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Abstract. Let M = N × [0, 1]. The natural projection π : M → N, which

sends (n, x) to n, induces a projection mapping π∗ : M∗ → N∗, where M∗ and

N∗ denote the Čech-Stone remainders of M and N, respectively.
We show that CH implies every autohomeomorphism of N∗ lifts through

the natural projection to an autohomeomorphism of M∗. That is, for every
homeomorphism h : N∗ → N∗ there is a homeomorphism H : M∗ → M∗ such

that π∗ ◦H = h ◦ π∗. This complements a recent result of the second author,

who showed that this lifting property is not a consequence of ZFC.
Combining this lifting theorem with a recent result of the first author, we

also prove that CH implies there is an order-reversing autohomeomorphism

of H∗, the Čech-Stone remainder of the half line H = [0,∞).

1. Introduction

Let I denote the unit interval [0, 1], and let M = N × I. Let π : M → N denote
the natural projection (n, x) 7→ n. Moving to the Čech-Stone compactifications,
π extends to a continuous surjection βπ : βM → βN. Because π is surjective and
π←(n) is compact for every n, the map βπ restricts to a surjection from M∗ =
βM \M onto N∗ = βN \N. Let π∗ = βπ ↾M∗. In other words, π∗ is the continuous
surjection M∗ → N∗ induced by π.

This paper is organized around two main theorems. The first states that, assum-
ing the Continuum Hypothesis (henceforth CH), every autohomeomorphism of N∗
can be “lifted” through π∗ to an autohomeomorphism of M∗:

Theorem 1. Assuming CH, if h is an autohomeomorphism of N∗, then there is an
autohomeomorphism H of M∗ such that π∗ ◦H = h ◦ π∗.

This theorem complements a recent result of the second author in [3], where he
shows that the conclusion of Theorem 1 fails consistently. Specifically, this lifting
property fails in the model of Veličković from [15] in which MAℵ1 holds and N∗ has
a nontrivial autohomeomorphism. Theorem 1 and the main theorem of [3], taken
together, answer Question 2.4 in [4].

It is not difficult to see that all trivial autohomeomorphisms of N∗ lift through π∗.
(We give the easy argument in Section 2.) Thus the conclusion of Theorem 1 holds
if all autohomeomorphisms of N∗ are trivial, which is implied by forcing axioms
like PFA, or even just OCAT . Thus this lifting property provides a rare example
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Key words and phrases. Čech-Stone remainders, autohomeomorphisms, Continuum Hypothe-

sis, applications of elementarity.
The first author is supported in part by NSF grant DMS-2154229.

1



2 WILL BRIAN, ALAN DOW, AND KLAAS PIETER HART

of a statement about Čech-Stone remainders that follows from forcing axioms and
from CH, but not from ZFC.

Our second theorem concerns yet another Čech-Stone remainder. Let H = [0,∞)
denote the space of nonnegative real numbers, and let H∗ = βH \ H. The order
on H induces a quasiorder on certain subsets of H∗. This is explained further in
Section 4 below (see also the survey of H∗ by the third author, [7]). An old folklore
question about H∗ is whether there is an autohomeomorphism of H∗ that reverses
this order. Our second theorem shows that, consistently, there is.

Theorem 2. CH implies there is an order-reversing autohomeomorphism of H∗.

On the other hand, a recent result of Vignati (see [16, Theorem C]) states that
OCAT + MA implies all autohomeomorphisms of H∗ are trivial. An easy argument
(which is given in Section 4 below) shows that all trivial autohomeomorphisms of H∗
are order-preserving. Thus the existence of an order-reversing autohomeomorphism
of H∗ is independent of ZFC.

Theorem 2 could really be called a corollary. It follows relatively easily from two
other theorems: Theorem 1 stated above, and a recent result of the first author in
[1], which states that, assuming CH, the shift map and its inverse are conjugate in
the autohomeomorphism group of N∗.

The next two sections are devoted to M∗ and N∗, and the proof of Theorem 1.
The fourth and final section of the paper contains some background material on H∗
and a proof of Theorem 2.

2. More on M∗ and N∗

The aim of this section is to introduce some ideas and notation concerning M∗
and N∗, and to prove two relatively easy positive results similar to Theorem 1.
These two results form part of the motivation for proving Theorem 1.

An almost permutation of N is a bijection from one co-finite subset of N to
another. A trivial autohomeomorphism of N∗ is a homeomorphism h induced by
an almost permutation f of N, in the sense that h = βf ↾ N∗, or equivalently, the
action of h on the clopen subsets of N∗ is simply h[A∗] = (f [A])∗, for all A ⊆ N.
Similarly, if f is a homeomorphism between two co-compact subsets of M then
Hf = βf ↾M∗ is an autohomeomorphism of M∗, and any such autohomeomorphism
of M∗ is called trivial.

Proposition 3. If h is a trivial autohomeomorphism of N∗, then there is a trivial
autohomeomorphism H of M∗ such that π∗ ◦H = h ◦ π∗.

