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For my long term neighbour

Abstract. The Katowice Problem is well known among topologists and set
theorists. The aim of this paper is to make it known among analysts and to

give Ben something to think about in his retirement.

Introduction

The Katowice problem, as posed by Marian Turzański, is about Čech-Stone
remainders of discrete spaces. For the purposes of this paper it suffices to know
that for a discrete space X its Čech-Stone compactification, βX, is a compact
Hausdorff space that contains X as a dense subset and that has the property that
disjoint subsets of X have disjoint closures in βX. The remainder (or growth) is
βX \X and it is generally denoted X∗.

Let X and Y be two infinite sets, endowed with the discrete topology. The
problem under consideration asks

The Katowice Problem. If the remainders X∗ and Y ∗ are homeomorphic must
there be a bijection between X and Y ?

This problem has its origins in Parovichenko’s paper [12] where a topological
characterization of N∗ is given, under the assumption of the Continuum Hypothesis.
The obvious question then is whether such characterizations are possible for the
remainders of other discrete spaces, and a natural side question is what can be said
if the remainders are homeomorphic.

More information on the Čech-Stone compactification of discrete spaces, and in
particular on βN we refer to Van Mill’s survey [11].

In this paper we discuss various equivalent versions of the Katowice problem,
algebraic and analytic. We also summarise what is known about the problem: the
answer is positive except for the case of the first two infinite cardinal numbers.
That last remaining case has withstood many attacks thus far and it is hoped that
an analytic approach may shed new light on the problem.

1. Another road to the problem

One can arrive at the Katowice Problem by a purely algebraic road. This road
starts with an elementary exercise: given a bijection f between two sets X and Y ,
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construct a bijection between their power sets P(X) and P(Y ). The solution is
easy: define F by F (A) = f [A].

Now turn this exercise around: given a bijection F between the power sets P(X)
and P(Y ) of the sets X and Y , construct a bijection between X and Y .

This second exercise is way more difficult than the first one. The case of finite
sets is easily dispensed with it seems: the function n 7→ 2n is injective on the set of
natural numbers, so if the finite sets X and Y have the same numbers of subsets
then X and Y will have the same number of elements. However, this does not solve
the problem as required: from the given bijection F construct another bijection.
And that last thing cannot be done.

To see this we consider Cohen’s original proof that the Continuum Hypothesis
is not provable from the axioms of ZFC. In the resulting model there is a bijection
between the power sets of the first two infinite cardinal numbers, ω0 and ω1, yet
there is, of course, no bijection between these sets themselves. This implies that,
without using additional properties about the sets in question it is not possible to
turn a bijection between the power sets into a bijection between the sets themselves.

I recommend Kunen’s book, [10, Chapter VII], for an exposition of Cohen’s
method.

The situation changes if one considers additional structure. The power set of a
set is partially ordered by inclusion and it is even a Boolean algebra, with ∩ and ∪
as its operations.

Now, from an isomorphism F : P(X) → P(Y ) it is quite easy to extract a
bijection between X and Y . Indeed, the singleton subsets of X are the atoms of
the algebra P(X); where a ∈ P(X) is an atom if a > ∅ and whenever a = b ∪ c
one must have b = a or c = a. The isomorphism F must then contain a bijection
between the respective sets of atoms, which then is a bijection between X and Y
of course.

To get to the Katowice problem we ask what happen when we hide the atoms,
that is, when we set the atoms equal to zero. In algebraic terms this amounts to
taking the ideal, fin, of finite sets and considering the quotient algebra P(X)/fin.

The Katowice Problem. If the Boolean algebras P(X)/fin and P(Y )/fin are
isomorphic is there then a bijection between X and Y ?

That this is indeed a reformulation of the Katowice Problem follows readily using
M. H. Stone’s duality theorem for Boolean algebras. The space βX is the Stone
space of the Boolesn algebra P(X) and the Čech-Stone remainder X∗ is the Stone
space of P(X)/fin.

More information about Stone’s duality theorem can be found in Koppelberg’s
book, [8, Chapter 3].

2. Rings, and Banach algebras and lattices

Yet another way of looking at the Katowice problem is via the function space `∞.
That is, for every set X we consider `∞(X), the set of all bounded real- (or complex-
)valued functions on the set X.

One can consider `∞(X) as a ring, by defining addition and multiplication point-
wise, and as a Banach-algebra, by endowing it with the supremum norm ‖ · ‖∞,
and, most importantly, as a Banach lattice under the pointwise order.
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In all three cases, if `∞(X) and `∞(Y ) are isomorphic then there is a bijection
between X and Y . This follows by applying the theorem of Gel′fand and Kol-
mogorov ([5]) in the case of rings, or that of Gel′fand and Neumark ([6]) in the case
of Banach-algebras, or that of Kakutani ([7]) and Krein and Krein ([9]) in the case
of Banach lattices.

These theorems represent `∞(X) as the ring, or Banach-algebra, or Banach
lattice of continuous functions, respectively, on a certain compact Hausdorff space.
In this case that space is just βX, the Čech-Stone compactification of the discrete
space X.

