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j-2 Consistency Results in Topology, I:
Quotable Principles

A noteworthy feature of general topology – as contrasted
with geometry, number theory, and most other fields of ma-
thematics – is that many of its fundamental questions are
not decided by “the usual axioms of set theory”. What this
means is that if one codifies the set-theoretic assumptions
used implicitly in ordinary mathematics and consolidates
these in a list of axioms – the usual axioms of set theory
– one is left with many statements that can neither be pro-
ved nor refuted on the basis of these axioms alone. In some
sense such undecidability results are commonplace: every-
one knows that, say, the statement ϕ = (∀x)(∀y)(xy = yx)

cannot be decided by “the usual axioms of Group Theory”.
Indeed, the group of integers is a model for “Group The-
ory plus ϕ”, which makes this conjunction consistent and
ϕ non-refutable; the permutation group S3 does the same
for ¬ϕ.

A convenient list of axioms for Set Theory, one which
has become standard is “ZFC” – Zermelo–Fraenkel set the-
ory, including the Axiom of Choice. See, e.g., [Ku] for a
detailed exposition. Thus there are important topological
statements ϕ such that neither ϕ nor its negation follow
from ZFC. Establishing this is not as easy as in the case of
Group Theory. While it is easy to prove the consistency of
Group Theory by providing models (groups) for it, the same
is, by Gödel’s Second Incompleteness Theorem, in principle
impossible for ZFC (or any other useful collection of axi-
oms for set theory). Gödel’s theorem says that a consistency
proof of a theory as strong as ZFC cannot be formalized in
the theory itself. This explains why many results are formu-
lated as “if ZFC is consistent then so is ZFC plus ϕ” instead
of simply “ϕ is consistent with ZFC” and why, formally, we
should be speaking of relative consistency proofs. Even if
one is not interested in consistency results per se, it is no-
netheless prudent to be aware of them, lest one waste effort
trying to prove a proposition that has a consistent negation.

There are two ways in which consistency results in topo-
logy are obtained. The first consists of proving implications
between statements, where the antecedent is a statement pre-
viously proven consistent with ZFC. Thus, the consequent
itself is proven consistent with ZFC as well. The present ar-
ticle deals with results like these and in particular with the
best-known combinatorial principles that occur as antece-
dents. In the second kind of consistency result will be dealt
with in the companion article; here one needs an intimate
knowledge of how one actually proves (relative) consistency
results. The principal subjects in that article are forcing and
large cardinals.

1. The Continuum Hypothesis

The best-known quotable principle is undoubtedly the Con-
tinuum Hypothesis, abbreviated as CH, which states that
the real line has minimum possible cardinality, i.e., c =

|R| = 2ℵ0 = ℵ1. It was proved consistent by Gödel in [5]
(see [Ku] for a proof) but before that numerous consequen-
ces were derived from it, see, e.g., [7].

It derives its strength from the facts that so many sets have
cardinality c and the initial segments of ω1 are all countable;
this makes for relatively easy transfinite constructions. To
give the flavour we construct a Lusin set: an uncountable
subset of R that meets every nowhere dense set in a coun-
table set. It suffices to take an enumeration 〈Nα: α < ω1〉

of the family of all closed nowhere dense sets and apply
the Baire Category Theorem each time to choose lα outside⋃

β<α Nα ; then {lα: α < ω1} is the Lusin set. A similar con-
struction will yield a strongly infinite-dimensional subspace
of the Hilbert cube all of whose finite-dimensional subsets
are countable. In [KV, Chapter 8, § 4] one finds more intri-
cate constructions, involving CH, of hereditarily separable
nonLindelöf spaces (S-spaces) as well as hereditarily Lin-
delöf nonseparable spaces (L-spaces).

On occasion CH helps simply by counting: in combination
with Jones’ Lemma CH (or even its consequence 2ℵ0 < 2ℵ1 )
implies that in a separable normal space closed and dis-
crete subsets are countable and hence that separable normal
Moore spaces are metrizable. By contrast, CH implies there
is a non-metrizable normal Moore space [KV, Chapter 16].

