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HEREDITARY INDECOMPOSABILITY AND THE
INTERMEDIATE VALUE THEOREM

ALAN DOW AND KLAAS PIETER HART*

Abstract. We show that hereditarily indecomposable spaces can be char-

acterized by a special instance of the Intermediate Value Theorem in their

ring of continuous functions.

Introduction

The classical Intermediate Value Theorem (IVT for short) states that if f is a
continuous function from the interval [a, b] to R with f(a) · f(b) < 0 then there
is c in (a, b) such that f(c) = 0. In [2] Henriksen, Larson and Martinez

investigated forms of this theorem in lattice-ordered rings, where, because of the
absence of any natural topology, they restricted their attention to polynomials.
We mention some of their results for the ring C∗(X) of bounded real-valued
continuous functions on the topological space X; let us call X an IVT-space if
the ring C∗(X) satisfies the Intermediate

Value Theorem (the precise formulation of the IVT in this context follows
below). The results are:

(1) every IVT-space is an F -space;
(2) every compact and zero-dimensional F -space is an IVT-space;
(3) every compact IVT-space is hereditarily indecomposable.

In this note we establish a partial converse to this last result in that we show that
every compact hereditarily indecomposable space satisfies the IVT for a restricted
class of polynomials.

1991 Mathematics Subject Classification. 54C30, 54F15, 54G05.
Key words and phrases. hereditarily indecomposable space, Intermediate Value Theorem,

ring of continuous functions.
*The research of the second author was supported by Netherlands Organization for Scientific

Research (NWO) — Grant R 61-322.

c©2001 The University of Houston

431



432 ALAN DOW AND KLAAS PIETER HART

1. Preliminaries

We shall only deal with rings of the form C∗(X), so we can, for the time being
restrict our attention to compact Hausdorff spaces.

1.1. The intermediate value theorem. In the ring C∗(X) the IVT takes on
the following form: Let p be a polynomial with coefficients in C∗(X) and let u

and v be elements of C∗(X) such that p(u) 6 0 6 p(v), where 0 denotes the zero
function. Then there is w ∈ C∗(X) such that u ∧ v 6 w 6 u ∨ v and p(w) = 0.
The reason for working with u∧ v and u∨ v is of course that it is usually not the
case that u(x) 6 v(x) for all x (or v(x) 6 u(x) for all x).

To get some feeling for what the IVT says in this context let p ∈ C∗(X)[t], so
p(t) =

∑n
i=0 fit

i for some elements f0, . . . , fn of C∗(X), and let u, v ∈ C∗(X)
be such that p(u) 6 0 6 p(v). For every separate x ∈ X we get an ordinary
polynomial px(t) =

∑n
i=0 fi(x)ti; and the assumptions on u and v imply that

p
(
u(x)

)
6 0 6 p

(
v(x)

)
. The classical IVT therefore guarantees that there is a

function w : X → R such that u ∧ v 6 w 6 u ∨ v and p(w) = 0; the IVT for
C∗(X) demands that this w be continuous.

That this puts severe restrictions on the space X may be seen as follows: let
f ∈ C∗(X) and consider the polynomial p(t) = |f |t− f . Now p(1) = |f | − f > 0
and p(−1) = −|f | − f 6 0, so if X is an IVT-space there must be a continuous
function w such that −1 6 w 6 1 and f = w|f |. This however is one of the
characterizations of F -spaces — see Gillman and Jerison [1].

1.2. Hereditarily indecomposable spaces. Much of what follows is taken
from Oversteegen and Tymchatyn [3], which is a convenient survey on hered-
itarily indecomposable spaces.

To begin we recall that a continuum is said to be indecomposable if it cannot be
written as the union of two proper subcontinua; it is hereditarily indecomposable
if every subcontinuum is indecomposable.

We use the following characterization of hereditarily indecomposable continua.

Theorem 1.1. A continuum X is hereditarily indecomposable if and only if when-
ever two disjoint closed sets A and B and open neighbourhoods U and V respec-
tively are given we can write X as the union of three closed sets X0, X1 and X2

such that A ⊆ X0, B ⊆ X2, X0 ∩X1 ⊆ V , X0 ∩X2 = ∅, and X1 ∩X2 ⊆ U .

The property in this theorem can also be used to characterize those compact
spaces (connected or not) for which every closed connected subspace is indecom-
posable; we shall call these compact spaces hereditarily indecomposable as well.
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Observe that with this definition compact zero-dimensional spaces are hereditarily
indecomposable as well.

