d-18 The Čech–Stone Compactifications of $\mathbb N$ and $\mathbb R$

It is safe to say that among the **Čech–Stone compactifica***tions* of individual spaces, that of the space \mathbb{N} of natural numbers is the most widely studied. A good candidate for second place is $\beta \mathbb{R}$. This article highlights some of the most striking properties of both compactifications.

1. Description of $\beta \mathbb{N}$ and \mathbb{N}^*

The space $\beta \mathbb{N}$ (aka $\beta \omega$) appeared anonymously in [10] as an example of a *compact Hausdorff* space without non-trivial converging sequences. The construction went as follows: for every $x \in (0, 1)$ let $0.a_1(x)a_2(x) \dots a_n(x) \dots$ be its dyadic expansion (favouring the one that ends in zeros). This gives us a countable set $A = \{a_n(x) : n \in \mathbb{N}\}$ of points in the *Ty-chonoff cube* $[0, 1]^{(0,1)}$. The closure of A is the required space. To see that this closure is indeed $\beta \mathbb{N}$ one checks that the map $n \mapsto a_n$ induces a homeomorphism of $\beta \mathbb{N}$ onto cl A. Indeed, it suffices to observe that whenever X is a coinfinite subset of \mathbb{N} one has $a_n(x) = 1$ iff $n \in X$, where $x = \sum_{n \in X} 2^{-n}$.

The present-day description of $\beta \mathbb{N}$ is as the *Stone space* of the *Boolean algebra* $\mathcal{P}(\mathbb{N})$. Thus the underlying set of $\beta \mathbb{N}$ is the set of all *ultrafilters* on \mathbb{N} with the family $\{\overline{X}: X \subseteq \mathbb{N}\}$ as a base for the open sets, where \overline{X} denotes the set of all ultrafilters of which X is an element. The space $\beta \mathbb{N}$ is a *separable* and *extremally disconnected* compact Hausdorff space and its cardinality is the maximum possible, i.e., 2^c.

Most of the research on $\beta \mathbb{N}$ concentrates on its *remainder* $\beta \mathbb{N} \setminus \mathbb{N}$, which, as usual, is denoted \mathbb{N}^* . By extension one writes $X^* = \overline{X} \setminus \mathbb{N}$ for subsets X of \mathbb{N} . The family $\mathcal{B} = \{X^*: X \subseteq \mathbb{N}\}$ is precisely the family of *clopen* sets of \mathbb{N}^* . Because $X^* \subseteq Y^*$ iff $X \setminus Y$ is finite the algebra \mathcal{B} is isomorphic to the quotient algebra $\mathcal{P}(\mathbb{N})/fin$ of $\mathcal{P}(\mathbb{N})$ by the ideal of finite sets – hence \mathbb{N}^* is the Stone space of $\mathcal{P}(\mathbb{N})/fin$. Much topological information about \mathbb{N}^* comes from knowledge of the combinatorial properties of this algebra. In practice one works in $\mathcal{P}(\mathbb{N})$ with all relations taken modulo finite. We use, e.g., $X \subseteq^* Y$ to denote that $X \setminus Y$ is finite, $X \subset^* Y$ to denote that $X \subseteq^* Y$ but not $Y \subseteq^* X$, and so on. In this context the word 'almost' is mostly used in place of 'modulo finite', thus 'A and B are almost disjoint' means $A \cap B =^* \emptyset$.

2. Basic properties of \mathbb{N}^*

Many results about \mathbb{N}^* are found by constructing special families of subsets of \mathbb{N} , although the actual work is often done on a suitable countable set different from \mathbb{N} .