Another counting example comes from the theory of uni-
form spaces. It is well-known that in a uniform space the
finite uniform covers generate a uniformity again as do the
countable uniform covers. The proofs can be generalized to
show that any ℵ1-sized uniform cover has a uniform star re-
finement of cardinality c. Thus, CH implies that the ℵ1-sized
uniform covers generate a uniformity. In general, the Ge-
neralized Continuum Hypothesis (GCH), which states that
for all cardinals κ one has 2κ

= κ+, implies that for every κ
the uniform covers of cardinality less than κ generate a uni-
formity.

The Continuum Hypothesis also implies that there is an
almost disjoint family of uncountable subsets of ω1 of car-
dinality 2ℵ1 or, equivalently, that the cellularity of the space
U (ω1) of uniform ultrafilters is the maximum possible 2ℵ1 .
Here ‘almost disjoint’ means that intersections are countable
and an ultrafilter u on a set X is uniform if every element
has full cardinality, i.e., |U | = |X | for all U ∈ u.

See also the article on βN and βR for other applications
of CH.
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2. Martin’s Axiom

Every consequence of CH is a potential theorem, as it can no
longer be refuted. Some consequences are in fact equivalent
to CH, e.g., the existence of the special infinite-dimensional
space above; such consequences are then automatically non-
provable because Cohen proved the consistency of the nega-
tion of CH (see the next article for an indication of the proof
and [Ku] for a full treatment). To decide other consequen-
ces one would need proofs that avoid CH or principles that
imply their negations.

Martin’s Axiom (MA) is such a principle. It can be vie-
wed as an extension of the Baire Category Theorem: it states
that if X is a compact Hausdorff space with the countable
chain condition (the ccc for short) then the union of fewer
than c many nowhere dense in X still has a dense comple-
ment. As such it is a consequence of CH but the conjunction
MA + ¬CH is also consistent.

Its original formulation, though more extensive, is ulti-
mately more useful: if P is a partially ordered set (a poset)
with the ccc andD is a family of fewer than c dense sets then
there is a filter G on P that meets all members ofD. Two ele-
ments p and q of P are compatible if there is an element r
with r 6 p,q , and incompatible otherwise. An antichain is
a set of mutually incompatible elements and “P has the ccc”
means every antichain is countable. A set D ⊆ P is a dense
set if for every p there is d ∈ D with d 6 p. Finally, a filter
on P is a subset G that satisfies: if p,q ∈ G then there is
r ∈ G with r 6 p,q , and if p ∈ G and q > p then q ∈ G .

The equivalence between the two formulations becomes
somewhat apparent when one thinks of P as representing the
open sets of the space X – a proof may be devised along
the lines of the Stone Representation Theorem of Boolean
algebras. The usefulness of the poset formulation may be
illustrated by a proof of the equality 2ℵ0 = 2ℵ1 from MA +

¬CH. We shall construct an injective map from the power
set P(ω1) of ω1 into P(N), using an almost disjoint family
{xα: α < ω1} on N. Given A ⊆ ω1 we find BA ⊆ N satisfying
“BA ∩ xα is infinite iff α ∈ A”, which makes A 7→ BA one-
to-one. For this we use a poset of approximations to BA . An
element of P is a ordered pair p = 〈Fp,bp〉, where F is a
finite subset of ω1 \ A and bp a finite subset of N. We say
p 6 q if Fp ⊇ Fq , bp ⊇ bq and bp \ bq ∩

⋃
α∈Fq

xα = ∅. We
interpret bp as an approximation of BA , with the promise
that BA ∩ xα = bp ∩ xα for α ∈ Fp . For every α ∈ ω1 \ A the
set Dα = {p: α ∈ Fp} is dense in P, as is Eα,n = {p: |bp ∩

xα| > n} for each α ∈ A and n ∈ N. To see that P has the
ccc, note that two elements with the same second coordinate
are compatible: 〈Fp ∪ Fq ,b〉 > 〈Fp,b〉, 〈Fq ,b〉. Finally then
if G is a filter that meets the dense sets above then BA =⋃

{bp: p ∈ G} is the required set.
The conjunction MA + ¬CH has often been advertised as

‘an alternative to the Continuum Hypothesis’ and indeed,
many consequences of CH become false if MA + ¬CH is as-
sumed. On the other hand, ‘small cardinals’ – those smaller
than c – behave like ℵ0 under MA, e.g., sets of reals of size

less than c are meager and of measure zero. We discuss the
consequences of CH mentioned above.

