
d-23 Special constructions 229

d-23 Special Constructions

General Topology is rife with examples; the article on Spe-
cial spaces contains a selection of spaces that ‘every young
topologist should know’. Many of the articles in this volume
describe or refer to further examples, some specific to a pro-
blem and others of general use. The present article describes
some techniques for constructing spaces that have become
part of the topologist’s standard toolkit.

1. Spaces of maximal systems

A versatile and oft-used method for constructing topological
spaces is by means of maximal systems. Various instances of
this method can be found in other articles in the volume, we
mention the Stone space of a Boolean algebra and the Wall-
man representation of a distributive lattice. Both have as
points the maximal filters on the structure. For an element a
of the structure let a+ denote the set of all maximal filters
that contain a, i.e., a+ = {x : a ∈ x}; the family of all a+ is
used as a subbase for the closed sets of the space, in the ca-
ses of lattices (and hence Boolean algebras) one even obtains
a base.

The Stone space
The Stone duality between Boolean algebras and compact
zero-dimensional spaces provides a rich source of objects on
either side, with neither side the clear winner. The measure
algebra gives us a compact ccc non-separable space courtesy
of this duality.

Various compactifications of N have been constructed by
constructing suitable subalgebras of P(N), see [KV, Chap-
ter 11] for Bell’s compactification γ N of N with γ N \N ccc
non-separable and [14] for more examples.

One way of defining the absolute (or Gleason space) of
a topological space X is by way of the Stone space of the
algebra of regular open sets. The absolute E X is the set
of converging ultrafilters and the natural map πX : E X →
X simply assigns the limit to each ultrafilter. See [12] for a
thorough treatment of this subject.

Cliques in graphs and hypergraphs
The Stone space of a Boolean algebra B can in a natural way
be identified with a subspace of the Cantor cube {0,1}B ; in-
deed, the ultrafilter x corresponds to the associated homo-
morphism ϕx : B→ {0,1}, defined by ϕx (a) = 1 iff a ∈ x .
The subspace topology corresponds to the Stone space topo-
logy.

This idea can be used for other structures as well; we con-
sider one very successful instance, that of cliques in graphs
and hypergraphs.

A graph consists of a set V of points and a subset E
of [V ]2, called the edges. A clique is a subset C of V such
that [C]2 ⊆ E . One immediately obtains the space of maxi-
mal cliques, as the points x of 2V for which x←(1) is a maxi-
mal clique. This space is zero-dimensional but not necessa-
rily compact; its properties are, however, intimately connec-
ted with the partial order of finite cliques.

In [10] one finds a construction, using CH, of a two com-
plementary graphs E1 and E2 on ω1 such that the spaces of
maximal cliques satisfy the ccc, but their product does not.
The ccc translates into the following statement: whenever F
is an uncountable family of finite cliques there are F, G ∈F
such that F ∪ G is a clique as well. Because the graphs
are complementary the basic clopen sets {(x, y): x(α) =

y(α)= 1} in the product are disjoint.
The space of all cliques (plus the empty set) is compact

[1] and it has been used to produce a first-countable compact
space that is not a continuous image of N∗ (the graph is a
Cohen-generic subset of ω2).

Whether a set is a clique depends on its finite subsets.
A family of sets with this property has been called an ade-
quate family: a family A of subsets of a set V is adequate if
every singleton belongs to it, it is closed under taking subsets
and A ∈A iff every finite subset of A belongs toA. Such fa-
milies have been used to construct various interesting com-
pact spaces, see [13] and [KV, Chapter 23] for applications
to the theory of Banach spaces.

Maximal threads in complexes
It is possible to put a compact topology on the family of
maximal elements of an adequate family; this was done
in [16] and is more in the spirit of the Stone representa-
tion: given a set V , an abstract complex is a family K of
finite subsets of V such that t ∈ K and s ⊆ t always imp-
lies s ∈ K . A thread in the complex is a subset W of V with
[V ]<ℵ0 ⊆ K (so the set of threads is an adequate family).
The set of all maximal threads can be topologized by using
the family S = {v+: v ∈ V } as a subbase for the closed sets,
where v+ denotes the set of maximal threads that contain v.
The resulting space is compact and T1 (not necessarily Haus-
dorff) and every compact T1-space can be obtained in this
way (see the article on Wallman–Shanin compactification in
this volume).