Proof. Let h be a trivial autohomeomorphism of N∗. Fix an almost permutation f of
N such that h = βf ↾N∗. Define g : dom(f)× I → M by setting g(n, x) = (f(n), x).
Observe that g is a homeomorphism from one co-compact subset of M to another,
and therefore Hg = βg ↾ M∗ is a trivial autohomeomorphism of M∗. Because

π ◦ g = f ◦ π, we have βπ ◦ βg = βf ◦ βπ, and then restricting to the Čech-Stone
remainders, π∗ ◦Hg = h ◦ π∗. □

The existence of a nontrivial autohomeomorphism of N∗ is independent of ZFC.
On the one hand, Walter Rudin proved in [11] that CH implies there are 2c auto-
homeomorphisms in total, though of course only c of them can be trivial. On the
other hand, Shelah proved in [12, Chapter 4], via an oracle-c.c. iteration, that it
is consistent to have all autohomeomorphisms trivial. Building on Shelah’s work,
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Shelah and Steprāns showed in [13] that PFA implies all autohomeomorphisms are
trivial. Veličković showed in [15] that OCAT + MA suffices, though it is consis-
tent with MAℵ1 to have nontrivial autohomeomorphisms. (Here OCAT denotes
Todorčević’s Open Coloring Axiom, defined in [14], now sometimes called OGA.)
Building on work of Moore in [10], DeBondt, Farah, and Vignati showed in [2] that
OCAT alone implies all autohomeomorphisms of N∗ are trivial. Combined with
Proposition 3, this shows Theorem 1 remains true when CH is replaced with OCAT .

Corollary 4. Assuming OCAT , if h is an autohomeomorphism of N∗, then there
is an autohomeomorphism H of M∗ such that π∗ ◦H = h ◦ π∗. □

In light of this, the main point of Theorem 1 is not simply that the conclusion is
consistent, but specifically that it follows from CH. This is good to know for two
reasons: because it contributes to the longstanding program of understanding the
behavior of Čech-Stone remainders under CH, and because it enables us to prove
Theorem 2. Note that the conclusion of Theorem 2 is not implied by OCAT (see
Proposition 12 below), and indeed, we do not currently know how to obtain an
order-reversing autohomeomorphism of H∗ except via CH.

For each n ∈ N, let In = π←(n) = {n}× I. These are the connected components
of M. Analogously, for each u ∈ N∗ let Iu = (π∗)←(u). Equivalently,

Iu =
⋂
A∈u

(π∗)←
[
clβNA

]
=

⋂
A∈u

clβM(π←[A]).

These are the connected components of M∗ (see [7, Corollary 2.2]).
In particular, if H is an autohomeomorphism of M∗, then H permutes the set

{Iu : u ∈ N∗} of connected components of M∗. Let ρH denote the corresponding
permutation of N∗, so that H(Iu) = IρH(u) for all u ∈ N∗.

If B∗ is clopen in N∗, then (π∗)←[B∗] is clopen in M∗, by the continuity of π∗.
But the converse is also true: if C is clopen in M∗, then C = (π∗)←[B∗] for some
clopen B∗ ⊆ N∗. To see this, note that if C is clopen then C and M∗ \ C are both
compact, so π∗[C] and π∗[M∗ \ C] are both compact as well. But these sets are
disjoint, because (π∗)←(u) = Iu is connected for each u ∈ N∗, which means either
Iu ⊆ C or Iu ⊆ M∗ \ C. Hence π∗[C] and π∗[M∗ \ C] are complementary closed
sets, hence clopen, and C = (π∗)← [π∗[C]] and M∗ \ C = (π∗)← [π∗[M∗ \ C]].

Proposition 5. If H is an autohomeomorphism of M∗, then ρH is an autohome-
omorphism of N∗ such that π∗ ◦H = ρH ◦ π∗.

Proof. That π∗ ◦ H = ρH ◦ π∗ follows from the definition of ρH , so we need only
show ρH is an autohomeomorphism of N∗. Because ρH is bijective (again, by
definition) and N∗ is compact, it suffices to show ρH is continuous. Let A ⊆ N,
so that A∗ is a basic clopen subset of N∗. Then (π∗)←[A∗] is a clopen subset of
M∗. Because H is a homeomorphism, H←

[
(π∗)←[A∗]

]
is clopen as well. By the

paragraph preceding this proposition, this means there is some clopen B∗ ⊆ N∗
such that H←

[
(π∗)←[A∗]

]
= (π∗)←[B∗]. But

H←
[
(π∗)←[A∗]

]
= (π∗ ◦H)←[A∗] = (ρH ◦ π∗)←[A∗] = (π∗)←

[
ρ←H [A∗]

]
,

so (π∗)←
[
ρ←H [A∗]

]
= (π∗)←[B∗], which implies ρ←H [A∗] = B∗. □

In other words, this proposition states that autohomeomorphisms of M∗ project
downward through π∗ to autohomeomorphisms of N∗. That is, Theorem 1 remains
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true, without even needing to assume CH, if we switch the roles of M∗ and N∗. The
opposite direction, lifting upward through π∗ rather than projecting downward, is
more subtle, and this more difficult direction is the content of Theorem 1.

3. A proof of Theorem 1

Proof of Theorem 1: Let h be an autohomeomorphism of N∗. Using CH, we aim
to construct an autohomeomorphism H of M∗ such that π∗ ◦ H = h ◦ π∗. Our
construction of H needs a few ingredients.

The first is a map h+ : P(N) → P(N) with the property that for all subsets A
of N we have h[A∗] = h+(A)∗.

The second is a suitable base for the closed sets of M∗ that is a distributive lattice
with respect to ∪ and ∩. We shall describe H dually by specifying an automorphism
of that base.

Let B be a countable distributive lattice base for the closed sets of I, say the
lattice generated by the family of closed intervals with rational end points. We
identify members of BN with closed subsets of M in the obvious way: if B ∈ BN

then

FB =
⋃{

{k} ×B(k) : k ∈ N
}

In this way the power BN determines a base for the closed sets of M, and hence also
for the closed sets of βM, as the following lemma implies.

