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1. Definitions

Uniform spaces can be defined in various equivalent ways.
We shall discuss the two principal methods and show how
they are used to put uniform structures on metric spaces and
topological groups. Below the metric space referred to will
be (X,d) and the topological group will be G andN denotes
the neighbourhood filter of the neutral element e. A word on
terminology: usually the uniform structure is simply called
a uniformity – for expository purposes we use adjectives
(diagonal, covering, pseudometric) to distinguish the various
approaches.

Entourages
A diagonal uniformity on a set X is a filter U of subsets of
X × X with the following properties.

(E1) ∆ ⊆ U for all U ∈ U ;
(E2) if U ∈ U then U−1

∈ U ; and
(E3) for every U ∈ U there is V ∈ U such that V 2

⊆ U .

Here ∆ = {(x, x): x ∈ X}, the diagonal of X ; U−1
=

{(x, y): (y, x) ∈ U }, the inverse of U ; and V 2
= {(x, y):

(∃z)((x, z), (z, y) ∈ V )}, the composition of V with itself.
Each member of U is called an entourage of the diago-
nal.

For a metric space its metric uniformity is the filter ge-
nerated by the sets Ur = {(x, y): d(x, y) < r}.

For a topological group we have four natural filters. The
left uniformity Ul is the filter generated by the sets L N =

{(x, y): x−1 y ∈ N }, the right uniformity Ur is genera-
ted by the sets RN = {(x, y): yx−1

∈ N }, the two-sided
uniformity Ut generated by the sets TN = L N ∩ RN and
the fourth (nameless) uniformity Us generated by the sets
SN = L N ∪ RN .

Note that Ut is the filter generated by Ul ∪ Ur and that
Us = Ul ∩ Ur ; also observe that if G is Abelian all four filters
coincide.

A base for a uniformity U is nothing but a base for the
filter U . All the uniformities above were described by spe-
cifying bases for them. This explains why filter bases sa-
tisfying (E1)–(E3) above are sometimes called uniformity
bases.

Uniform covers
A covering uniformity on a set X is a family U of covers
with the following properties.

(C1) If A,B ∈ U then there is a C ∈ U that is a star refine-
ment of both A and B;

(C2) if a cover has a refinement that is in U then the cover
itself is in U.

These conditions say, in effect, that U is a filter in the par-
tially ordered set of all covers, where the order is by star
refinement. Each member of U is called a uniform cover.

A cover of a metric space is uniform if it is refined by
{Bd(x, r): x ∈ X} for some r > 0.

In a topological group we get, as before, four types of uni-
form covers, each one defined by the requirement of having a
refinement of the form LN = {x N : x ∈ G}, RN = {N x : x ∈

G}, TN = {x N ∩ N x : x ∈ G} or SN = {x N ∪ N x : x ∈ G},
respectively. Again, in an Abelian group, for each N , the co-
vers LN , RN , TN and SN are identical.

A subfamily B of a uniformity U is a base if every element
of U has a refinement that is in B. Any family of covers that
satisfies (C1) can serve as a base for some uniformity.

Equivalence of the approaches
From a diagonal uniformity U one defines a base for a co-
vering uniformity: all covers of the form {U [x]: x ∈ X} for
some U ∈ U .

Conversely from a covering uniformity U one defines a
base for a diagonal uniformity: all sets of the form

⋃
{A ×

A: A ∈A}, where A ∈ U.
These operations are each others inverses and establish

an order-preserving bijection between the families of both
kinds of uniformities.

Pseudometrics (Gauges)
Yet another way of introducing uniform structures is via
pseudometrics or gauges as they are often called in this con-
text.

If above, instead of a metric space, we had used a pseu-
dometric space nothing would have changed. In fact, one
can start with any family P of pseudometrics and define
Ud(r) = {(x, y): d(x, y) < r} for d ∈ P and r > 0. The re-
sulting family {Ud(r): d ∈ P, r > 0} of entourages is a sub-
base for a uniformity in that the family of finite intersecti-
ons is a base for a uniformity, denoted UP .