Lusin sets no longer exist as every set of reals of cardi-
nality less than c is of first category. It becomes harder to
find S- and L-spaces. Indeed, MA + ¬CH denies the exis-
tence of compact such spaces and it is even consistent with
MA + ¬CH that no S-spaces exist.

On the positive side: MA + ¬CH implies that separable
normal nonmetrizable Moore spaces exist. It also implies
that there is a uniform space with a uniform cover of cardi-
nality ℵ1 without an ℵ1-sized uniform star refinement, to wit
the subspace {x : ‖x‖ = 1 (∀α)(xα > 0)} of `∞(ℵ1) [6]. This
paper does not mention MA + ¬CH directly but the proof
needs a family A, of size ℵ2, of uncountable subsets of ω1
such that for some fixed cardinal κ 6 ℵ2 every subfamily A′

of A of size κ has a finite intersection. To make such a fa-
mily one starts with an almost disjoint family B, of size ℵ2,
of uncountable subsets of ω1 (almost disjoint means distinct
elements have a countable intersection); by repeated appli-
cation of [4, 42I] one shrinks the elements of B to produce
the desired family A (with κ = 2).

The ccc is the weakest in a line of properties, the best-
known of these are σ -centered (corresponding to separable
compact spaces) and countable (corresponding to compact
metrizable spaces). These in turn give rise to weakenings
of MA that have generated interest of their own, since they
provide the possibility of denying some of MA’s consequen-
ces while retaining others.

Martin’s Axiom for σ -centered partially ordered sets
was shown to be equivalent to the purely combinatorial sta-
tement known variously as P(c) or p = c: if F is a family, of
cardinality less than c, of subsets of N with the strong finite
intersection property, i.e., the intersection of every finite
subfamily is infinite, then there is an infinite subset A of N
with A \ F finite for all F ∈F .

Martin’s Axiom for countable partially ordered sets is
equivalent to the strong Baire Category Theorem for R: if
U is a family of fewer than c dense open sets in R then

⋂
U

is dense.
Another way to vary Martin’s Axiom is to restrict the

number of dense sets. Thus MA(ℵ1) means MA for families
of ℵ1 many dense sets. This version is strong enough to en-
sure there are no Souslin trees (see below for the definition).

Fremlin’s book [4] and Weiss’ survey [KV, Chapter 19]
are good places to start exploring the consequences and ver-
sions Martin’s Axiom.

3. The proper forcing axiom

The Proper Forcing Axiom (PFA) is a strengthening of MA,
and a considerable one at that. Its formulation is quite simi-
lar, replacing ‘ccc’ by ‘proper’ and ‘fewer than c’ by ‘ℵ1
many’. The notion of a proper partial order is more invol-
ved than that of a ccc partial order; it was developed in con-
nection with iterations of forcing, for which see part II of this
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article. Given a set X , a subset of [X ]
ℵ0 (the family of coun-

table subsets of X ) is a closed and unbounded set if it is
cofinal and closed under unions of countable chains. A sta-
tionary set is one that intersects every closed and unboun-
ded set. A proper poset preserves stationary sets, i.e., P is
proper means that for every set X and every stationary set
in [X ]

ℵ0 remains stationary in any generic extension by P –
this is not a given: [X ]

ℵ0 will most likely grow and so will
the family of closed and unbounded sets. There is a com-
binatorial characterization of properness in terms of games:
player I starts with p ∈ P and at move n chooses a maximal
antichain An in P while player II the counters by choosing
a countable subset Bn

i of Ai for each i 6 n. In the end we
look at Bi =

⋃
n>i Bn

i and declare II the winner is there is
a q 6 p such that every Bi is predense below q , i.e., every
r 6 q is compatible with an element of Bi . The partial or-
der P is proper precisely when II has a winning strategy for
this game.