In case V is a graph and K is the family of all finite cliques
this yields a compact T1 topology on the set of all maximal
cliques; in fact this topology is supercompact: the natural
subbase S is a binary subbase, for a family {v+: v ∈ W } is
linked iff W is a clique. See Topological Characterizations
of Spaces for an application.
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The Hull–Kernel topology
Given a ring R let MR denote the set of its maximal ideals.
The hull-kernel topology is defined by specifying a closure
operator, thus: if I is a set of maximal ideals then its closure
is defined to be {m ∈ M :

⋂
I ⊆m}, the ‘hull’ of the ‘kernel’.

When applied to the ring C(X) of real-valued continuous
functions on the completely regular space X one obtains the
Čech–Stone compactification of X .

2. Recursive constructions

Lots of examples have been constructed by recursion. The
basic idea is to construct a topology on a well-ordered set X
by specifying neighbourhoods at each point, using the neigh-
bourhoods of the points that come before in the well-order.
We mention some well-known examples.

Ostaszewski’s space
This is a perfectly normal countably compact noncompact
space. The underlying set is ω1 with its natural order; the
main ingredients in the construction are an enumeration of
[ω1]

ℵ0 = {Aα: α a limit} (with Aα ⊆ α) and a ♣-sequence
{Bα: α a limit} – this construction is under the assumption
of the ♦-principle. We define a topology τα on α, such that
(β, τβ) is an open subspace of (α, τα) whenever β < α.

When α is a limit we first let τα be the direct limit to-
pology of the topologies τβ with β < α, i.e., O ∈ τα iff
O ∩ β ∈ τβ for all β < α. Then we consider Aα and Bα ; the
latter set is closed and discrete in α. If Aα has an accumula-
tion point in α we ignore it; otherwise we enumerate Aα∪Bα

(in a one-to-one fashion) as {xn : n ∈N}. Find a disjoint clo-
pen cover {Cn : n ∈ N} of α such that xn ∈ Cn for all n. Fi-
nally then write N as a disjoint union

⋃
i Di of infinite sets

such that each Di has infinitely many n with xn ∈ Aα and
with xn ∈ Bα . Finally then a local base at α + i consists of
the sets {α + i}∪

⋃
{Cn : n ∈ Di , n > m} (m ∈N).

One checks that cl Bα = Bα ∪ [α,ω1) for all α, that every
countably infinite subset has an accumulation point and that
every set α is open. This gives us the desired properties of
the space. In the course of the construction one should verify
that (α, τα) is always metrizable and, if one starts in the right
way, locally compact; this will enable one to keep going.
Observe that the ♣-principle also implies that the resulting
space is hereditarily separable and hence an S-space.

Kunen’s line
This is an S-space topology on the real line. Its construction
is like the previous one, but using a bit of the structure of R.
The main ingredient is an enumeration {Aα: α < ω1} of the
family of countably infinite subsets of R and an enumeration
{xα: α < ω1} of R itself – this construction works under CH.
With the aid of the metric structure one can now recursively
define local bases at xα so that the following holds in the
end: if β < α, Aβ ⊆ {xγ : γ < α} and xα ∈ clR Aβ then xα ∈

cl Aβ .

This makes the resulting space hereditarily separable: if
A ⊆ R then A ⊆ clR Aα for some α and then Aα ∪ (A ∩
{xβ : β < α}) is dense in A.

Van Douwen’s line
This is a topology on the real line that is constructed much
like in the previous example but in ZFC only. The main in-
gredient now is a listing {〈Kα,n : n ∈N〉: α < c} of all sequen-
ces of countable subsets of R with

⋂
n clR Kα,n uncounta-

ble. As above, the construction is set up to retain this pro-
perty and to make the topology locally compact and locally
countable. The resulting space is normal, countably para-
compact, separable but not paracompact and not heredita-
rily normal. This idea has proved very versatile; van Dou-
wen’s [5] contains many more applications and offers a good
introduction to this method.

3. Resolutions

A totally different type of construction is the resolution,
which is a way of replacing each point in a space by a copy
of some other space, possibly a different one for each point.
This is done as follows. We are given a space X , and for each
x ∈ X a space Yx and a continuous map fx : X \ {x} → Yx .
The resolution of X (at each x , into Yx , by fx ) is the set
R(X,Yx , fx )=

⋃
x∈X {x} × Yx .

To define the topology we define for each pair (U, V ),
where U is open in X and V is open in Yx for some x ∈U ,
the set

U ⊗ V = {x} × V

∪

⋃{
{x ′} × Yx ′ : x ′ ∈U ∩ f −1

x [V ]
}
.

The family of all such sets is a base for a topology
on R(X,Yx , fx ), the resolution topology; we usually sup-
press mention of the spaces Yx and the maps fx and
write R(X) for the resolution. Generally the space X is assu-
med to be completely regular and the spaces Yx are assumed
to be compact.