It is a remarkable fact that every uniformity has a subbase,
even a base, of this form. Given a sequence {Vn : n ∈ N} of
entourages on a set X such that V0 = X2 and V 3

n+1 ⊆ Vn
for all n one can find a pseudometric d on X such that
Ud(2−n) ⊆ Vn ⊆ {(x, y): d(y, x) 6 2−n

} for all n [E, 8.1.10]
(there is a similar theorem for normal sequences of covers
[E, 5.4.H]). Thus every uniform structure can be defined by a
family of pseudometrics. The family of all pseudometrics d
that satisfy (∀r > 0)(Ud(r) ∈ U) is denoted PU ; it is the lar-
gest family of pseudometrics that generate U . The family PU
satisfies the following two properties.

(P1) if d, e ∈ D then d ∨ e ∈ D;
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(P2) if e is a pseudometric and for every ε > 0 there are
d ∈ P and δ > 0 such that always d(p,q) < δ implies
e(p,q) < ε then e ∈ P .

A family P of pseudometrics with these properties is called a
pseudometric uniformity; it satisfies the equality PUP = P .

Uniform topology
Every uniform space carries a natural topology τU , its uni-
form topology. It is defined using neighbourhood bases.
Given a diagonal uniformity U one uses {U [x]: U ∈ U} for
each x , in the case of a covering uniformity U one uses
{St(x,A): A ∈ U} and a pseudometric uniformity P provi-
des {Bd(x, r): d ∈ P, r > 0}.

Alternatively one could have used a closure operator, for
in the uniform topology one has cl D =

⋂
{U [D]: U ∈ U} =⋂

{St(D,A): A ∈ U} for all subsets of X .
In general not all entourages are open, nor do all uniform

covers consist of open sets but the open entourages and the
open uniform covers do form bases for the uniform structu-
res – this implies that every uniform cover is a normal cover.
Also, if U is an entourage then clU ⊆ U 2 so that the closed
entourages form a base as well.

It is readily seen that for every pseudometric d in the fa-
mily PU and every x the map y 7→ d(x, y) is continuous
with respect to τU ; this establishes that the uniform topo-
logy is completely regular (possibly not Hausdorff). The
uniform topology is Hausdorff iff it is T0 and this is the case
if the uniformity is separated or Hausdorff, which means
that

⋂
U = ∆ or, equivalently, {x} =

⋂
{St(x,A): A ∈ U}

for all x .
The intersection ≡ =

⋂
U is an equivalence relation on

the set X and the uniformity U can be transferred to a uni-
formity Û on the set X̂ = X/≡ to yield a separated uniform
space, that to most intents and purposes is interchangeable
with (X,U).

A topological term applied to a uniform space usually
refers to a property of the uniform topology, although am-
biguity has crept in, see, e.g., the term weight below. Cer-
tain topological terms take the modifier ‘uniformly’; it usu-
ally means that one entourage works for all points simulta-
neously. A uniformly locally compact space for instance
has an entourage such that U [x] is compact for all x ; the lo-
cally compact ordinal space ω1 is locally compact but not
uniformly so.

A topological space (X,T ) is uniformizable if there is
a (compatible) uniformity on X whose uniform topology
is T . Thus, a uniformizable topological space is completely
regular; the converse is also true: associate to every real-
valued function f : X → R the pseudometric d f defined by
d f (x, y) = | f (x) − f (y)|; the resulting family of pseudo-
metrics generates a compatible uniformity.

Some natural questions
It makes topological sense to ask whether the open sets in a
space can generate a uniformity.

The property that the family of all neighbourhoods of the
diagonal forms a uniformity is called divisibility. It is a pro-
perty shared by paracompact Hausdorff spaces and genera-
lized ordered spaces and it implies collectionwise norma-
lity.

The related property that the family of all open covers is a
base for a uniformity characterizes fully normal spaces.

2. Uniform properties

When trying to generalize metric concepts to wider classes
of spaces one encounters the countability barrier: almost no
non-trivial uncountable construction preserves metrizability.
The category of uniform spaces and uniformly continuous
maps provides a convenient place to carry out these genera-
lizations.

Below we invariably let X be our uniform space, with U
its family of entourages and U the family of uniform covers.

Uniform continuity
A map f : (X,U) → (Y,V) between uniform spaces is uni-
formly continuous if ( f × f )−1

[V ] ∈ U whenever V ∈ V ,
equivalently, if { f −1

[A]: A ∈ A} ∈ U whenever A ∈ V.
A uniformly continuous map is also continuous with res-
pect to the uniform topologies and the converse is, as in the
metric case, true for compact Hausdorff spaces.

A bijection that is uniformly continuous both ways is a
uniform isomorphism. A uniform property then is a pro-
perty of uniform spaces that is preserved by uniform iso-
morphisms.