For the ring-theoretic approach one could take the subring R of the ring C(I)
generated by the constant functions and the functions dB for B ∈ B, where dB(x) =
d(x,B). The power RN represents a subring of C(M) and the bounded elements of
it would be the analogue of BN in what follows.

Lemma 6. If F and G are closed and disjoint subsets of M then there are members
B and C of BN such that F ⊆ FB, G ⊆ FC and FB ∩ FC = ∅. □

Because for closed subsets F and G of M we have clβM F ∩M∗ = clβMG∩M∗ if
and only if {n : F ∩ In ̸= G ∩ In} is finite, we see that the reduced power BN/fin
determines a base for the closed sets of M∗: the family {F ∗B : B ∈ BN}. We have
F ∗B ⊆ F ∗C if and only if {k : B(k) ⊆ C(k)} is cofinite. The latter condition also
defines the partial order of BN/fin.

It follows that if we let B∗ denote the equivalence class of B ∈ BN in BN/fin we
get the equivalence

B∗ ⩽ C∗ if and only if F ∗B ⊆ F ∗C

for B,C ∈ BN.
The algebraic structure of the lattice BN/fin is determined completely by its

partial order, so it will suffice to define an automorphism of the partially ordered
set (BN/fin,⩽).

We define this automorphism by defining a partial map φ : BN → BN with the
following properties. (The construction is detailed below.)

(1) If B ∈ BN then there are unique C ∈ domφ and D ∈ ranφ such that
B =∗ C and B =∗ D; this uniqueness ensures that φ determines a well-
defined surjection from BN/fin to itself.
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(2) If B and C are in domφ, and if A1 = {k : B(k) ⊆ C(k)} and A2 =
{k : C(k) ⊆ B(k)}, then {k : φ(B)(k) ⊆ φ(C)(k)} =∗ h+(A1) and
{k : φ(C)(k) ⊆ φ(B)(k)} =∗ h+(A2).

In condition (2) the set A3 = N \ (A1 ∪A2) is the set of k where B(k) and C(k)
are incomparable. It follows that h+(A3) is mod finite equal to the set of k where
φ(B)(k) and φ(C)(k) are incomparable.

Lemma 7. The conditions above ensure that φ induces an automorphism of the
partially ordered set (BN/fin,⩽).

Proof. Since domφ and ranφ intersect every equivalence class in exactly one point
we automatically obtain a surjective map φ∗ from BN/fin to itself.

In order to see that φ∗ is injective assume φ∗(B∗) = φ∗(C∗). This means that
{k : φ(B)(k) = φ(C)(k)} is co-finite, hence so are {k : φ(B)(k) ⊆ φ(C)(k)} and
{k : φ(B)(k) ⊆ φ(C)(k)}. But this means, with the notation as in condition (2)
above, that h+(A1) and h+(A2) are co-finite too. Because h+ represents h the sets
A1 and A2 must then be co-finite as well, and we conclude that {k : B(k) = C(k)}
is co-finite and hence that B = C even.

Similarly, using that A1 is cofinite if and only if h+(A1) is co-finite, we obtain
that B∗ ⩽ C∗ iff φ(B∗) ⩽ φ∗(C∗), and so φ∗ is an automorphism. □

Given A ⊆ N, define M∗A =
(⋃

n∈A In
)∗

= clβM
(⋃

n∈A In
)
\M.

Lemma 8. The autohomeomorphism H of M∗ determined by φ∗ satisfies h◦π∗ =
π∗ ◦H.

Proof. To show that π∗ ◦H = h ◦ π∗ we let A ⊆ N and show that

π∗
[
H[M∗A]

]
= h

[
π∗[M∗A]

]
.

Define B and I in BN by

B(k) =

{
I if k ∈ A

∅ if k /∈ A

and I(k) = I for all k; in our construction we shall have I ∈ domφ and φ(I) = I.
Then A = {k : I(k) ⊆ B(k)} and so

{k : I ⊆ φ(B)(k)} = {k : φ(I)(k) ⊆ φ(B)(k)} =∗ h+(A).

Likewise N \A = {k : B(k) ⊆ ∅} and we obtain

{k : φ(B)(k) = ∅} =∗ h+(N \A) =∗ N \ h+(A).

We deduce that H[M∗A] = M∗h+(A) and so

π∗
[
H[M∗A]

]
= π∗[M∗h+(A)] = h+(A)∗ = h[A∗] = h

[
π∗[M∗A]

]
. □

The construction. Using CH, fix an enumeration ⟨Bα : α ∈ ω1⟩ of BN. In a
recursion of length ω1 we construct two sequences ⟨Cα : α ∈ ω1⟩ and ⟨Dα : α ∈ ω1⟩
of members of BN. These will be such that

φ =
{
⟨Cα, Dα⟩ : α ∈ ω1

}
is the map that we seek.

To begin the construction we let

• C0 = D0 = ⟨∅ : n ∈ N⟩, and
• C1 = D1 = ⟨I : n ∈ N⟩.
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• C2 = D2 = ⟨[0, 12 ] : n ∈ N⟩.

The first two conditions take care of the maximum and minimum of BN/fin and
facilitate the proof of Lemma 8. The third condition ensures that our autohome-
omorphism H will preserve the order on each of the Iu. We have not yet said
what this order is, and that is because one does not need to worry about it yet.
This third condition does not affect the rest of the proof in this section, but we
include it because it will be useful in Section 4 when finding an order-reversing
autohomeomorphism of H∗.