The natural map π : R(X)→ X (we shall call this a reso-
lution too) is continuous and closed (if each Yx is compact),
and for each x the map y 7→ (x, y) is an embedding of Yx
into R(X), so R(X) is indeed obtained by replacing each x
with Yx . When all spaces involved are compact Hausdorff
then so is the resolution (and conversely). The familiar sin 1

x -
curve is a resolution: one takes X = [0,1], Y0 = [−1,1] and
f0(y)= sin 1

y , and for x > 0 simply Yx = {x} and fx (y)= x .
The resolution process enables one to do this at all points
of [0,1] at once: just take Yx = [−1,1] and fx (y)= sin 1

y−x
for all x . The resulting space is a first-countable chainable
continuum, whose small inductive dimension is two.

If each Yx is compact, then the resolution map π : R(X)→
X is a fully closed map (also called a strongly closed map);
a map f : X→ Y is fully closed if for every y ∈ Y and every
finite open cover U of f −1(y) the set {y} ∪

⋃
{ f #
[U ]: U ∈
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U} is open, where f #
[U ] denotes the small image, i.e., the

set {z: f −1(z)⊆U } = Y \ f [X \U ].
A fully closed surjection f : X → Y between compact

Hausdorff spaces is almost a resolution. The added requi-
rement comes from considering, for every y ∈ Y the decom-
position {{x}: f (x) = y} ∪ { f −1(z): z 6= y} of X and the
quotient space Y y (this is Y with just y replaced by f −1(y)).
If f is fully closed and if for every y the fibre f −1(y) is a
retract of Y y then f is a resolution map. This operation may
also be used to characterize fully closed maps themselves:
a perfect map f : X→ Y with regular domain is fully closed
iff every Y y is regular.

Fully closed maps almost preserve covering dimension
between domain and range. If f : X → Y is a fully closed
map between normal spaces then

dim Y 6 dim X + 1

and

dim X 6 max{dim Y,dim f },

where

dim f = sup
{
dim f −1(y): y ∈ Y

}
.

The inductive dimensions of resolutions can be made high
by using so-called ring maps: a surjective map f : X→ Y is
a ring map at y ∈ Y if for every x ∈ f −1(y) and neighbour-
hoods Ox of x and Oy of y the set Oy ∩ f #

[Ox ] contains
a partition between y and Y \ Oy ; we say f is a ring map
if it is a ring map at every point of Y . The resolution map
π : R(X)→ X is a ring map at x ∈ X iff for every y ∈ Yx
and neighbourhoods Oy of y and Ox of x the intersection
Ox ∩ f −1

x [Oy] contains a partition between x and X \ Ox .
The sin 1

x resolutions described above are ring resoluti-
ons. In raising inductive dimensions the following result is
often used. If f : X→ Y is a monotone ring map of the com-
pact space onto an n-dimensional Cantor manifold Y , where
n > 2, then every partition of X contains some fibre of f .
Thus resolving each point of [0,1]n into [0,1]n by means
of ring maps yields an n-dimensional first-countable com-
pact space without (n − 1)-dimensional partitions. To do so
fix a dense subset {dn : n ∈ N} of [0,1]n and for each x a
local base {U x

n : n ∈ N} with clU x
n+1 ⊆ U x

n ; by Urysohn’s
Lemma we can find fx : [0,1]n \ {x} → [0,1]n such that
fx [U x

n ] = {dn}. This can be iterated to produce an inverse
sequence of spaces whose limit is first-countable and n-di-
mensional but whose closed subsets are either n- or zero-
dimensional.

One can extend such constructions to inverse sequences
of length ω1; using the Diamond Principle one can then
construct compact S-spaces of cardinality 2c, higher-dimen-
sional versions of Ostaszewski’s space and perfectly normal
n-manifolds with n < dim < Ind.

It is clear from the definition that for each x the map fx
need only be defined on a neighbourhood of x . The resolu-
tion process can be generalized to replaced subsets by pro-
ducts. We are given a space X , a family {Oα}α of open sub-
sets of X and for each α a subset Gα closed in Oα and a map
fα :Oα \Gα→ Yα . For each α let Xα = X \Gα ∪Gα ×Yα ,
topologized by using all sets of the form U \ Gα ∪ (U ∩
Gα)× Yα (U open in X ) and U ∩ f −1

α [V ] ∪ (U ∩Gα)× V
(U open in X and V open in Yα) as a base for the open
sets. The obvious map πα : Xα → X is continuous; the re-
solution of X by all the maps fα is the subspace of the pro-
duct

∏
α Xα consisting of those points x for which πα(xα)=

πβ(xβ) for all α and β . This type of resolution was used to
construct a compactification that is not a Wallman–Shanin
compactification.