From this it follows easily that ccc partial orders are pro-
per – simply take Bn

n = An and q = p – as are countably
closed partial orders: at move n II picks pn and an ∈ An
with pn 6 an (and pn 6 pn−1 when n > 1), she then plays
Bn

n = {an}. In the end there is a q below all pn by countable
closedness; this q witnesses II’s victory. The definition of
properness implies that the forcing composition (and indeed
iteration) of proper partial orders is again proper and in prac-
tice this is often how applications of PFA go. One has a can-
didate partial order for the problem at hand; this partial order
is usually not proper, but after some preparatory forcing one
can get a better version (even ccc) of the candidate. This pre-
paration is itself often countably closed, so that the compo-
sition is proper – one applies PFA to this composition. The
foregoing discussion should make clear that working with
PFA is more involved than applying MA. The results obtai-
ned from PFA are generally much stronger than those ob-
tainable from MA. Among (many) others, PFA implies: there
are no S-spaces, every compact space of countable tightness
is sequential, there are no ℵ2-Aronszajn trees. This last re-
sult implies that PFA harbours large cardinal strength, as the
nonexistence of ℵ2-Aronszajn trees implies ℵ2 is a weakly
compact cardinal in L (Gödel’s constructible universe).

As it stands PFA implies MA(ℵ1) but it actually implies
the full MA because it implies 2ℵ0 = ℵ2, see [1].

Baumgartner’s survey [KV, Chapter 21] is recommended
as a first introduction to the Proper Forcing Axiom. Even
stronger forcing axioms are coming into prominence: Mar-
tin’s Maximum [3] and Pmax [9].

4. The Diamond principle

This is the first in a range of so-called prediction princi-
ples. It is denoted by ♦ and it states that there is a sequence
〈Aα: α < ω1〉 (a ♦-sequence) of sets such that Aα ⊆ α for
all α and for every subset A of ω1 the set {α: A ∩ α = α} is
stationary. This is intended to capture the essence of Jensen’s

proof that there is a Souslin tree in Gödel’s constructible
universe L (see [Ku, VII, B9]).

For much more on what follows, see [KV, Chapter 6].
A tree is a partially ordered set T in which for every x
the set x̂ = {y: y ≺ x} of predecessors is well-ordered. The
αth level of T is the set of x for which x̂ has order type α.
A branch in a tree is a maximal chain and an antichain
is a set of mutually incomparable elements. A κ-tree is a
tree of height κ (i.e., Tκ = ∅ and Tα 6= ∅ for α < κ) all of
whose levels have cardinality less than κ . An Aronszajn
tree is an ℵ1-tree without branches of length ω1 and a Sous-
lin tree is an Aronszajn tree with no uncountable antichains.
A Kurepa tree is an ℵ1-tree with more than ℵ1 branches
of length ω1. From a Souslin tree one can make a Souslin
line, i.e., a linearly ordered set that is ccc but not separable
in its order-topology and vice versa; thus, a Souslin tree/line
refutes Souslin’s hypothesis. We have indicated above that
MA + ¬CH denies the existence of Souslin trees, in fact it
implies that Aronszajn trees are special, which means that
they can be covered by countably many antichains. The defi-
nitions of Aronszajn and Souslin trees carries over easily to
larger cardinal numbers: ℵ1 is replaced by the desired κ and
‘countable’ by ‘smaller than κ’.

The construction of a Souslin tree is still one of the best
introductions to the use of ♦. One constructs a tree-order ≺

on ω1 in such a way that the interval Iα = [ω · α,ω · (α +

1)) becomes the α-th level of the tree. Thus, I0 = [0,ω) is
left totally unordered. If α = β + 1 then Iα is unordered but
it supplies two direct ≺-successors for each point of Iβ . If
α is a limit and Aα is a maximal antichain in the ordering
on [0,ω · α) constructed thus far then we choose countably
many branches that cover the set and such that each passes
through a point of Aα ; we put the points of Iα on top of
these branches (one point for each branch) – this ensures
that Aα is even maximal in the final tree. In the end if A is a
maximal antichain in the tree (ω1,≺), then the set of those α
with α = ω · α and A ∩ α is maximal in (α,≺) is closed and
unbounded. There is therefore such an α with A ∩ α = Aα ,
but Aα was to remain maximal, hence A = Aα and so A is
countable.