Next let α ⩾ 2 and assume we have φα =
{
⟨Cβ , Dβ⟩ : β ∈ α

}
such that φα

satisfies conditions (1) and (2) above up to α, that is

(1) If γ < β < α then {k : Cγ(k) ̸= Cβ(k)} and {k : Dγ(k) ̸= Dβ(k)} are
infinite; this ensures the uniqueness clause in (1).

(2) If γ < β < α and A1 = {k : Cγ(k) ⊆ Cβ(k)} and A2 = {k : Cγ(k) ⊆ Cβ(k)}
then {k : Dγ(k) ⊆ Dβ(k)} =∗ h+(A1) and {k : Dγ(k) ⊆ Dβ(k)} =∗

h+(A2).

We extend φα to φα+1, as follows.

• If α is even let Cα be the first term of the sequence ⟨Bα : α ∈ ω1⟩ that
satisfies Bα ̸=∗ Cβ for all β < α. We show how to determine Dα so as to
satisfy the conditions above up to and including α.

• If α is odd let Dα be the first term of the sequence ⟨Bα : α ∈ ω1⟩ that
satisfies Bα ̸=∗ Dβ for all β < α. We show how to determine Cα so as to
satisfy the conditions above up to and including α.

We shall only deal with the even case; the argument in the odd case is the mirror
image of that in the even case.

We stop before we start, however. It turns out that the second assumption on
the recursion is too weak.

To illustrate this assume that there are γ and β below α such that the set A of
k such that Cγ(k) ⊆ Cα(k) ⊆ Cβ(k) is infinite. Then we shall need that Dγ(k) ⊆
Dα(k) ⊆ Dβ(k) for all but finitely many k ∈ h+(A). We shall certainly have
Dγ(k) ⊆ Dβ(k) for all but finitely many k ∈ h+(A), so there seems to be no
problem specifying Dα(k) for these values of k.

But it is very well possible that for all k ∈ A (or at least infinitely many) the set
Cα(k) is a subset of the interior of Cβ(k). In that case there is a δ such that for
all these k we have Bδ(k) ∪ Cβ(k) = I and Bδ(k) ∩ Cα(k) = ∅.

If the first such δ is (much) larger than α then it seems likely that we only
ensured Cγ(k) ⊆ Cβ(k) for enough k ∈ h+(A), but possibly not that Cγ(k) is a
subset of the interior of Cβ(k).

Because “Cα(k) is in the interior of Cβ(k)” is expressible in terms of the lattice
operations and hence in terms of the order we should have “Dα(k) is in the interior
of Dβ(k)” often enough as well. But the latter is impossible in case we did not
ensure enough times that Dγ(k) is in the interior of Dβ(k).

To fix this problem we need to find a way to “look ahead” to later stages of the
construction, but without explicitly using ordinals larger than α. That way is via
quantifiers and elementarity.

To stay with our example we note that “B(k) is in the interior of C(k)” is
expressible as (∃x)ψ

(
B(k), C(k), x

)
, where ψ(y, z, x) is “y ∩ x = ∅ ∧ z ∪ x = I”.
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So, given γ, β < α we should also look at A = {k : (∃x)ψ(Cγ(k), Cβ(k), x(k))}
and ensure that also h+(A) =∗ {k : (∃x)ψ(Dγ(k), Dβ(k), x(k))}. This then will
help us build Dα such that Dα(k) is in the interior of Dβ(k) often enough.

We strengthen condition (2) so that it covers all formulas of lattice theory and
all finite sets of ordinals.

(∗)α For every formula χ in the language of lattice theory with free variables x1,
. . . , xn, and for every tuple (β1, . . . , βn) of ordinals below α, the setA =

{
k :

χ
(
Cβ1(k), . . . , Cβn(k)

)}
satisfies h+(A) =∗

{
k : χ

(
Dβ1(k), . . . , Dβn(k)

)}
.

In the example above we would have χ(x1, x2) equal to (∃x)ψ(x1, x2, x).
The sets ∅ and I are the interpretations of the constants 0 and 1 of the language

of lattice theory in B and we have that same lattice B in every coordinate. It follows
that for every formula under consideration that involve only ∅ and/or I the set of ks
where the formula holds is either empty or equal to ω. This means that (∗)2 holds
and we have a solid basis for our recursion.

An application of elementary equivalence and saturation. Before we start
to build Dα we need an intermediate result. This will involve some model theory,
especially elementary equivalence and saturation. The results that we need can be
found in [8, Chapter 10] or [9, Chapter 8].

We fix u ∈ N∗ for the moment, put v = h(u), and consider the ultrapowers
Bu = BN/u and Bv = BN/v.

The structures (Bu, C̄) and (Bv, D̄) are elementarily equivalent. Here C̄ is the
sequence of elements of Bu determined by the sequence ⟨Cβ : β ∈ α⟩, and likewise
D̄ is determined in Bv by ⟨Dβ : β ∈ α⟩.

The reason is that when χ is a formula with free variables x1, . . . , xn and
if β1, . . . , βn are members of α such that Bu |= χ(Cβ1

, . . . , Cβn
) then the set

A1 = {k : B |= χ(Cβ1(k), . . . , Cβn(k))} belongs to u. Then h+(A1) belongs to v,
and hence so does A2 = {k : B |= χ(Dβ1(k), . . . , Dβn(k))}. But this then implies
that Bv |= χ(Dβ1

, . . . , Dβn
).

The ultrapower Bv is saturated and so [8, Lemma 10.1.3] or [9, Lemma 8.1.3]
applies, which guarantees the existence of an element D of Bv such that (Bu, C̄, Cα)
and (Bv, D̄,D) are elementarily equivalent.