Products and subspaces
It is straightforward to define a uniform structure on a sub-
set Y of a uniform space X : simply intersect the entourages
with Y × Y (or trace the uniform covers on Y ). To define
a product uniformity one may follow the construction of
the product topology and define a subbase for it. Given a
family {(X i ,Ui )}i∈I of uniform spaces define a family of
entourages in the square of

∏
i X i using the projections πi :

{(πi × πi )
−1

[U ]: U ∈ Ui , i ∈ I }.
These constructions have the right categorical properties,

so that we obtain subobjects and products in the category
of uniform spaces and uniformly continuous maps. The uni-
form topology derived from the product and subspace uni-
formities are the product and subspace topologies derived
from the original uniform topologies, respectively.

Uniform quotients
A map q : X → Q between uniform spaces is a uniform
quotient map if it is onto and has the following universa-
lity property: whenever f : Q → Y is a map to a uniform
space Y then f is uniformly continuous if f ◦ q is. Every
uniformly continuous map f : X → Y admits a factorization
f = f0 ◦ q with q a uniform quotient map and f0 a (uni-
formly continuous) injective map.

In analogy with the topological situation one can, given a
surjection f from a uniform space X onto a set Y , define the
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quotient uniformity on Y to be the finest uniformity that
makes f uniformly continuous. The resulting map is uni-
formly quotient and all uniform quotient maps arise in this
way.

The uniform topology of a quotient uniformity is not al-
ways the quotient topology of the original uniform topology:
if X is completely regular but not normal, as witnessed by
the disjoint closed sets F and G, then identifying F to one
point results in a space which is Hausdorff but not (com-
pletely) regular, hence the quotient uniformity from the fine
uniformity (see below) does not generate the quotient topo-
logy. There is even a canonical construction that associates
to every separated uniform space X a uniform space Y with
a uniform quotient map q : X → Y and such that the uniform
topology of Y is discrete, see [6, Exercise III.3].

Uniform quotient maps behave different from topological
quotient maps in other respects as well: every product of uni-
form quotient maps is again a uniform quotient map [5].

Completeness
We say that X is complete (and U or U a complete unifor-
mity) if every Cauchy filter converges. A filter F is Cauchy
if for every V ∈ U there is F ∈F with F × F ⊆ V or, equi-
valently, if F ∩A 6= ∅ for all A ∈ U. Closed subspaces and
products of complete spaces are again complete.

Every uniform space has a completion, this is a complete
uniform space that contains a dense and uniformly isomorp-
hic copy of X . As underlying set of a completion one can
take the set X̃ of minimal Cauchy filters. Every entourage U
of U is extended to Ũ = {(F,G): (∃F ∈ F )(∃G ∈ G)(F ×

G ⊆ U )}; the family {Ũ : U ∈ U} generates a complete uni-
formity on X̃ . If x ∈ X then its neighbourhood filter Fx is a
minimal Cauchy filter and x 7→Fx is a uniform embedding.

As in the case of metric completion the completion of
a separated uniform space is unique up to uniform iso-
morphism.

Using the canonical correspondence between nets and fil-
ters (see the article on Convergence) one can define a Cau-
chy net to be a net whose associated filter is Cauchy. This
is equivalent to a definition more akin to that of a Cauchy
sequence: A net (tα)α∈D is Cauchy if for every entourage U
there is an α such that (tβ , tγ ) ∈ U whenever β,γ > α.

Total boundedness
We say X is totally bounded or precompact if for every en-
tourage U (or uniform cover A) there is a finite set F such
that U [F] = X (or St(F,A) = X ). Subspaces and products
of precompact spaces are again precompact.

A metrizable space has a compatible totally bounded me-
tric iff it is separable. A uniformizable space always has a
compatible totally bounded uniformity; indeed, for any uni-
form space (X,U) the family of all finite uniform covers is
a base for a (totally bounded) uniformity pU with the same
uniform topology, this uniformity is the precompact reflec-
tion of U .

The metric theorem that equates compactness with com-
pleteness plus total boundedness remains valid in the uni-
form setting; likewise a Tychonoff space is compact if every

compatible uniformity is complete. It is not true that a Ty-
chonoff space is compact iff every compatible uniformity is
totally bounded. The ordinal space ω1 provides a counter-
example: it is not compact and it has only one compatible
uniformity (the family of all neighbourhoods of the diago-
nal), which necessarily is totally bounded.