2. The IVT implies hereditary indecomposability

In this section we reprove Theorem 3.2 from Henriksen, Larson and Mar-

tinez [2], which states that compact IVT-spaces are hereditarily indecomposable.
In their proof these authors used a polynomial of degree 7 with two potentially ir-
reducible quadratic factors. We use a completely factored polynomial of degree 3.

Theorem 2.1. Compact IVT-spaces are hereditarily indecomposable.

Proof. Let X be a compact IVT-space. To show that X is hereditarily inde-
composable we take disjoint closed sets A and B and open sets U and V such
that A ⊆ U and B ⊆ V . We must exhibit three closed sets X0, X1 and X2 such
that A ⊆ X0, B ⊆ X2, X0 ∩ X1 ⊆ V , X0 ∩ X2 = ∅, X1 ∩ X2 ⊆ U and
X0 ∪X1 ∪X2 = X.

Choose a continuous function f : X → [0, 1] such that f � A ≡ 0, f � B ≡
1, f−1

[
[0, 1

2 )
]
⊆ U and f−1

[
( 1
2 , 1]

]
⊆ V . Using f we define three continuous

functions, f1, f2 and f3, as follows: first

f1(x) =


f(x)− 1

4 if f(x) 6 1
4

0 if 1
4 6 f(x) 6 3

4

f(x)− 3
4 if 3

4 6 f(x);

second

f2(x) =


1
2

(
f(x)− 1

4

)
if f(x) 6 1

4

2
(
f(x)− 1

4

)
if 1

4 6 f(x) 6 3
4

1
2

(
f(x) + 5

4

)
if 3

4 6 f(x);
and third

f3(x) =


f(x) + 3

4 if f(x) 6 1
4

1 if 1
4 6 f(x) 6 3

4

f(x) + 1
4 if 3

4 6 f(x);

(At this point the reader may find it instructive to draw the graphs of f1, f2

and f3 in case X = [0, 1] and f(x) = x. The zig-zag that appears when one
follows the graph of f3 left-to-right until it meets the graph of f2 then follows the
graph of f2 right-to-left until it meets the graph of f1 and finally the graph of f1

left-to-right until the end is characteristic of hereditarily indecomposable spaces.)
Note that f1 6 f2 6 f3.
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Consider the polynomial p defined by p(t) = (t − f1)(t − f2)(t − f3). Then
p(0) 6 0 6 p(1), for one readily checks that

• f2(x) < 0 < f3(x) < 1 if f(x) < 1
4 ;

• f1(x) = 0 and f3(x) = 1 if 1
4 6 f(x) 6 3

4 and
• 0 < f1(x) < 1 < f2(x) if f(x) > 3

4 .

An application of the Intermediate Value Theorem gives us a continuous function
w : X → [0, 1] such that p(w) = 0.

Let X0 =
{
x : w(x) = f3(x)

}
, X1 = {x : w(x) = f2(x)

}
and X2 =

{
x :

w(x) = f1(x)
}
. We check that these sets have all the required properties.

• X0 ∪X1 ∪X2 = X because p(w) = 0;
• A ⊆ X0 because if x ∈ A then f(x) = 0, hence w(x) = f3(x);
• B ⊆ X2 because if x ∈ B then f(x) = 1, hence w(x) = f1(x);
• X0 ∩ X1 ⊆ V because if x ∈ X0 ∩ X1 then f3(x) = w(x) = f2(x) hence

f(x) = 3
4 and x ∈ V ;

• X1 ∩ X2 ⊆ U because if x ∈ X1 ∩ X2 then f1(x) = w(x) = f2(x) hence
f(x) = 1

4 and x ∈ U and
• X0 ∩X2 = ∅ because f3 − f1 = 1.

We conclude that X is indeed hereditarily indecomposable. �

As announced before, in the next section we shall see that hereditary indecom-
posability is in fact characterized by the particular instance of the Intermediate
Value Theorem that was actually employed.

3. Hereditary indecomposability implies part of the IVT

In this section we show that every compact hereditarily indecomposable F -
space X satisfies the Intermediate Value Theorem for completely factored polyno-
mials, that is, polynomials that can be written as

∏n
i=1(t− fi), where the fi are

elements of C(X).
This is a rather limited class of polynomials of course but, as we saw in Sec-

tion 2, the case n = 3 is already strong enough to imply hereditary indecompos-
ability. The Intermediate Value Theorem for this class of polynomials therefore
characterizes hereditary indecomposability for F -spaces.

So let X be a hereditarily indecomposable F -space and let p, defined by p(t) =∏n
i=1(t− fi), be a completely factored polynomial in C(X). Assume furthermore

that u, v ∈ C(X) are such that p(u) 6 0 6 p(v). Through a series of reductions
we show that there is w ∈ C(X) such that p(w) = 0 and u ∧ v 6 w 6 u ∨ v.
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Lemma 3.1. We may assume that f1 6 f2 6 · · · 6 fn.