This means that a local version of (∗)α+1 holds at the points u and v, with D in
place of Dα:

if χ is a formula from the language of lattices with free variables x1,
. . .xn, xn+1, and if β1, . . . , βn are members of α then the two sets
A1 = {k : B |= χ(Cβ1

(k), . . . , Cβn
(k), Cα(k))} and A2 = {k : B |=

χ(Dβ1
(k), . . . , Dβn

(k), D(k))} satisfy A1 ∈ u if and only if A2 ∈ v.

For every u ∈ N∗ we choose Du such that (Bu, C̄, Cα) and (Bv, D̄,Du) are
elementarily equivalent.

Now let χ be a formula, with free variables x1, . . . , xn, and let β1, . . . , βn be
elements of α+ 1. By the rules of interpretation we know that for every u ∈ N∗ we
have either Bu |= χ(Cβ1 , . . . , Cβn), or Bu |= ¬χ(Cβ1 , . . . , Cβn).

Then the former implies that Bv |= χ(Dβ1
, . . . , Dβn

), and the latter implies that
Bv |= ¬χ(Dβ1

, . . . , Dβn
), where, in both cases, we insert Du at the positions where

βi = α.
Translated to subsets of N this becomes if A = {k : B |= χ(Cβ1

(k), . . . , Cβn
(k))}

belongs to u then {k : B |= χ(Dβ1(k), . . . , Dβn(k))} and h+(A) both belong to v.
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Making Dα. We build Dα out of bits and pieces of the elements Du chosen above.
The idea will be to make Dα in a recursion of length ω each time adding finitely

many coordinates of finitely many Du in such a way that the higher the coordinates
the more formulas these decide. In the end Dα should then decide every formula
almost everywhere.

We also have to take care of the ordinals below α so we start by fixing an
enumeration of the set of pairs ⟨χ, β̄⟩ of formulas and finite sequences of ordinals
in α+1 as

〈
⟨χm, β̄m⟩ : m ∈ N

〉
. We assume that the number of free variables in γm

is always equal to the length of the sequence β̄m, call this number pm.
Each pair ⟨χm, β̄m⟩ determines a partition of N into two sets

Am,0 = {k : B |= ¬χm(Cβm,1
(k), . . . , Cβm,pm

(k))}

and

Am,1 = {k : B |= χm(Cβm,1(k), . . . , Cβm,pm
(k))}.

Using the enumeration we make a sequence of partitions ⟨Pm : m ∈ N⟩ of N, as
follows.

For each sequence s ∈ 2m let As =
⋂

l<mAl,s(l), and put Pm = {As : s ∈ 2m}.
Thus P0 = {N}.

The map h+ transforms these partitions in almost-partitions, that is, the union⋃
Pm is co-finite, and if s, t ∈ 2m and s ̸= t then h+(As) ∩ h+(At) is finite. This

implies that there is a natural number Nm such that {h+(A) \Nm : A ∈ Pm} is a
partition of N \Nm.

In fact, by raising Nm if nesessary we can ensure that the map A 7→ h+(A)\Nm

is an isomorphism between the Boolean algebras generated by {Al,i : l < m, and
i ∈ 2} and {h+(Al,i) \Nm : l < m, and i ∈ 2} respectively.

Other partitions. Let us fix m for the time being.
The definition of h+ implies that for every u ∈ N∗ and s ∈ 2m we have As ∈ u

iff h+(As) ∈ h(u).
By the local version of (∗)α+1 above we know that for every u and s we have

As ∈ u iff the set Bu,s belongs to h(u), where Bu,s is the set of those k that satisfy
for all l < m:

• B |= χl(Dβl,1
(k), . . . , Dβl,pl

(k)) when s(l) = 1, and

• B |= ¬χl(Dβl,1
(k), . . . , Dβl,pl

(k)) when s(l) = 0.

In both cases we substitute Du for Dβl,i
whenever βl,i = α.

Note that this implies that h+(As) ∩ Bu,s ∈ h(u) iff As ∈ u. It follows that if
s ∈ 2m then the family {B∗u,s : u ∈ A∗s} covers h[A∗s], hence there is a finite subset Fs

of A∗s such that {B∗u,s : s ∈ Fu} covers h[A∗s]. This means that h+(As)\
⋃

u∈Fs
Bu,s

is finite.
We can shrink the sets Bu,s so that

• Bu,s ⊆ h+(As) for all u ∈ Fs

• the sets h+(As) \
⋃

u∈Fs
Bu,s remain finite

as a consequence the whole family Qm =
⋃

s∈2m{Bu,s \ Nm : u ∈ Fs} is pairwise
disjoint, and its union is co-finite; we increase Nm if necessary so that the latter
union contains N \Nm. In short, the family Qm is a partition of N \Nm that is a
refinement of {h+(A) : A ∈ Pm}.
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Building Dα. Using the construction above we obtain a sequence ⟨Qm : m ∈ N⟩
of almost-partitions and a sequence ⟨Nm : m ∈ N⟩ of natural numbers such that
{Q \ Nm : Q ∈ Qm} is a partition of N \ Nm and, without loss of generality
Nm < Nm+1 for all m.

As indicated above we build Dα piece by piece, more precisely, for every m we
define Dα on the interval [Nm, Nm+1) using the Du with u ∈

⋃
{Fs : s ∈ 2m}.