Uniform weight
The weight, w(X,U), is the minimum cardinality of a base.
A uniformity U can be generated by κ pseudometrics iff
w(X,U) 6 κ · ℵ0 iff the separated quotient X̂ admits a uni-
form embedding into a product of κ many (pseudo)metric
spaces (with its product uniformity). In particular: a unifor-
mity is generated by a single pseudometric iff its weight is
countable.

The uniform weight u(X) of a Tychonoff space X is the
minimum weight of a compatible uniformity. This is rela-
ted to other cardinal functions by the inequalities u(x) 6
w(X) 6 u(X) ·c(X). The first follows by considering a com-
pactification of the same weight as X , the second from the
fact that each pseudometric contributes a σ -discrete family
of open sets to a base for the open sets. The uniform weight
is related to the metrizability degree: m(X) is the mini-
mum κ such that X has an open base that is the union of
κ many discrete families, whereas u(X) is the minimum κ
such that X has an open base that is the union of κ many
discrete families of cozero sets. Thus m(X) 6 u(X); equa-
lity holds for normal spaces and is still an open problem for
Tychonoff spaces.

3. Further topics

Fine uniformities
Every family {Ui }i of uniformities has a supremum

∨
i Ui .

In terms of entourages it is generated by the family of all
finite intersections of elements of

⋃
i Ui , i.e.,

⋃
i Ui is used

as a subbase. If all the Ui are compatible with a fixed topo-
logy T then so is

∨
i Ui . This implies that every Tychonoff

space admits a finest uniformity, the fine uniformity or uni-
versal uniformity, it is the one generated by the family of
all normal covers or by the family of all pseudometrics d f
defined above. The fine uniformity is denoted U f .

One says that a uniformity U itself is fine (or a topologic-
ally fine uniformity) if it is the fine uniformity of its uniform
topology τU .

The equivalence of full normality and paracompactness
combined with the constructions of pseudometrics descri-
bed above yield various characterizations of the covers that
belong to the fine uniformity: they are the covers that have
locally finite (or σ -locally finite or σ -discrete) refinements
consisting of cozero sets. From this it follows that the pre-
compact reflection of the fine uniformity is generated by the
finite cozero covers.

Continuity versus uniform continuity
Every continuous map from a fine uniform space to a uni-
form space (or pseudometric space) is uniformly continuous;
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this property characterizes fine uniform spaces. Uniform
spaces on which every continuous real-valued function is
uniformly continuous are called UC-spaces. A metric UC-
space is also called an Atsuji space.

The precompact reflection of a fine uniformity yields a
space where all bounded continuous real-valued functions
are uniformly continuous, these are also called BU-spaces.

Compactifications
There is a one-to-one correspondence between the families
of compactifications of a Tychonoff space and the compa-
tible totally bounded uniformities. If γ X is a compactifica-
tion of X then the uniformity that X inherits from γ X is
compatible and totally bounded. Conversely, if U is a com-
patible totally bounded uniformity on X then its completion
is a compactification of X , the Samuel compactification
of (X,U). The correspondence is order-preserving: the finer
the uniformity the larger the compactification. Consequently
the compactification that corresponds to the precompact re-
flection Ufin of the fine uniformity is exactly the Čech–Stone
compactification. It also follows that a space has exactly one
compatible uniformity iff it is almost compact.

Proximities
There is also a one-to-one correspondence between the
proximities and precompact uniformities.

Indeed, a uniformity U determines a proximity δU by
A δU B iff U [A] ∩ U [B] 6= ∅ for every entourage U (int-
uitively: proximal sets have distance zero).

Conversely, a proximity δ determines a uniformity Uδ : the
family of sets X2

\ (A × B) with A 6 δ B forms a subbase
for Uδ . This uniformity is always precompact and, in fact,
UδU is the precompact reflection of U .

The Samuel compactification of (X,Uδ) is also known as
the Smirnov compactification of (X, δ).

Function spaces
Uniformities also allow one to formulate and prove theo-
rems on uniform convergence and continuity in a general
setting. Thus, given a uniform space (Y,V) and a set (or
space) X one can define various uniformities on the set Y X

of all maps from X to Y . Let A be a family of subsets of X .
For V ∈ V and A ∈A one defines the entourage E A,V to be
the set {( f, g): (∀x ∈ A)(( f (x), g(x)) ∈ V )}. The family of
sets E A,V serves as a subbase for a uniformity. The corres-
ponding uniform topology is called the topology of uniform
convergence on members of A.