Proof. For each i 6 n define gi by

gi =
∧
|F |=i

∨
j∈F

fj .

Observe that g1 6 g2 6 · · · 6 gn and that, for each individual x, the sets of values{
g1(x), g2(x), . . . , gn(x)

}
and

{
f1(x), f2(x), . . . , fn(x)

}
are equal. It follows from

this that the coefficients of t0, t1, . . . , tn−1 in
∏n

i=1(t− fi) and
∏n

i=1(t− gi) are
the same and hence that the polynomials are the same. �

The case n = 1 should offer no problems and the case n = 2 is dealt with in the
following proposition, which is a special case of Theorem 2.3 (b) of Henriksen,

Larson and Martinez [2]. In fact, the polynomial p need not even be factored;
it can always be factored by completing the square.

Proposition 3.2. Every space satisfies the Intermediate Value Theorem for monic
quadratic polynomials.

Proof. Let p(t) = t2 + 2ft + g be such a polynomial and assume that there
are u and v such that p(u) 6 0 6 p(v). Completing the square gives us q(t) =
(t + f)2 + g − f2. Now because p(u) 6 0 6 p(v) we know that f2 − g > 0 so
that we can write f2 − g = h2 for some nonnegative h ∈ C(X). We find that
p(t) = (t + f − h)(t + f + h); write −f − h = f1 and −f + h = f2.

Observe that for each x either v(x) 6 f1(x) or v(x) > f2(x) and that f1(x) 6
u(x) 6 f2(x). We cover our space by three closed sets: P = cl

{
x : u(x) < v(x)

}
,

Q =
{
x : u(x) = v(x)

}
and R = cl

{
x : u(x) > v(x)

}
. We now note that

u 6 f2 6 v on P (because u(x) 6 f2(x) 6 v(x) whenever u(x) < v(x)) and that
v 6 f1 6 u on R. We define w as the combination

(f2 � P ) O (u � Q) O (f1 � R).

Note that w is well-defined because, by continuity, u ≡ v ≡ f2 on P ∩ Q and
u ≡ v ≡ f1 on Q ∩ R. Also p(w)(x) = 0 for all x; this is clear on P ∪ R and
on Q it holds because p(u)(x) 6 0 6 p(v)(x) and p(u)(x) = p(v)(x). Finally,
w is continuous because it is the combination of continuous functions defined on
closed subsets. �

We have given such an extensive proof of Proposition 3.2 because it contains
elements that we will use quite often in what follows, to wit breaking the space
into closed pieces according to the position of the fi(x) with respect to u(x)
and v(x), and defining w by cases. From now on we assume that n > 3.
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To begin, for every x we have fn(x) > u(x) > fn−1(x) or fn−2(x) > u(x) >
fn−3(x) etc., because p(u)(x) 6 0; if, for example, fn−1(x) > u(x) > fn−2(x)
then clearly p(u)(x) > 0. This sequence ends with f2(x) > u(x) > f1(x) if n is
even and with f1(x) > u(x) if n is odd.

Likewise, for all x we have v(x) > fn(x) or fn−1(x) > v(x) > fn−2(x) or . . . or
f1(x) > v(x) if n is even and f2(x) > v(x) > f1(x) if n is odd.

We shall also employ the cover of X by the sets P = cl
{
x : u(x) < v(x)

}
,

Q =
{
x : u(x) = v(x)

}
and R = cl

{
x : u(x) > v(x)

}
. On Q there is no choice:

the only admissible solution is wQ = u � Q = v � Q. However, once we have found
solutions wP on P and wR on R then w = wP O wQ O wR is the desired solution.
On P we have u 6 wP 6 v so by continuity we know that u(x) = wP (x) = v(x)
for all x ∈ P ∩ Q. Likewise u(x) = wR(x) = v(x) for all x ∈ Q ∩ R. Thus,
w is well-defined and as a combination of continuous functions defined on closed
subsets it is continuous.

Because hereditary indecomposability is a closed hereditary property we can
work inside P and R respectively without worrying about the rest of X.

3.1. Reduction to odd n. Assume n is even and recall that in this case f1 6
u 6 fn.

We show that on P we have q(u) 6 0 6 q(v), where q(t) =
∏n

i=2(t−fi). Indeed
the possible positions of u(x) ensure that q(u)(x) 6 0 for all x. Also, for all x

with u(x) < v(x) we have v(x) > f2(x) because f1(x) 6 u(x) < v(x) < f2(x)
would imply p(v)(x) < 0. Hence, by continuity, v > f2 on P , so that q(v) > 0
on P .