The proof that $\beta \mathbb{N}$ has cardinality $2^{\mathfrak{c}}$ employs an **in**dependent family, which we define on the countable set $\{\langle n, s \rangle: n \in \mathbb{N}, s \subseteq \mathcal{P}(n)\}$. For every subset x of \mathbb{N} put $I_x = \{ \langle n, s \rangle : x \cap n \in s \}$. Now if F and G are finite disjoint subsets of $\mathcal{P}(\mathbb{N})$ then $\bigcap_{x \in F} I_x \setminus \bigcup_{y \in G} I_y$ is non-empty - this is what independent means. Sending $u \in \beta \mathbb{N}$ to the point $p_u \in \mathcal{P}(\mathbb{N})$ 2, defined by $p_u(x) = 1$ iff $I_x \in u$, gives us a continuous map from $\beta \mathbb{N}$ onto ^c2. Thus the existence of an independent family of size c easily implies the well-known fact that the *Cantor cube* ^c2 is separable; conversely, if *D* is dense in ^c2 then setting $I_{\alpha} = \{d \in D: d_{\alpha} = 0\}$ defines an independent family on D. Any closed subset F of \mathbb{N}^* such that the restriction to F of the map onto $^{c}2$ is irreducible is (homeomorphic with) the *absolute* of ^c2. If a point u of \mathbb{N}^* belongs to such an F then every compactification of the space $\mathbb{N} \cup \{u\}$ contains a copy of $\beta \mathbb{N}$.

Next we prove that \mathbb{N}^* is very non-separable by working on the tree $2^{<\mathbb{N}}$ of finite sequences of zeros and ones. For every $x \in \mathbb{N}^2$ let $A_x = \{x \mid n : n \in \mathbb{N}\}$. Then $\{A_x : x \in \mathbb{N}^2\}$ is an **almost disjoint family** of cardinality c and so $\{A_x^* : x \in \mathbb{N}^2\}$ is a disjoint family of clopen sets in \mathbb{N}^* .

We can use this family also to show that \mathbb{N}^* is not extremally disconnected. Let Q denote the points in \mathbb{N}^2 that are constant on a tail (these correspond to the endpoints of the *Cantor set* in [0, 1]) and let $P = \mathbb{N}^2 \setminus Q$. Then $O_Q = \bigcup_{x \in Q} A_x^*$ and $O_P = \bigcup_{x \in P} A_x^*$ are disjoint open sets in \mathbb{N}^* , yet cl $O_Q \cap$ cl $O_P \neq \emptyset$, for if A is such that $A_x \subseteq^* A$ for all $x \in P$ then the *Baire Category Theorem* may be applied to find $x \in Q$ with $A_x \subseteq^* A$. This example shows that \mathbb{N}^* is not **basically disconnected**: O_Q is an open F_{σ} -set whose closure is not open.

The algebra $\mathcal{P}(\mathbb{N})/fin$ has two countable (in)completeness properties. The first states that when $\langle b_n \rangle_n$ is a decreasing sequence of non-zero elements there is an x with $b_n > x >$ 0 for all n; in topological terms: nonempty $G_{\hat{\partial}}$ -sets on \mathbb{N}^* have nonempty interiors and \mathbb{N}^* has no isolated points. The second property says that when $\langle b_n \rangle_n$ is as above and, in addition, $\langle a_n \rangle_n$ is an increasing sequence with $a_n < b_n$ for all n there is an x with $a_n < x < b_n$ for all n; in topological terms: disjoint open F_{σ} -sets in \mathbb{N}^* have disjoint closures, i.e., \mathbb{N}^* is an F-space.

We now turn to sets *A* and *B* where no interpolating *x* can be found, that is, we look for *A* and *B* such that $\bigvee A' < \bigwedge B'$ whenever $A' \in [A]^{<\omega}$ and $B' \in [B]^{<\omega}$ but for which there is no *x* with $a \leq x \leq b$ for all $a \in A$ and $b \in B$. The minimum cardinalities of sets like these are called **cardinal characteristics of the continuum** and these cardinal numbers play an important role in the study of $\beta \mathbb{N}$ and \mathbb{N}^* .