Resolutions were defined by Fedorchuk in [7]; a compre-
hensive introduction with many examples is given in [HvM,
Chapter 20]. Some more applications are described in the
references. The generalized resolution was introduced by
Ul’janov in [15].

4. Elementary substructures

Strictly speaking this is not a method of constructing
examples but rather a general stratagem that helps one to
avoid laborious inductive proofs and recursive constructions.
An elementary substructure (or elementary submodel) of
the universe V is a set M with the following property: if
n ∈ N, (a1, . . . ,an) ∈ Mn and ϕ is a set-theoretic formula
such that there is some x in V for which ϕ(x,a1, . . . ,an)
holds then there is a c in M for which ϕM (c,a1, . . . ,an)
holds. Here ϕM denotes the formula ϕ but with every exis-
tential quantifier ∃z replaced by ∃z ∈ M .

This notion takes some time to get used to, mainly be-
cause of its seemingly abstract nature. A helpful analogy is
that of algebraic closure: every algebraic equation with alge-
braic numbers for parameters has its solutions, if any, in the
set of algebraic numbers. If one interprets ϕ(x,a1, . . . ,an)
as an equation with parameters from M , then elementarity
says that if the equation has a solution then at least one of
these solutions is in M and the fact that it is a solution can
be checked within M . The Löwenheim–Skolem Theorem gi-
ves us a large supply of elementary substructures of V : for
every set X there is an M with X ⊆ M and |M |6 ℵ0 · |X |.
The proof of this theorem simply subsumes all inductions
and recursions that we may wish to perform. Thus once the
phrase “let M be an elementary substructure of the universe”
is uttered we have already performed the construction we
intended to perform. It takes a slightly different mindset to
work this way but the two examples below may be contrasted
with the standard proofs by recursion. Experience shows that
once one gets into this ‘elementarity mindset’ one gains a
powerful tool for discovering results and proofs that would
otherwise stay out of reach. The main new aspect here is
the interplay between the external and internal views of the
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substructure; this is something that is very hard to obtain in
‘normal’ inductive and recursive situations.

Dow’s articles [6] and [HvM, Chapter 4] are a good places
to start acquiring the mindset needed to work with elemen-
tary substructures of the universe.

Continuous functions on ω1
The well-known theorem that any continuous function
f :ω1→R is constant on a tail can easily be proved by ele-
mentarity. Simply take a countable elementary substructure
of the universe with f ∈ M . The sets ω, ω1 and R auto-
matically belong to M because they are unique solutions to
equations without any parameters at all. In fact even ω⊂ M
because each individual integer is also unique solution to
such an equation. Therefore if A ∈ M and A is countable
then A ⊂ M : there must be a solution to “x is a surjec-
tion from ω onto A” in M , but then, again by uniqueness,
x(n) ∈ M for all n. This all shows that δM = M ∩ ω1 is a
countable ordinal. Given n ∈ ω there is β < δM such that
| f (γ ) − f (δM )| < 2−n−1 for γ ∈ [β, δM ]. Let ϕ(x, β, f )
denote x ∈ [β,ω1)∧| f (x)− f (β)|> 2−n . There is no solu-
tion to ϕM (x, β, f ) in M , hence there is none to ϕ(x, β, f )
in V . Therefore | f (x) − f (β)| < 2−n for all x > β . Com-
bining this we find that f is constant on [δM ,ω1) (and, in
restrospect and by elementarity, even on [γ,ω1) for some
γ ∈ M).

Arkhangel’skiı̆’s Theorem
Consider a first-countable compact Hausdorff space X ; we
wish to show that |X | 6 c. The proof sketched in the arti-
cle Cardinal functions I is tailor-made for the elementary-
submodel approach. One takes an elementary substruc-
ture M of the universe, of cardinality c with X ∈ M and
such that all countable subsets of M are elements of M . One
proves first that X ∩M is closed in X : if x ∈ cl(X ∩M) then
x is the limit of a sequence from X ∩ M , this sequence is an
element of M and hence so is its limit, i.e., x ∈ M . Second
one proves that if y ∈ X \ M then there is a finite family O
of open sets in M that covers X ∩M but with y /∈

⋃
O – this

is possible because M must contain a countable local base at
each point of X ∩ M . But now x ∈ X \

⋃
O has no solution

in M , whereas it does have a solution in V .
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