Fix such an m. If k ∈ [Nm, Nm+1) then there is one pair (s, u) with s ∈ 2m

and u ∈ Fs such that k ∈ Bu,s. Define Dα(k) = Du(k). Then, by the very choice
of Bu,s we get, for all l < m:

• B |= χl(Dβl,1
(k), . . . , Dβl,pl

(k)) when s(l) = 1, and

• B |= ¬χl(Dβl,1
(k), . . . , Dβl,pl

(k)) when s(l) = 0.

By the choice of Nm above we find that for ⟨l, i⟩ ∈ m× 2 we have h+(Al,i) \Nm =⋃
{Bu,s \Nm : s ∈ 2m, u ∈ Fs, s(l) = i}. It follows that

h+(Al,1) ∩ [Nm, Nm+1) =
{
k : B |= χl(Dβl,1

(k), . . . , Dβl,pl
(k))

}
∩ [Nm, Nm+1)

and

h+(Al,0) ∩ [Nm, Nm+1) =
{
k : B |= ¬χl(Dβl,1

(k), . . . , Dβl,pl
(k))

}
∩ [Nm, Nm+1)

Verification of (∗)α+1. Let l ∈ N; we show that (∗)α+1 holds for the pair ⟨χl, β̄l⟩.
We have

Al,1 = {k : B |= χl(Cβl,1
(k), . . . , Cβl,pl

(k))},

Bl,1 = {k : B |= χl(Dβl,1
(k), . . . , Dβl,pl

(k))}.

We must show that Bl,1 =∗ h+(Al,1).
But our construction above ensures that Bl,1∩ [Nm, Nm+1) = h+(Al,1) whenever

m > l. This clearly suffices, and this completes the proof. □

Remark 9. The proof above is based on Wallman’s representation theorem for
distributive lattices, see [17]. That paper established a many-valued duality between
certain distributive lattices and compact spaces: to every distributive lattice there
corresponds a compact space, and to every compact space there may correspond
various lattices, e.g., the full family of closed sets, or any base for its closed sets
that forms a lattice.

A true duality for compact spaces is due to Gelfand and Kolomogorov in [6]: here
the ring of continuous functions is the algebraic counterpart of the compact space.
One can give a version of our proof based on this duality, where the ring C(M∗) of
continuous functions on M∗ is represented as the quotient of the ring C∗(M) by the
ideal of functions that have limit zero at infinity. One can give a version of our proof
that constructs an automorphism of C(M∗) whose dual is an autohomeomorphism
as desired.

4. An order-reversing autohomeomorphism of H∗

We begin this section with a description of the standard quasiorder on the con-
nected components Iu of M∗.

Given a sequence x̄ = ⟨xn : n ∈ N⟩ ∈ IN and u ∈ N∗, define

x̄u = u-limn(n, xn),
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where the limit is taken in βM. Equivalently, this is the unique element of the set⋂
A∈u clβM{(n, xn) : n ∈ A}. Let Cu ⊆ Iu denote the set of all points of this form:

Cu = {x̄u : x̄ ∈ IN}.

This is a proper subset of Iu (see [7]). Observe that Cu has a natural linear order:

x̄u ≤u ȳu ⇔ {n : xn ≤ yn} ∈ u.

The fact that this is a total order of Cu can be seen as an instance of  Loś’ Theorem,
because Cu is really just the ultrapower IN/u. Observe that Cu has a least element
0̄u and a greatest element 1̄u, where 0̄ denotes the constant sequence ⟨0, 0, 0, . . . ⟩
and 1̄ the constant sequence ⟨1, 1, 1, . . . ⟩.

Proposition 10. The set Cu \ {0̄u, 1̄u} is dense in Iu, and its subspace topology is
the same as the order topology induced by ≤u. Furthermore,

(1) Iu is irreducible between 0̄u and 1̄u, and if p ∈ Cu \ {0̄u, 1̄u} then Iu \ {p}
has two connected components, one containing 0̄u and the other 1̄u.

(2) If x, y ∈ Cu and x <u y, then every subcontinuum of Iu that contains y and
0̄u also contains x, and inversely, every subcontinuum of Iu that contains
x and 1̄u also contains y.

See [7, Section 2] for a proof. This proposition implies that {0̄u, 1̄u} is a topologi-
cally definable subset of Iu. In particular, any autohomeomorphism H : M∗ → M∗
must map {0̄u, 1̄u} to {0̄ρH(u), 1̄ρH(u)}.

Part (2) of this proposition enables us to extend the total order ≤u on Cu to
a quasiorder on Iu, also denoted ≤u: for any x, y ∈ Iu, define x ≤u y if and only
if every subcontinuum of Iu that contains y and 0̄u also contains x, if and only if
every subcontinuum of Iu that contains x and 1̄u also contains y.

Let us note that ≤u is not a partial order. Let us write x ≡u y to mean that
x ≤u y and y ≤u x. For each x ∈ Iu, the set Lx = {y ∈ Iu : y ≡u x} is called the
layer of x in Iu. If x ∈ Cu, then it turns out Lx = {x}. For points x ∈ Iu \ Cu

there are two possibilities: Lx = {x} or |Lx| = 2c. There are always x for which the
second possibility obtains; under CH there are points outside Cu that have a one-
point layer, but in the Laver model all points outside Cu have non-trivial layers,
see [5]. The layers of Iu can be quite large, and topologically complex: all are
indecomposable continua for example. The quotient of Iu by ≡u is the Dedekind
completion of (Cu,≤u), with its usual order topology. So one may think of Iu as
something like the Dedekind completion of Cu, but where some of the gaps have
been filled not with single points, but with complicated compacta.