We have already seen such a situation with a countable *A* and a *B* of cardinality c: the families $\{A_x^*\}_{x \in Q}$ and $\{\mathbb{N}^* \setminus A_x^*\}_{x \in P}$. However, this case, of a countably infinite *A*, is best visualized on the countable set $\mathbb{N} \times \mathbb{N}$. For $n \in \mathbb{N}$ put $a_n = (n \times \mathbb{N})^*$ and for $f \in \mathbb{N} \mathbb{N}$ put $b_f = \{\langle m, n \rangle : n \ge f(m)\}^*$; then $A = \{a_n : n \in \mathbb{N}\}$ and $B = \{b_f : f \in \mathbb{N} \mathbb{N}\}$ are as required: if $a_n < x$ for all *n* then one readily finds an *f* such that $b_f < x$ (make sure $\{n\} \times [f(n), \infty) \subset x$). A pair like (A, B) above is called an (unfillable) **gap**; gap, because, as in a Dedekind gap, one has a < b whenever $a \in A$ and $b \in B$, and unfillable because there is no *x* such that $a \le x \le b$ for all *a* and *b*. Because unfillable gaps are the most interesting one drops the adjective and speaks of gaps.

One does not need the full set $\mathbb{N}\mathbb{N}$ to create a gap; it suffices to have a subset U such that for all $g \in \mathbb{N}\mathbb{N}$ there is $f \in U$ such that $\{n: f(n) \ge g(n)\}$ is infinite. The minimum cardinality of such a set is denoted b.

The properties of \mathfrak{b} and its bigger brother \mathfrak{d} are best explained using the relation $<^*$ on $\mathbb{N}\mathbb{N}$ where, in keeping with the notation established above, $f <^* g$ means that $\{n: f(n) \ge g(n)\}$ is finite. The definition of \mathfrak{b} given above identifies it as the minimum cardinality of an unbounded – with respect to $<^*$ – subset of $\mathbb{N}\mathbb{N}$; unbounded is not the same as dominating (cofinal), the minimum cardinality of a dominating subset is denoted \mathfrak{d} and it is called the **dominating number**.

If one identifies \mathbb{N} and $\mathbb{N} \times \mathbb{N}$, as above, then one recognizes \mathfrak{d} as the character of the closed set $F = \operatorname{cl} \bigcup_n A_n^*$ and \mathfrak{b} as the minimum number of clopen sets needed to create an open subset of $\mathbb{N}^* \setminus F$ whose closure meets *F*. In either characterization of \mathfrak{b} the defining family can be taken to be well-ordered.

In case where *A* is finite one can simplify matters by letting $A = \{0\}$. If *B* is an ultrafilter then there is no *x* with 0 < x < b for all $b \in B$, hence there are filters whose only lower bound is 0; the minimum cardinality of a base for such a filter is denoted \mathfrak{p} . Alternatively one can ask for chains without positive lower bound: the minimum length of such a chain is denoted \mathfrak{t} – it is called the **tower number**. A defining family for the cardinal \mathfrak{t} can be used to create a separable, normal, and sequentially compact spaces that is not compact.