Just as in the case of Boolean algebras one can hide the finite sets by taking the
quotient `∞(X)/c0 by the ideal or subalgebra or ideal, respectively, of functions
that vanish at infinity, where f : X → R vanishes at infinity if for every ε > 0 the
set {x : |f(x)| > ε} is finite.

The quotient `∞(X)/c0 corresponds to the ring, or Banach-algebra, or Banach
lattice of continuous functions on the Čech-Stone remainder X∗ and thus we come
to a version reformulation of the Katowice problem that, I hope, is of interest to
analysts.

The Katowice Problem. If the Banach lattices `∞(X)/c0 and `∞(Y )/c0 are
isomorphic is there then a bijection between X and Y ?

3. What is known?

To begin: the Generalised Continuum Hypothesis (GCH) implies that the Ka-
towice Problem has a positive answer. The Boolean algebraic version makes this
clear: the Boolean algebra P(X)/fin has cardinality 2|X|, and the GCH implies that
the function κ 7→ 2κ is injective on the class of cardinal numbers.

In fact, much more is known. In joint work Balcar and Frankiewicz established
that the answer is actually positive without any additional set-theoretic assump-
tions, when the two sets are both uncountable. More precisely

Theorem ([1,4]). If the remainders X∗ and Y ∗ are homeomorphic and the sets X
and Y are uncountable then there is a bijection between X and Y .

In fact, this theorem leaves just one pair of cardinal numbers for which the prob-
lem is still open: the first two infinite cardinals numbers ω0 and ω1. I use ‘cardinal
numbers’ rather than ‘sets’ because it would become increasingly cumbersome to
formulate everything in terms of arbitrary sets.

The cardinal numbers form a class of well-ordered sets against which all other
sets are measured: for every set X there is one cardinal number κ such that there
is a bijection between X and κ. We write κ = |X| and call κ the cardinal number
of X. By using the word ‘one’ we implicitly specify that there are no bijections
between distinct cardinal numbers.

All this reduces the Katowice Problem to one final case.

Main Problem. Prove that `∞(ω0)/c0 and `∞(ω1)/c0 are not isomorphic.

This formulation reflects this author’s preferred solution of this problem. I am
fully aware that it is relatively consistent with ZFC that `∞(ω0)/c0 and `∞(ω1)/c0
are isomorphic. However, to me that would be too shocking to be true.

In the next section I will list some consequences derived from the assumption that
the two lattices are isomorphic. The reader will see that this has almost developed
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into a game where someone derives a consequence and someone else shows that that
consequence does not lead to a contradiction, not even when combined with earlier
consequences.

4. Some consequences

Most of the consequences have been obtained in the Boolean algebraic setting so
we adopt that language from now on. Thus, our standing assumption is that there
is an isomorphism γ : P(ω0)/fin → P(ω1)/fin.

The first consequence of this is straightforward: the cardinalities of the Boolean
algebras are the same, so we obtain

Consequence 1. 2ℵ0 = 2ℵ1 .

We have already seen that this consequences does not lead to a contradiction.
To describe the other consequences we introduce some notation. First we change

the underlying sets to Z× ω0 and Z× ω1, where Z is the set of integers.
In the product Z× ω1 we distinguish a few special sets:

(1) Vn = {n} × ω1 (n ∈ Z), the vertical lines
(2) Hα = Z× {α} (α ∈ ω1), the horizontal lines
(3) Eα = Z × [α, ω1) (α ∈ ω1), the end segments, here [α, ω1) is a convenient

short hand for the set {β ∈ ω1 : β > α}
If A is a subset of Z × ω0 or Z × ω1 then A∗ denotes its equivalence class

modulo fin.
Back in P(Z×ω0) we choose sets vn, hα and eα such that γ(v∗n) = V ∗n , γ(h∗α) =

H∗α, and γ(e∗α) = E∗α. The relations between the sets Vn, Hα and Eα are mirrored
by those between the sets vn, hα and eα. For example Hα ∩Hβ = ∅ if α < β, so in
P(Z×ω0)/fin we have h∗α∧h∗β = 0; for the sets themselves this means that hα∩hβ
belongs to fin. We write this as hα ∩ hβ =∗ ∅ and say that hα and hβ are almost
disjoint.

Likewise when α < β we have Eβ ⊆ Eα and hence e∗β 6 e∗α, which means that

eβ \ eα is finite; we abbreviate the latter by eβ ⊆∗ eα. In fact Eα \ Eβ is finite,
hence so is eα \ eβ ; we should therefore actually write eβ ⊂∗ eα.

The sets vn are also almost disjoint but we may alter each of them by a finite set
(and apply a bijection from Z×ω0 to itself) so that we achieve that vn = {n}×ω0

for all n.