An autohomeomorphism H : M∗ → M∗ is order-preserving if

if x, y ∈ Iu and x ≤u y, then H(x) ≤ρH(u) H(y),

and H is order-reversing if

if x, y ∈ Iu and x ≤u y, then H(y) ≤ρH(u) H(x).

Equivalently, H is order-preserving if H(0̄u) = 0̄ρH(u) and H(1̄u) = 1̄ρH(u) for all
u ∈ N∗, and it is order-reversing if H(0̄u) = 1̄ρH(u) and H(1̄u) = 0̄ρH(u) for all u.

Observe that an autohomeomorphism H of M∗ need be neither order-preserving
nor order-reversing: it may have H(0̄u) = 0̄ρH(u) for some u and H(0̄u) = 1̄ρH(u) for
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other u. For example, given A ⊆ N, consider the homeomorphism flipA : M → M
that flips the intervals in A× I:

flipA(n, x) =

{
(n, 1 − x) if n ∈ A,

(n, x) if n /∈ A.

The trivial autohomeomorphism of M∗ induced by flipA is order-preserving if A is
finite, it is order-reversing if A is co-finite, and it is neither order-preserving nor
order-reversing if A and N \A are both infinite.

Lemma 11. Assuming CH, if h is an autohomeomorphism of N∗, then there is an
order-preserving autohomeomorphism H of M∗ such that π∗ ◦H = h ◦ π∗. □

This lemma merely re-states Theorem 1, but with the added requirement that H be
order-preserving. To prove the lemma, simply note that our proof of Theorem 1 in
the previous section already produces an order-preserving map. (The construction

ensures that H maps K =
(
N× [0, 12 ]

)∗
to itself, which means that for every u,

0̄u ∈ K cannot map to 1̄ρH(u) /∈ K, and therefore must map to 0̄ρH(u).)

Observe that H is obtained naturally as a topological quotient of M: just glue the
rightmost point of each connected component In to the leftmost point of the next
component In+1. More precisely, define an equivalence relation ∼ on M by setting
(n, 1) ∼ (n + 1, 0) for all n ∈ N (and of course (n, x) ∼ (n, x) for all (n, x) ∈ M).
The quotient space M/∼ is H.

One can obtain H∗ as a quotient of M∗ in a similar fashion. First, let σ denote
the autohomeomorphism of N∗ induced by the successor map n 7→ n + 1 (which
is an almost permutation of N). Explicitly, if u ∈ N∗ then σ(u) is the ultrafilter
generated by {A + 1 : A ∈ u}. Next, like with M and H, our quotient mapping
M∗ → H∗ is defined by gluing the rightmost point of each connected component
Iu to the leftmost point of the “next” component, Iσ(u). More precisely, define an
equivalence relation ∼ on M∗ by setting 1̄u ∼ 0̄σ(u) for all u ∈ N∗ (and of course
x ∼ x for all x ∈ M∗). Then the quotient space M∗/∼ is H∗ (see [7, Theorem 2.4]).
Let Q : M∗ → H∗ denote this quotient mapping.

For each u ∈ N∗, our quotient mapping Q : M∗ → H∗ restricts to an injection
on Iu. Because Iu is compact and Q continuous, this means Q↾Iu is an embedding
Iu → H∗. In other words, we may (and do) think of the Iu as subspaces of H∗. For
each u ∈ N∗, let IQu = Q[Iu] denote this copy of Iu in H∗. Alternatively,

IQu =
⋂
A∈u

clβH
⋃

{[n, n+ 1] : n ∈ A}.

Via this identification of Iu with IQu , each IQu ⊆ H∗ has a natural quasi-order, the
push-forward of the quasi-order ≤u on Iu, which we still denote by ≤u in IQu .

Let us note that the IQu are examples of what are called standard subcontinua of
H∗. These are special connected subsets of H∗ whose structure and interrelation-
ships determine much about the topology of H∗ (see [7]Section 5). It is not difficult
to see that the ordering ≤u described above for IQu matches the usual quasi-order
defined on a standard subcontinuum of H∗.

Let us say that a homeomorphism H : H∗ → H∗ is order-reversing if there is a
permutation ρ of N∗ such that

◦ H[IQu ] = IQρ(u) for all u ∈ N∗, and

◦ if x ≤u y in IQu , then H(y) ≤ρ(u) H(x) in IQρ(u).
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In other words, an order-reversing autohomeomorphism of H is one that permutes
the IQu while reversing their order.

Proposition 12. No trivial autohomeomorphism of H∗ is order-reversing.

Proof. Let H be a trivial autohomeomorphism of H∗. We aim to show H is not
order-reversing. Because H is trivial, there is a homeomorphism f : C → D, where
C and D are co-compact subsets of H, such that H = βf ↾ H∗. Observe that f
must be order-preserving on a tail of H: i.e., if a < b and a, b are sufficiently large,
then f(a) < f(b).

For each n ∈ N, fix an, bn such that n ≤ an < bn ≤ n+ 1. Let ā = ⟨an : n ∈ N⟩
and b̄ = ⟨bn : n ∈ N⟩, and let f(ā) = ⟨f(an) : n ∈ N⟩ and f(b̄) = ⟨f(bn) : n ∈ N⟩.

Fix u ∈ N∗ and suppose H[IQu ] = IQv for some v ∈ N∗. (Otherwise H is not
order-reversing.) Let x = Q(āu) and y = Q(b̄u). Because an < bn for all n, we have
āu <u b̄u in Iu, which means x = Q(āu) <u Q(b̄u) = y in IQu .