When we let *A* become uncountable we encounter two important types of objects of cardinality \aleph_1 : Hausdorff gaps and Lusin families. A **Hausdorff gap** [5] is a pair of sequences $A = \langle a_\alpha : \alpha < \omega_1 \rangle$ and $B = \langle b_\alpha : \alpha < \omega_1 \rangle$ of elements such that $a_\alpha < a_\beta < b_\beta < b_\alpha$ whenever $\alpha < \beta$ but for which there is no *x* with $a_\alpha < x < b_\alpha$ for all α . A **Lusin family** [7] is an almost disjoint family \mathcal{A} of cardinality \aleph_1 such that no two uncountable and disjoint subfamilies of \mathcal{A} can be separated, i.e., if \mathcal{B} and \mathcal{C} are disjoint and uncountable then there is no set *X* such that $B \subseteq^* X$ and $X \cap C =^* \emptyset$ for all $B \in \mathcal{B}$ and $C \in \mathcal{C}$. One can parametrize the *F*-space property: an F_{κ} -space is one in which disjoint open sets that are the union of fewer than κ many closed sets have disjoint closures. The two families above show that \mathbb{N}^* is not an F_{\aleph_2} -space. By the Axiom of Choice every almost disjoint family can be extended to a **Maximal Almost Disjoint family** (a **MAD family**). If \mathcal{A} is a MAD family then $\mathbb{N}^* \setminus \bigcup \{A^*: A \in \mathcal{A}\}$ is *nowhere dense* and every nowhere dense set is contained in such a 'canonical' nowhere dense set. The minimum number of nowhere dense sets whose union is dense in \mathbb{N}^* is denoted \mathfrak{h} and is called the **weak Novák number**. It is equal to the minimum number of MAD families without a common MAD refinement – in Boolean terms, it is the minimum κ for which $\mathcal{P}(\mathbb{N})/fin$ is *not* (κ, ∞) -**distributive**.

Interestingly [1], one can find a sequence $\langle A_{\alpha} : \alpha < \mathfrak{h} \rangle$ of MAD families, without common refinement and such that (1) \mathcal{A}_{β} refines \mathcal{A}_{α} whenever $\alpha < \beta$; (2) if $A \in \mathcal{A}_{\alpha}$ then $\{B \in \mathcal{A}_{\alpha+1} : B \subseteq^* A\}$ has cardinality c; and (3) the family $\mathcal{T} = \bigcup_{\alpha} \mathcal{A}_{\alpha}$ is dense in $\mathcal{P}(\mathbb{N})/fin$ – topologically: $\{A^* : A \in \mathcal{T}\}$ is a π -base. This all implies that, with hindsight, there is an increasing sequence of closed nowhere dense sets of length \mathfrak{h} whose union is dense and that \mathfrak{h} is a regular cardinal; also note that \mathcal{T} is a *tree* under the ordering \supset^* .

One can use such a tree, of minimal height, in inductive constructions, e.g., as in [2] to show that \mathbb{N}^* is very non-extremally disconnected: every point is a **c-point**, which means that one can find a family of **c** many disjoint open sets each of which has the point in its closure. An important open problem, at the time of writing, is whether this can be proved for *every* nowhere dense set, i.e., if for every nowhere dense subset of \mathbb{N}^* one can find a family of **c** disjoint open sets each of which has this set in its boundary – in short, whether every nowhere dense set is a **c-set**.

The latter problem is equivalent to a purely combinatorial one on MAD families: for every MAD family \mathcal{A} the family $\mathcal{I}^+(\mathcal{A})$ should have an **almost disjoint refinement**. Here $\mathcal{I}(\mathcal{A})$ is the ideal generated by \mathcal{A} and $\mathcal{I}^+(\mathcal{A}) = \mathcal{P}(\mathbb{N}) \setminus \mathcal{I}(\mathcal{A})$; an **almost disjoint refinement** of a family \mathcal{B} is an indexed almost disjoint family $\{A_B : B \in \mathcal{B}\}$ with $A_B \subseteq^* B$ for all B. Another characterization asks for enough (on even one) MAD families of true cardinality \mathfrak{c} , i.e., if $X \in \mathcal{I}^+(\mathcal{A})$ then $X \cap A \neq^* \emptyset$ for \mathfrak{c} many members of \mathcal{A} . If the minimum size of a MAD family, denoted \mathfrak{a} , is equal to \mathfrak{c} then this is clearly the case, however there are various models with $\mathfrak{a} < \mathfrak{c}$.

3. Homogeneity

Given that the algebra $\mathcal{P}(\mathbb{N})/fin$ is homogeneous it is somewhat of a surprise to learn that the space \mathbb{N}^* is not a **homogeneous space**, i.e., there are two points *x* and *y* for which there is no autohomeomorphism *h* of \mathbb{N}^* with h(x) = y.