On the set R we can show in a similar fashion that v 6 fn−1 and hence that
r(u) > 0 > r(v), where r(t) =

∏n−1
i=1 (t− fi).

Both q and r are of degree n− 1.

From now on we assume n > 3 and n odd.

3.2. Reduction to u 6 v. If u(x) > v(x) then, because fn > u, we must have
v(x) 6 fn−1(x) and because v > f1 we must have u(x) > f2(x). So on R

we get, by continuity, v 6 fn−1 and u > f2. Consider now the polynomial
q(t) =

∏n−1
i=2 (t − fi). Because of the possible positions for u(x) and v(x) listed

above we conclude that q(u) > 0 > q(v).

3.3. The final case. We now show how to produce w, given that 1) X is the
closure of

{
x : u(x) < v(x)

}
, 2) p(u) 6 p(v) and 3) n is odd.
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Let k be such that n = 2k + 1. For each i 6 k consider the closed sets
Ai = cl

{
x : v(x) < f2i+1(x)

}
and Bi = cl

{
x : u(x) > f2i−1(x)

}
.

Note that, because of the positioning of the values u(x) and v(x) we have
Ai ⊆ Ci =

{
x : v(x) 6 f2i(x)

}
and Bi ⊆ Di = cl

{
x : u(x) > f2i(x)

}
. Now note

that Ci ∩ Di ⊆
{
x : u(x) = f2i(x) = v(x)

}
; as the set on the right-hand side is

nowhere dense it follows that int Ci and int Di are disjoint.
Also, because X is an F -space, we know that Ai ⊆ intCi and Bi ⊆ intDi.
Now apply hereditary indecomposability to find three closed sets Xi, Yi and

Zi that cover X and with the following properties: Ai ⊆ Xi, Bi ⊆ Zi, Xi ∩Yi ⊆
intDi, Yi ∩ Zi ⊆ intCi and Xi ∩ Zi = ∅. We note the following facts:

(1) u 6 f2i−1 on Xi ∪ Yi because this set is disjoint from Bi;
(2) v > f2i+1 on Yi ∪ Zi because this set is disjoint from Ai;
(3) u = f2i−1 = f2i on Xi∩Yi because this set is contained in Di and because

of (1);
(4) v = f2i+1 = f2i on Yi ∩Zi because the set is contained in Ci and because

of (2); and
(5) u 6 f2i−1 6 f2i 6 f2i+1 6 v on Yi because of (1) and (2).

Now we are ready to define w. We start by letting w = f1 on X1 and w = f2

on Y1. We continue by letting, for i > 1, w = f2i−1 on Xi ∩
⋂

j<i Zj and w = f2i

on Yi ∩
⋂

j<i Zj . Finally, on
⋂

i6k Zi we let w = fn.

We check that w is well-defined. By (3) we have f2i−1 = f2i on Xi∩Yi for every i.
If j < i then Xj ∩Xi∩

⋂
l<i Zl = ∅; on Yj ∩Xi∩

⋂
l<i Zl ⊆ Yj ∩Zj ∩Zi−1 we have

v = f2j+1 = f2j and v > f2i−1 and so f2i−1 = f2j , and on Yj ∩ Yi ∩
⋂

l<i Zl ⊆
Yj ∩ Zj ∩ Zi−1 we have v = f2j=1 = f2j and v > f2i+1 > f2i and so f2j = f2i.
Finally, on Yj ∩

⋂
i6k Zi ⊆ Yj ∩ Zj we have v > fn and v = f2j so f2j = fn.

We check that u 6 w 6 v. On X1 we surely have u 6 f1 6 v and if i > 1 then
on Xi ∩

⋂
j<i Zj we have u 6 f2i−1 because of (1) and f2i−1 6 v because of (1)

for i − 1. On each Yi we have u 6 f2i 6 v by (5). Finally, on
⋂

i6k Zi we have
v > fn > u by (2).

We see that w is a well-defined continuous function on X such that u 6 w 6 v

and, because for all x there is an i with w(x) = fi(x), such that p(w) = 0.

4. Questions and Conjectures

The basic question as to what actually characterizes IVT-spaces remains. On
the basis of the evidence from Section 3 we conjecture that hereditarily indecom-
posable spaces also satisfy the IVT for monic polynomials.
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The general case seems more complicated in that the leading coefficient (and
others) may vanish at certain places. It may very well be that that the full IVT
characterizes zero-dimensionality.
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