Now H(x) = βf(Q(āu)) = Q(f(ā)v), and similarly H(y) = Q(f(b̄)v). But
because f is order-preserving on a tail, we have f(an) < f(bn) for all sufficiently
large n, and therefore f(ā)v ≤v f(b̄)v. Hence H(x) = Q(f(ā)v) ≤v Q(f(b̄)v) =
H(y) in IQv , and this means that H is not order-reversing. □

Corollary 13. It is consistent that no autohomeomorphism of H∗ is order-revers-
ing.

Proof. As we mentioned already in Section 2, a recent result of Vignati in [16] states
that OCAT + MA implies all autohomeomorphisms of H∗ are trivial. The corollary
follows from this and the previous proposition. □

Proof of Theorem 2. As before, let σ denote the trivial autohomeomorphism of
N∗ induced by the successor function n 7→ n + 1 on N. By a recent theorem of
the first author (the main theorem of [1]), CH implies σ and σ−1 are conjugate
in the autohomeomorphism group of N∗. In other words, CH implies there is an
autohomeomorphism f of N∗ such that f ◦σ = σ−1 ◦f . Fix some such f and, using
CH again and applying Lemma 11, fix an order-preserving autohomeomorphism F
of M∗ such that π∗ ◦ F = f ◦ π∗.

Recall the homeomorphism flipN : M → M is defined by

flipN(n, x) = (n, 1 − x)

for all (n, x) ∈ M. Let flip∗N = β flipN ↾M∗ denote the trivial autohomeomorphism of
M∗ induced by flipN. Clearly flip∗N is order-reversing on each Iu, and in particular,

flip∗N(1̄u) = 0̄u and flip∗N(0̄u) = 1̄u

for every u ∈ N∗.
Because flip∗N is an order-reversing autohomeomorphism of M∗ and F is an order-

preserving autohomeomorphism of M∗, their composition

H = F ◦ flip∗N
is an order-reversing autohomeomorphism of M∗. In particular, observe that

H(1̄u) = F ◦ flip∗N(1̄u) = F (0̄u) = 0̄f(u)

and
H(0̄u) = F ◦ flip∗N(0̄u) = F (1̄u) = 1̄f(u)

for every u ∈ N∗.
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Recall the equivalence relation ∼ on M∗ described earlier in this section, whose
non-singleton equivalence classes are the sets of the form {1̄u, 0̄σ(u)} for u ∈ N∗.
By our choice of f , for any given u ∈ N∗ we have

H(1̄u) = 0̄f(u) and H(0̄σ(u)) = 1̄f(σ(u)) = 1̄σ−1(f(u)).

In particular, H maps the ∼-equivalence class {1̄u, 0̄σ(u)} to the ∼-equivalence class

{1̄σ−1(f(u)), 0̄f(u)} (i.e., the class {1̄v, 0̄σ(v)} where v = σ−1(f(u))). In other words,
H respects the equivalence classes of the relation ∼. Consequently,

[x]∼ 7→ [H(x)]∼

is a well-defined mapping M∗/∼ → M∗/∼. Let h denote this mapping. Recalling
that Q denotes the quotient mapping from M∗ to M∗/∼, we have Q ◦H = h ◦Q.

We claim h is an order-reversing autohomeomorphism of H∗ ∼= M∗/ ∼. The
fact that h is an autohomeomorphism follows from the fact that H is, and that
h◦Q = Q◦H. Next, recall that for every u ∈ N∗, the quotient mapping Q restricts
to a homeomorphism Iu → IQu . Because the sets of the form Iu are the connected
components of M∗, the homeomorphism H maps each Iu homeomorphically to
IρH(u) = If(u). Thus, for each u ∈ N∗, the map h = Q ◦H ◦Q−1 is a composition

of homeomorphisms IQu → Iu → If(u) → IQf(u). Thus, setting ρ = f , h satisfies the

first clause in the definition of an order-reversing autohomeomorphism of H∗.
Finally, we wish to show that if x, y ∈ IQu and x ≤u y then h(y) ≤f(u) h(x). Fix

u ∈ N∗ and x, y ∈ IQu with x ≤u y. As in the previous paragraph, h = Q ◦H ◦Q−1
is a composition of homeomorphisms IQu → Iu → If(u) → IQf(u). Both Q and Q−1

preserve the order of x and y, while H reverses it, so h(y) ≤f(u) h(x). □

Remark 14. Peter had a knack of coming up with colourful descriptions of various
constructions. We thought it apt to give a Peter-esque description of the order-
reversing homeomorphism in this fashion.

One can think of M as a sequence of domino tiles. One obtains the map Q :
M → H, described above by tipping all tiles over to the right so that for every n
the top of In touches the bottom of In+1; after some welding the map Q is done.

If one tips all tiles over to the left and again does some welding to join the
bottom of In and the top of In+1 one obtains another map from M onto H: the
composition Q ◦ flip.

Both maps yields maps from M∗ onto H∗ that may be interpreted as tipping
over the domino tiles Iu, either all to the right, or all to the left, and doing the
analogous welding.

Our results show that under CH there is a autohomeomorphism of H∗ that re-
arranges the components Iu and flips them all over.

Clearly there is no autohomeomorphism of H itself that does this for the tiles In,
hence this autohomeomorphism is non-trivial.
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[15] Boban Velic̆ković, OCA and automorphisms of P(ω)/fin, Topology Appl. 49 (1993), no. 1,

1–13, DOI 10.1016/0166-8641(93)90127-Y. MR1202874

[16] Alessandro Vignati, Rigidity conjectures for continuous quotients, Ann. Sci. Éc. Norm. Supér.
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