The first example of this phenomenon is from [9]: the *Continuum Hypothesis* (CH) implies that \mathbb{N}^* has *P*-points; a *P*-point is one for which the family of neighbourhoods is closed under countable intersections. Clearly \mathbb{N}^* has non-*P*-points (as does every infinite compact space), so CH implies \mathbb{N}^* is not homogeneous. To construct *P*-points one does not need the full force of CH, the equality $\mathfrak{d} = \mathfrak{c}$ suffices.

In [4] one finds a proof of the non-homogeneity of \mathbb{N}^* that avoids CH; it uses the **Rudin–Frolík order** on \mathbb{N}^* , which is defined by: $u \sqsubset v$ iff there is an embedding $f : \beta \mathbb{N} \to \mathbb{N}^*$ such that f(u) = v. If $u \sqsubset v$ then there is no autohomeomorphism of \mathbb{N}^* that maps u to v. This proof works to show that no compact *F*-space is homogeneous: if *X* is such a space then one can embed $\beta \mathbb{N}$ into it, no autohomeomorphism of *X* can map (the copy of) u to (the copy of) v.

That this proof avoiding CH was really necessary became clear when the consistency of " \mathbb{N}^* has no *P*-points" was proved. In [6] the *P*-point proof was salvaged partially: \mathbb{N}^* has **weak** *P*-**point**s, i.e., points that are not accumulation points of any countable subset.

Though not all points of \mathbb{N}^* are *P*-points one may still try to cover \mathbb{N}^* by nowhere dense *P*-sets. Under CH this cannot be done but it is consistent that it can be done. The principle NCF implies that \mathbb{N}^* is the union of a chain, of length ∂ , of nowhere dense *P*-sets. The principle NCF (**Near Coherence of Filters**) says that any two ultrafilters on \mathbb{N} are **nearly coherent**, i.e., if $u, v \in \mathbb{N}^*$ then there is a finite-toone $f: \mathbb{N} \to \mathbb{N}$ such that $\beta f(u) = \beta f(v)$.

This in turn implies that the **Rudin–Keisler order** is downward directed; we say $u \prec v$ if there is some $f : \mathbb{N} \to \mathbb{N}$ such that u = f(v). This is a preorder on $\beta\mathbb{N}$ and a partial order on the **types** of $\beta\mathbb{N}$: if $u \prec v$ and $v \prec u$ then there is a permutation of \mathbb{N} that send u to v. The Rudin–Frolík and Rudin–Keisler orders are related: $u \sqsubset v$ implies $u \prec v$, so \sqsubset is a partial order on the types as well.

Both orders have been studied extensively; we mention some of the more salient results. There are \Box -minimal points in \mathbb{N}^* : weak *P*-points are such. Points that are \prec minimal in \mathbb{N}^* are called **selective ultrafilters**; they exist if CH holds but they do not exist in the *random real* model. There are \prec -incomparable points (even a family of 2^c many \prec -incomparable points) but it is not known whether for every point there is another point \prec -incomparable to it. The order \Box is tree-like: types below a fixed type are linearly ordered.

4. The continuum hypothesis and $\beta \mathbb{N}$

The behaviour of $\beta\mathbb{N}$ and, especially, \mathbb{N}^* under the assumption of the Continuum Hypothesis (CH) is very well understood. The principal reason is that the Boolean algebra $\mathcal{P}(\mathbb{N})/fin$ is characterized by the properties of being atomless, countably saturated and of cardinality $\mathfrak{c} = \aleph_1$. Topologically, \mathbb{N}^* is, up to homeomorphism, the unique compact zero-dimensional without isolated points, which is an *F*-space in which nonempty G_{δ} -sets have non-empty interior and which is of weight \mathfrak{c} . This is known as Parovičenko's characterization of \mathbb{N}^* and it implies that whenever *X* is compact zero-dimensional and of weight \mathfrak{c} (or less) the remainder ($\mathbb{N} \times X$)* is homeomorphic to \mathbb{N}^* . This provides us with many incarnations of \mathbb{N}^* , e.g., as ($\mathbb{N} \times c^2$)*, which immediately provides us with $2^{\mathfrak{c}}$ many autohomeomorphisms of \mathbb{N}^* , or as ($\mathbb{N} \times (\omega + 1)$)*, which gives us a