If A = {X} then we obtain the topology of uniform con-
vergence: a net ( fα)α converges with respect to this topo-
logy iff it converges uniformly: fα → f uniformly if for
every V ∈ V there is an α0 such that ( fα(x), fα0(x)) ∈ V
for all x ∈ X and all α > α0. One proves that uniform li-
mits of (uniformly) continuous maps are again (uniformly)
continuous, thus freeing these theorems from the bonds of
countability.

If A is the family of finite subsets of X then one recovers
the product uniformity and the topology of pointwise con-
vergence. If X is a topological space and A is the family of

compact sets then the uniform topology, when restricted to
the set C(X,Y ) of all continuous maps, is the compact-open
topology.

The combinatorics of uniform covers
It follows from the proof of the theorem that fully normal
spaces are paracompact (see the article Paracompact spa-
ces) that every uniform cover has a locally finite open (even
cozero) refinement. The natural question whether this refi-
nement may be chosen to be a uniform cover has a nega-
tive answer [8, 10]. Indeed, the metric uniformity of the Ba-
nach space `∞(ℵ1) provides a counterexample. A more ge-
neral theorem can be formulated using some additional ter-
minology. The degree of a family A is the minimum cardi-
nal κ with the property that |B| < κ whenever B ⊆ A and⋂
B 6= ∅. The point-character of a uniform space (X,U)

is the minimum κ such that U has a base consisting of co-
vers of degree less than κ , it is denoted pc(X,U). Thus
pc(`∞(ℵ1)) > ℵ0 and, in general, pc(`∞(λ)) > κ , whene-
ver κ < λ is regular, see [8].

In a uniform space (X,U) the finite uniform covers form
a base for a uniformity, as do the countable uniform co-
vers. The corresponding statement for higher cardinals is
consistent with and independent of ZFC: for example, the
Continuum Hypothesis implies that the uniform covers of
cardinality ℵ1 (or less) form a base for a uniformity, whereas
Martin’s Axiom implies that for `∞(ℵ1) this is not the case,
see [8].

4. Completeness and completions

A Tychonoff space is Dieudonné complete or topologically
complete or completely uniformizable if it has a compati-
ble complete uniformity, equivalently, if the fine uniformity
is complete.

Paracompact spaces are Dieudonné complete, indeed if a
filter F does not converge then {X \ cl F : F ∈F} is an open
cover, which belongs to the fine uniformity, so that F is not
Cauchy.

Realcompact spaces are Dieudonné complete – the coun-
table cozero covers generate a complete uniformity Uω – and
the converse is true provided the cardinality of the space (or
better of its closed discrete subspaces) is not Ulam measu-
rable – this is Shirota’s theorem. The role of measurable
cardinals is plain from the fact that a non-trivial countably
complete ultrafilter is a Cauchy filter with respect to Uω but
not with respect to the fine uniformity, where we consider
the measurable cardinal with its discrete topology.

Many books in General Topology provide introductions
to uniform spaces; we mention Chapter 8 of [E], Chapter 7
of [3] and Chapter 15 of [4]; the latter deserves mention be-
cause it uses pseudometric exclusively. Isbell’s book [6] is
more comprehensive and spurred a lot of research in the ye-
ars after its publication.

Page’s book [7] concerns the workings of uniform spaces
in topological groups and (Functional) Analysis; the mono-
graph [9] by Roelcke and Dierolf treats topological groups
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from a uniform viewpoint; and Benyamini and Lindenst-
rauss’ [2] offers more applications in the geometry of Ba-
nach spaces.

Thanks to Miroslav Hušek and Jan Pelant for invaluable
help in preparing this note.
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[10] E.V. Ščepin, On a problem of Isbell, Soviet Math. Dokl.
16 (1975), 685–687.

[11] J.W. Tukey, Convergence and Uniformity in Topology,
Ann. of Math. Stud., Vol. 2, Princeton Univ. Press,
Princeton, NJ (1940).

[12] A. Weil, Sur les Espaces a Structure Uniforme et sur
la Topologie Générale, Actualités Scientifiques et In-
dustrielles, Vol. 551, Hermann, Éditeurs, Paris (1937),
Publications de l’Institut Mathématique de l’Université
de Strasbourg.

Klaas Pieter Hart
Delft, The Netherlands


