MAD) family; we abbreviate
Ψ (ω,A) by Ψ (A). The space Ψ (A) is pseudocompact and
locally compact. Every compact metric space is the Čech–
Stone remainder of some Ψ (A). This implies that there are

Ψ (A) with infinite covering dimension as well as almost
compact Ψ (A). The Continuum Hypothesis implies that the
families of all remainders of N and of all Ψ (A)∗ coincide.
It is consistent, however, that there is an A for which some
continuous image of Ψ (A)∗ is not of the form Ψ (B)∗ for
any B.

3. Dimension

An interesting line of research was opened by de Groot when
he asked for an internal characterization of the minimum di-
mension of remainders in compactifications. This number is
called the compactness defect or compactness deficiency
of the space: def X = min{dim Y \ X : Y is a compactifica-
tion of X}. The problem is usually studied in the class of
separable metric spaces, so it does not matter what dimen-
sion function is used.

The compactness degree is defined just like the small in-
ductive dimension: cmp X 6 n + 1 if for every point x and
every open O 3 x there is an open U with x ∈ U ⊆ clU ⊆ O
and cmp FrU 6 n, the starting point however is not the
empty set but the class of compact spaces: cmp X = −1
means that X is compact. De Groot proved cmp X = def X
for values up to 0 and cmp X 6 def X for all (separable me-
tric) spaces. In 1982 R. Pol disproved de Groot’s conjecture
cmp = def with an example of a space X with cmp X = 1
and def X = 2. Since then more examples appeared to show
that the gap may be arbitarily large and that Cmp X (defined
like the large inductive dimension) does not characterize
def X either. In 1988 T. Kimura showed that an invariant due
to Skljarenko does characterize def X . One has def X 6 n iff
X has a base B such that whenever B′ is an n + 1-element
subfamily of B the intersection

⋂
B∈B′ Fr B is compact.
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