Parovičenko's 'other theorem' states that every compact space of weight \aleph_1 (or less) is a continuous image of \mathbb{N}^* , whence under CH the space \mathbb{N}^* is a universal compactum of weight c, in the mapping onto sense.

Virtually everything known about \mathbb{N}^* under CH follows from Parovičenko's theorems. To give the flavour we show that a compact zero-dimensional space can be embedded into \mathbb{N}^* if (and clearly only if) it is an *F*-space of weight c (or less). Indeed, let *X* be such a space and take a *P*-set *A* in \mathbb{N}^* that is homeomorphic to \mathbb{N}^* and a continuous onto map $f: A \to X$. This induces an upper-semi-continuous decomposition of \mathbb{N}^* whose quotient space, the *adjunction space* $\mathbb{N}^* \cup_f X$, can be shown to have all the properties that characterize \mathbb{N}^* , hence it is \mathbb{N}^* and we have embedded *X* into \mathbb{N}^* , even as a *P*-set.

In the absence of CH very few of the consequences of Parovičenko's theorems remain true. The characterization theorem is in fact equivalent to CH and for many concrete spaces, like $\mathbb{N}^* \times \mathbb{N}^*$, \mathbb{R}^* , $(\mathbb{N} \times (\omega + 1))^*$ and the Stone space of the *measure algebra* it is *not* a theorem of ZFC that they are continuous images of \mathbb{N}^* . It is also consistent with ZFC that all autohomeomorphisms of \mathbb{N}^* are **trivial**, i.e., induced by bijections between cofinite sets. This is a far cry from the 2^c autohomeomorphisms that we got from CH. It is also consistent that \mathbb{N}^* cannot be homeomorphic to a nowhere dense *P*-subset of itself; this leaves open a major question: is there a non-trivial copy of \mathbb{N}^* in itself, i.e., one not of the form cl $D \setminus D$ for some countable discrete subset of \mathbb{N}^* .

A good place to start exploring $\beta \mathbb{N}$ is van Mill's survey [KV, Chapter 11].

5. Cardinal numbers

The cardinal numbers mentioned above are all uncountable and not larger than c, so the Continuum Hypothesis (CH) implies that all are equal to \aleph_1 . More generally, *Martin's Axiom* implies all are equal to c. One can prove certain inequalities between the characteristics, e.g., $\aleph_1 \leq \mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{h} \leq \mathfrak{b} \leq$ \mathfrak{d} . Intriguingly it is as yet unknown whether $\mathfrak{p} = \mathfrak{t}$ is provable, what is known is that $\mathfrak{p} = \aleph_1$ implies $\mathfrak{t} = \aleph_1$.

One proves $b \leq a$ but neither $a \leq d$ nor $d \leq a$ is provable in ZFC.

Two more characteristics have received a fair amount of attention, the **splitting number** \mathfrak{s} is the minimum cardinality of a splitting family, that is, a family S such that for every infinite X there is $S \in S$ with $X \cap S$ and $X \setminus S$ infinite; and its dual, the **reaping number** \mathfrak{r} , which is the minimum cardinality of a family that cannot be reaped (or split), that is, a family \mathcal{R} such that for every infinite X there is $R \in \mathcal{R}$ such that one of $X \cap R$ and $X \setminus R$ is not infinite.

