
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 123, Number 1, January 1995, Pages 311–314
S 0002-9939(XX)0000-0

FIXED-POINT SETS OF AUTOHOMEOMORPHISMS

OF COMPACT F -SPACES

K. P. HART AND J. VERMEER

(Communicated by Franklin D. Tall)

Abstract. We investigate fixed-point sets of autohomeomorphisms of com-
pact F -spaces. If the space in question is finite dimensional (in the sense of
covering dimension), then the fixed-point set is a P -set; on the other hand
there is an infinite-dimensional compact F -space with an involution whose
fixed-point set is not a P -set.

In addition we show that under CH a closed subset of ω∗ is a P -set iff it is
the fixed-point set of an autohomeomorphism.

Introduction

In this note we investigate the fixed-point sets of autohomeomorphisms of com-
pact F -spaces. In Vermeer [6, 7] the second author studied fixed-point sets of con-
tinuous self-maps of extremally and basically disconnected spaces. It was proved
that whenever X is a compact κ-basically disconnected space (i.e., the Stone space
of a κ-complete Boolean algebra) and φ : X → X is injective and continuous, the
fixed-point set of φ is a Pκ-set of X . In particular for a basically disconnected (i.e.,
ω1-basically disconnected) space the fixed-point set of a self-embedding is always a
P -set.

The methods used to obtain the above-mentioned result do not readily generalize
to the natural extension of the class of basically disconnected spaces: the class of F -
spaces. The point is that these methods relied heavily on the fact that a countable
increasing union of clopen sets in a basically disconnected space has a clopen closure
and this last property hardly ever holds nontrivially in general F -spaces.

Here we use results about fixed-point free extensions of fixed-point free maps
to obtain the result that the fixed-point set of an autohomeomorphism of a finite-
dimensional compact F -space is a P -set of that space. This seems to be new, even
for the space ω∗.

If we assume the Continuum Hypothesis, then we can even show that a closed
subset of ω∗ is a P -set iff it is the fixed-point set of an autohomeomorphism (even
an involution) of ω∗. This gives an external characterization of the P -sets in ω∗ and
is a partial answer to Problem 218 of Hart and van Mill [4]. We finish the paper
with an example of an infinite-dimensional compact F -space and an involution on
it whose fixed-point set is not a P -set.
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1. Preliminaries

By convention all spaces under consideration are completely regular. We call—as
usual—a space X an F -space if every cozero set in it is C∗-embedded, i.e., if M is
a cozero set of X and f : M → R is a bounded continuous function, then f can be
extended to a bounded continuous function from X to R. For compact spaces this
takes the following convenient form: A compact space X is an F -space iff for every
Fσ-subset F of X the equality clF = βF holds. A rich supply of compact F -spaces
can be gotten from the well-known fact that βX \X is an F -space whenever X is
σ-compact and locally compact.

We also need the characterization of ω∗ given by Parovičenko in [5]. This char-
acterization is valid under the assumption of the Continuum Hypothesis (CH).

Theorem 1.1 (CH). A compact space X is homeomorphic to ω∗ if and only if it

is a compact, zero-dimensional F -space of weight c without isolated points in which

nonempty Gδ-sets have nonempty interiors.

This theorem is particularly useful when one works with P -sets in ω∗; we recall
that a subset of a space is a P -set if every Gδ-set containing it is a neighbourhood
of it or, equivalently, a set A is a P -set if for every Fσ-set F disjoint from it one
has A ∩ clF = ∅.

For example, in the proof of Lemma 1.3 below we use the fact that ω∗ \ IntA is
homeomorphic to ω∗ whenever A is a P -set of ω∗. A second application occurs in
the proof of Theorem 2.2.

¿From van Douwen and van Mill [2] we quote the following theorem, the home-
omorphism extension theorem for nowhere dense P -sets.

Theorem 1.2 (CH). Let A and B be nowhere dense P -sets of ω∗ and h : A → B

a homeomorphism. Then there is an autohomeomorphism h̃ of ω∗ that extends h.

We shall need the following mild extension of this theorem.

Lemma 1.3 (CH). Let A and B be proper P -subsets of ω∗, and let h : A→ B be

a homeomorphism that maps the interior of A onto the interior of B. Then there

is an autohomeomorphism h̃ of ω∗ that extends h.

Proof. Consider ω∗ \ IntA and ω∗ \ IntB. As noted above both spaces are homeo-
morphic to ω∗ because A and B are P -sets.

The homeomorphism extension theorem for nowhere dense P -sets now gives us
an extension h′ : ω∗ \ IntA→ ω∗ \ IntB of the restriction h ↾ FrA. To finish we let

h̃ = h ∪ h′.