One of the (admittedly feeble) reasons for believing that P(ω0)/fin and P(ω1)/fin
are not isomorphic is the shape of the two products: Z×ω0 looks like a squat 2×1-
rectangle, while Z× ω1 is a rectangle with the same base that is much taller than
the first product. It seems inconceivable we can squeeze the uncountable stack of
Hα’s into the flat rectangle that is Z× ω0.

We turn to a less trivial consequence of having our supposed isomorphism γ.
Consider the end segments Eα and their companion sets eα. Since Vn ∩ Eα is

always uncountable, the intersection vn ∩ eα is always infinite. This means that we
can define fα : Z→ ω0 by

fα(n) = min{m : 〈n,m〉 ∈ eα}

The resulting sequence 〈fα : α ∈ ω1〉 of functions has two interesting properties.
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We just saw that eβ \eα is finite and eα \eβ is infinite when α < β. From this we
get the first property: fα(n) 6 fβ(n) for all but finitely many n. This is generally
abbreviated as fα 6∗ fβ .

For the second let f : Z→ ω1 be arbitrary and consider the set

lf = {〈n,m〉 : m 6 f(n)}.

In P(Z× ω1) choose a set Lf such that γ(l∗f ) = L∗f .
For every n the intersection vn ∩ lf is finite, hence so is Vn ∩ Lf . This implies

that there is an α such that Eα ∩ Lf = ∅. Back at the ω0-side we find that eα ∩ lf
is finite. But this then implies that f(n) < fα(n) for all but finitely many n.

We see that 〈fα : α ∈ ω1〉 is both increasing and cofinal with respect to the
(quasi-)order 6∗. Such a sequence is called an ω1-scale.

Consequence 2. There is an ω1-scale.

The existence of an ω1-scale follows from the Continuum Hypothesis (CH) but
it is also consistent with the latter’s negation and, specifically, also with 2ℵ0 = 2ℵ1 .

The next consequence involves the horizontal lines Hα and their counterparts
the hα. We have already seen that the hα form an almost disjoint family ; we now
show that it is a very special such family.

Suppose that for every α we choose a subset xα of hα. At the side of ω1 we
choose Xα ⊆ Hα. such that γ(x∗α) = X∗α and we take the union X =

⋃
α∈ω1

Xα.

Then we know that X ∩Hα = Xα for all α. If we then choose x with γ(x∗) = X∗

then this x will satisfy x ∩ hα =∗ xα for all α, where =∗ means ‘almost equal’
(again: but for finitely many points).

We say that {hα : α < ω1} is a uniformizable almost disjoint family.

Consequence 3. There is a uniformizable almost disjoint family of cardinality ℵ1
(also called a strong Q-sequence).

The existence of a uniformizable almost disjoint family implies the equality 2ℵ0 =
2ℵ1 : to code a subset Y of ω1 apply the previous paragraph with xα = hα if α ∈ Y
and xα = ∅ if α /∈ Y to obtain xY . The map Y 7→ xY is injective from P(Z× ω1)
into P(Z× ω0).

That the assumptions 2ℵ0 = 2ℵ1 and ‘there is an ω1-scale’ do not together lead
to 0 = 1 is an easy exercise for anyone who has learned the rudiments of forcing
(use the random real model). To show the same thing for the combination of ‘there
is a strong Q-sequence’ and ‘there is an ω1-scale’ is not such an easy exercise. But
it can be done, see [2] for a proof.

We treat one more consequence, which involves automorphisms of the Boolean
algebras. An algebra like P(X)/fin has many automorphisms: every permutation
of X and, more generally, every bijection between co-finite subsets of X deter-
mines an automorphism of P(X)/fin. Such automorphisms are called trivial. It
is a remarkable result of Shelah’s ([13, Chapter IV]) that it is consistent that all
automorphisms of P(ω0)/fin are trivial. This was extended to all sets by Veličković
in [14].

Using our (postulated) isomorphism γ we can show that both P(ω0) and P(ω1)
must have non-trivial automorphisms. We describe these automorphisms and refer
to [3] for proofs.
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For the first take the shift on ω0 (which is set theory’s set of natural numbers):
σ(n) = n+ 1. The automorphism that we get by transplanting the automorphism
A∗ 7→ σ[A]∗ to P(ω1)/fin is non-trivial.

For the second take the map τ : Z× ω1 → Z× ω1 given by τ(n, α) = 〈n+ 1, α〉.
Transplanting A∗ 7→ τ [A]∗ to P(Z×ω0)/fin is results in a non-trivial automorphism.

Consequence 4. Both P(ω0)/fin and P(ω0)/fin have non-trivial automorphisms.

The paper [3] contains some more consequences and references to other sources
of information about the Katowice problem
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aise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 25 (1977),

no. 9, 891–893 (English, with Russian summary). MR0461444 (57 #1429)

[5] I. M. Gel′fand and A. N. Kolmogoroff, On rings of continuous functions on topological spaces,
Comptes Rendus (Doklady) de l’Académie des Sciences de l’URSS 22 (1939), 11–15.

[6] I. M. Gel′fand and M. Neumark, On the imbedding of normed rings into the ring of operators
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