Topologically \mathfrak{s} is the minimum κ for which $\kappa 2$ is not *sequentially compact* and \mathfrak{r} is equal to the minimum π -*character* of points in \mathbb{N}^* .

Further inequalities between these characteristics are, e.g., $\mathfrak{h} \leqslant \mathfrak{s} \leqslant \mathfrak{d}$ and $\mathfrak{b} \leqslant \mathfrak{r}$.

These 'small' cardinals are the subject of ongoing research; good introductions are [KV, Chapter 3] and [vMR, Chapter 11].

6. Properties of $\beta \mathbb{R}$

Instead of $\beta \mathbb{R}$ one usually considers $\beta \mathbb{H}$, where \mathbb{H} is the positive half line $[0, \infty)$. This is because $x \mapsto -x$ induces an autohomeomorphism of $\beta \mathbb{R}$ that shows that $\beta[0, \infty)$ and $\beta(-\infty, 0]$ are the same thing.

In a sense $\beta \mathbb{H}$ looks like $\beta \mathbb{N}$ in that it is a thin locally compact space with a large compact lump at the end; this remainder \mathbb{H}^* has some properties in common with \mathbb{N}^* : both are *F*-spaces in which nonempty G_{δ} -sets have nonempty interior, both have tree π -bases and neither is an F_{\otimes_2} -space. Under CH the spaces \mathbb{H}^* and \mathbb{N}^* have homeomorphic dense sets of *P*-points. That is where the superficial similarities end because $\beta \mathbb{H}$ and \mathbb{H}^* are connected and $\beta \mathbb{N}$ and \mathbb{N}^* most certainly are not.

A deeper similarity is a version of Parovičenko's universality theorem: every continuum of weight \aleph_1 (or less) is a continuous image of \mathbb{H}^* , so that, under CH, the space \mathbb{H}^* is a universal continuum of weight c. A version of Parovičenko's characterization theorem for \mathbb{H}^* is yet to be found.

The structure of \mathbb{H}^* as-a-continuum is very interesting. Most references for what follows can be found in [HvM, Chapter 9].

The following construction is crucial for our understanding of the structure of the continuum \mathbb{H}^* : take a discrete sequence $\langle [a_n, b_n] \rangle_n$ of non-trivial closed intervals and an ultrafilter *u* on \mathbb{N} . The intersection

$$I = \bigcap_{U \in u} \operatorname{cl}\left(\bigcup_{n \in U} [a_n, b_n]\right)$$

is a continuum, often called a **standard subcontinuum** of \mathbb{H}^* . What is striking about this construction is not its simplicity but that these (deceptively) simple continua govern the continuum-theoretic properties of \mathbb{H}^* . Every proper subcontinuum (in particular every point) is contained in a standard subcontinuum – it is in fact the intersection of some family of standard subcontinua. From this one shows that \mathbb{H}^* is hereditarily *unicoherent* – every finite intersection of standard subcontinua is a standard subcontinuum or a point – and *indecomposable* – standard subcontinua are nowhere dense.

From the other direction every subcontinuum is also the union of a suitable family of standard subcontinua. Thus, no subcontinuum of \mathbb{H}^* is hereditarily indecomposable, as standard subcontinua have *cut points*. Indeed, I_u contains the ultraproduct $\prod_n [a_n, b_n]/u$, as a dense set: the equivalence class of a sequence $\langle x_n \rangle_n$ corresponds to its own *u*-limit, denoted x_u . The subspace topology of this ultraproduct coincides with its *order topology* and every point of the ultraproduct (except a_u and b_u) is a cut point of I_u and so a **weak**