The final result that we need is from van Douwen [1]. We use the term ‘finite-
dimensional’ in the sense of the covering dimension dim.

Theorem 1.4. Let X be a finite-dimensional paracompact space and f : X → X

a closed self-map for which there is a natural number k such that
∣

∣f−1(x)
∣

∣ ≤ k for

all x ∈ X. Then f has a fixed point if and only if βf has a fixed point.

2. Finite-dimensional spaces

We get our first result by a judicious application of van Douwen’s theorem.

Theorem 2.1. Let X be a compact finite-dimensional F -space and φ : X → X a

continuous and injective map. The fixed-point set F of φ is a P -set of X.
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Proof. Let K be an Fσ-subset of X that is disjoint from F . We must show that
clK is disjoint from F . To this end we take the set L =

⋃

k∈Z
φk[K]. Observe that

L is also an Fσ-set that is disjoint from F ; that L is an Fσ-set is clear. To see that
L contains no fixed points of φ combine the facts that K contains none and that
φ is injective. It is also clear that φ[L] ⊆ L. Finally we observe that φ ↾L is closed:
use the fact that φ−1[L] = L.

Now, because X is an F -space, we have clL = βL. Then van Douwen’s theorem
implies that clL contains no fixed points of φ either. It follows that clL ∩ F = ∅,
so certainly clK ∩ F = ∅.

For the space ω∗ we can reverse the implication, provided we assume CH.

Theorem 2.2 (CH). A closed subset A of ω∗ is a P -set iff it is the fixed-point set

of some autohomeomorphism of ω∗.

Proof. Let A be a P -set of ω∗. We shall find an autohomeomorphism φ of ω∗ of
which A is the fixed-point set; indeed, φ will be an involution, i.e., φ2 is the identity.

Consider ω∗ × 2 and identify, for every x ∈ A, the points 〈x, 0〉 and 〈x, 1〉 (we
glue the two copies of ω∗ together along the copies of A). Because A is a P -set, the
resulting quotient space Q is homeomorphic to ω∗: it satisfies the conditions from
Parovičenko’s theorem.

Define an autohomeomorphism ψ of Q by sending 〈x, i〉 to 〈x, 1− i〉 for every x.
Clearly ψ2 is the identity and the copy AQ of A in Q is the fixed-point set of ψ.

It remains to turn ψ into an autohomeomorphism of ω∗ whose fixed-point set is
A itself.

The identity Id : AQ → A is a homeomorphism that maps the interior of AQ onto
the interior of A and so by Lemma 1.3 it may be extended to a homeomorphism
h : Q→ ω∗.

In the end we take φ = h ◦ ψ ◦ h−1 of course.

3. Infinite-dimensional spaces

In this section we give an example of compact infinite-dimensional F -space
X and an autohomeomorphism φ of X whose fixed-point set is not a P -set. Again
φ can be taken to be an involution.

Our starting point is the following example, considered by van Douwen in [1].
Let S =

⊕

n S
n, where Sn is the standard n-sphere. Next let φ : S → S be the

sum of the antipodal mappings. Now φ has no fixed points, yet βφ does have fixed
points; this can be seen as follows: if βφ would have no fixed points, then there
would be a finite closed cover {F1, . . . , Fn} of βS such that βφ[Fi] ∩ Fi = ∅ for
all i. However, the Lusternik-Schnirelman-Borsuk Theorem (Dugundji and Granas
[3, Theorem 4.4]) implies that φ[Fi] ∩ Fi ∩ S

n 6= ∅ for some i.
To begin we take for every n the closed n-ball Bn. Remove the origin and call the

result Xn. The antipodal map en on Xn has no fixed points and, as dimXn = n,
neither do βen and e∗n = βen ↾X∗

n (apply Theorem 1.4). Also note that X∗

n is an
F -space.

Write X =
⊕

n βXn and e =
⊕

n βen. The map e has no fixed points but βe has
many of them: for any sequence 〈Sn〉n of spheres centered at the origins of the Bn

we get fixed points of βe in the closure of
⊕

n Sn.
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Now take any neighbourhood of (
⊕

nX
∗

n)
∗

in βX ; it contains a tail of a sequence
of spheres as in the preceding paragraph and hence a fixed point of βe. But then
(
⊕

nX
∗

n)∗ contains fixed points of βe as well.
Our example is the closure of

⊕

nX
∗

n in βX , and the map φ is the restriction
of βe. It is clearly an F -space, and the (nonempty) fixed-point set of φ is contained
in the nowhere dense Gδ-set (

⊕

nX
∗

n)∗.
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