One uses ♦ if the property under consideration allows re-
flection, as in the case above, where a maximal antichain
intersects initial segments of the tree in maximal antichains
– the ♦-sequence enables one to capture and deal with such
reflections. There have been strengthenings of ♦ that assert
that more is captured or more often; these are denoted by
♦∗, ♦+, ♦ for stationary systems, etc. The last mentioned
version implies that normal and first-countable spaces are
ℵ1-collectionwise Hausdorff, see [KV, Chapter 15].

It is clear that ♦ implies CH and, in fact ♦ = CH + ♣,
where ♣ is a weakening of ♦: there is a sequence 〈Sα:

α < ω1〉 (a ♣-sequence) such that Sα is a cofinal ω-se-
quence in ω · α and every uncountable subset of ω1 con-
tains some Sα . The ♣-principle can be used to construct an
S-space topology on ω1 – make sure each initial segment
is open and that [ω · α,ω1) ⊆ cl Sα – and a simple Dowker
space on ω1 × ω [KV, Chapter 17]. From the stronger ♦ one
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gets more: Ostaszewski’s space and Fedorchuk’s compact S-
space of cardinality 2c with no convergent sequences.

5. The open colouring axiom

The Open Colouring Axiom (OCA) is a Ramsey-type state-
ment. It states that given a separable metrizable space X
and an open subset K0 of [X ]

2 (the two-element subsets
of X with the Vietoris topology) there either is an uncoun-
table subset Y of X with [Y ]

2
⊆ K0 or X =

⋃
n Xn with

[Xn]
2
∩ K0 = ∅ for all n, see [8, Chapter 8].

It has a remarkable effect on the theory of the space N∗.
Very few of the results on this space proved from CH remain
when OCA is assumed. Its status as a universal space is sim-
ply demolished: the Stone space of the measure algebra, the
square N∗

× N∗, the space R∗, and many others are no lon-
ger continuous images of N∗. The conjunction OCA + MA
implies that all autohomeomorphisms of N∗ are induced by
bijections between cofinite subsets of N. The proofs of these
results follow a by now well-established pattern: one pro-
ves that a potential map cannot have too much structure and
one also proves that OCA implies (invariably via its second
alternative) that a potential map must have a lot of structure.

A purely topological application of OCA is the following:
if X is a cometrizable space then either X has a countable
network, or an uncountable discrete subspace, or it contains
an uncountable subspace of the Sorgenfrey line. A space is
cometrizable if there is a weaker metrizable topology on it
such that each point has a neighbourhood base consisting of
sets which are closed in the metric topology

The memoir [2] contains many results related to OCA and
gives lots of historic information.

In conclusion

We have barely scratched the surface of the use of quot-
able principles in General Topology; the volumes [KV] and
[HvM] contain many applications of such principles.

A few words on the consistency of the principles. As men-
tioned above, CH holds in Gödel’s Constructible Universe
as do ♦ and its strengthenings. There is no such canonical
model for the other principles discussed. The consistency of
Martin’s Axiom was established using the method of itera-
ted forcing, as was the consistency of PFA, though the latter

required a supercompact cardinal in the initial model. The
Open Colouring Axiom follows from PFA but its consistency
may be established in an ‘ordinary’ iteration eschewing large
cardinals.
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[2] I. Farah, Analytic quotients: Theory of liftings for quo-
tients over analytic ideals on the integers, Mem. Amer.
Math. Soc. 148 (702) (2000), xvi+177.

[3] M. Foreman, M. Magidor and S. Shelah, Martin’s maxi-
mum, saturated ideals, and nonregular ultrafilters. I,
Ann. of Math. (2) 127 (1) (1988), 1–47.

[4] D.H. Fremlin, Consequences of Martin’s Axiom, Cam-
bridge Tracts in Math., Vol. 84, Cambridge University
Press, Cambridge (1984).

[5] K. Gödel, The Consistency of the Axiom of Choice and
of the Generalized Continuum Hypothesis with the Axi-
oms of Set Theory, Ann. of Math. Stud., Vol. 3, Princeton
University Press, Princeton, NJ (1940).

[6] J. Pelant, Combinatorial properties of uniformities, Ge-
neral Topology and Its Relations to Modern Analysis
and Algebra, IV, Proc. Fourth Prague Topological Sym-
pos., Prague, 1976, Part A, Lecture Notes in Math., Vol.
609, Springer, Berlin (1977), 154–165.
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