cut point (i.e., cut point of some subcontinuum) of \mathbb{H}^* . Although the continuum I_u is an **irreducible continuum**, i.e., no smaller continuum contains its *end point*s a_u and b_u , it is definitely not an ordered continuum. It is an F-space so the closure of an increasing sequence of points in the ultraproduct is homeomorphic to $\beta \mathbb{N}$ (in an ordered continuum it would have to be $\omega + 1$). The 'supremum' of such a sequence of points in I_u is an irreducibility layer of I_u ; this layer is non-trivial (it contains \mathbb{N}^*) and indecomposable. Adding all these facts together we can deduce that a maximal chain of indecomposable subcontinua of \mathbb{H}^* has a one-point intersection; such a point is not a weak cut point of \mathbb{H}^* . Thus \mathbb{H}^* is shown to be not homogeneous by purely continuumtheoretic means. There is a natural quasi-order on an irreducible continuum: in the present case $x \leq y$ means "every continuum that contains a_u and y also contains x". An irreducibility layer is an equivalence class for the equivalence relation " $x \leq y$ and $y \leq x$ ".

The weak cut points constructed above are *near points* and, in fact, every near point is a weak cut point of \mathbb{H}^* . Under CH one can construct different kinds of weak cut points: *far* but not *remote* and even remote. Under CH it is also possible to map a remote weak cut point to a near point by an autohomeomorphism of \mathbb{H}^* . On the other hand it is consistent that all weak cut points are near points and hence that the far points are topologically invariant in \mathbb{H}^* . A similar consistency result for remote points is still wanting.

The *composant* of a point x of \mathbb{H}^* meets \mathbb{N}^* in the ultrafilter $\{U: x \in cl \bigcup_{n \in U} [n, n + 1]\}$ and two points from \mathbb{N}^* are in the same composant of \mathbb{H}^* iff they are nearly coherent. Therefore, the structure of the set of composants of \mathbb{H}^* is determined by the family of finite-to-one maps of \mathbb{N} to itself. This implies that the number of composants may be 2^c (e.g., if CH holds), 1 (this is equivalent to the NCF principle) or 2 (in other models of set theory); whether other numbers are possible is unknown.

The number of (homeomorphism types of) subcontinua of \mathbb{H}^* is as yet a function of Set Theory: in ZFC one can establish the lower bound of 14. Under CH there are \aleph_1 types even though in one respect CH act as an equalizer: CH is equivalent to the statement that all standard subcontinua are mutually homeomorphic. Most of the ZFC continua are found as intervals in an I_u with points and non-trivial layers at their ends and with varying cofinalities.

References

- B. Balcar, J. Pelant and P. Simon, *The space of ultrafilters on* N *covered by nowhere dense sets*, Fund. Math. **110** (1980), 11–24.
- [2] B. Balcar and P. Vojtáš, Almost disjoint refinement of families of subsets of N, Proc. Amer. Math. Soc. 79 (1980), 465–470.
- [3] W.W. Comfort and S. Negrepontis, *The Theory of Ul-trafilters*, Grundlehren Math. Wiss. Einzeldarstellungen, Band 211, Springer, Berlin (1974).

- [4] Z. Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87–91.
- [5] F. Hausdorff, Summen von ℵ1 Mengen, Fund. Math. 26 (1936), 241–255.
- [6] K. Kunen, Weak P-points in N*, Topology, Vol. II, Proc. Fourth Colloq., Budapest, 1978, Á. Császár, ed., North-Holland, Amsterdam (1980), 741–749.
- [7] N.N. Luzin, *O chastyakh natural'nogo ryada*, Izv. Akad. Nauk SSSR. Ser. Mat. **11** (1947), 403–410.
- [8] I.I. Parovičenko, A universal bicompact of weight ℵ, Soviet Math. Dokl. 4 (1963), 592–595, Russian orig-

inal: *Ob odnom universal'nom bikompakte vesa* ℵ, Dokl. Akad. Nauk SSSR **150** (1963), 36–39.

- [9] W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409–419, 633.
- [10] A. Tychonoff, *Über einen Funktionenraum*, Math. Ann. **111** (1935), 762–766.

Alan Dow and Klaas Pieter Hart Charlotte, NC, USA and Delft, The Netherlands