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Abstract. We show there is no categorical metric continuum. This means

that for every metric continuum X there is another metric continuum Y such
that X and Y have (countable) elementarily equivalent bases but X and Y

are not homeomorphic. As an application we show that the chainability of the

pseudoarc is not a first-order property of its lattice of closed sets.

Introduction

Many properties of compact Hausdorff spaces can, naturally, be phrased in terms
of their families of closed sets. For a fair number of these one can find even first-
order formulas in the language of lattices that characterize them, see, e.g., [7].

In [1] and [4] it was shown that chainability is not a first-order property. In an
earlier version of the former paper the question was raised whether there is any
chainable continuum for which its chainability is expressible in first-order terms.
The authors offered the pseudoarc as a candidate.

If the pseudoarc were ‘first-order chainable’ then it would at once become a
categorical continuum. This is so because the pseudoarc is the only continuum
that is both chainable and hereditarily indecomposable. This would imply that any
continuum with a lattice-base for its closed sets that is elementarily equivalent to
some lattice base for the closed sets of the pseudoarc would itself be the pseudoarc.

In this note we show that no categorical continuum exists and hence, indirectly,
that the pseudoarc is not first-order chainable.

1. Preliminaries

1.1. Categoricity. Categoricity is a model-theoretic notion; we refer to [5, Section
6.3] for a complete treatment of the countable case, which is the case that we shall
need; we refer to [5] for other model-theoretic notions as well. A countable structure
S (group, lattice, ordered set) is categorical if every other countable structure that
satisfies the same first-order sentence as S is actually isomorphic to S. A prime
example is the set Q of rational numbers; it is, up to isomorphism, the only counta-
ble linearly ordered set that is densely ordered and without end points. Structures
that satisfy the same first-order sentences are usually said to be elementarily equi-
valent.

We extend these notions to cover compact Hausdorff spaces: we call two such
spaces elementarily equivalent if they have bases for the closed sets that are elemen-
tarily equivalent as lattices. A compact metric space is categorical if every compact
metric space that is elementarily equivalent to it is homeomorphic to it.

1.2. Creating surjections. The following lemma is used to construct continuous
surjections.
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Lemma 1.1 ([3, Theorem 1.2]). Let X and Y be compact Hausdorff spaces and let
C be a base for the closed subsets of Y that is closed under finite unions and finite
intersections. Then Y is a continuous image of X if and only if there is a map
φ : C → 2X such that

(1) φ(∅) = ∅ and if F 6= ∅ then φ(F ) 6= ∅;
(2) if F ∪G = Y then φ(F ) ∪ φ(G) = X; and
(3) if F1 ∩ · · · ∩ Fn = ∅ then φ(F1) ∩ · · · ∩ φ(Fn) = ∅. �

1.3. K0-functions. Consider a metric space X, with metric d, and a closed sub-
space A. Define a map κ : 2A → 2X by

κ(F ) =
{
x ∈ X : d(x, F ) ≤ d(x,A \ F )

}
.

In [6, § 21 XI] it is shown that for all closed sets F and G in A we have
• κ(F ) ∩A = F ;
• κ(F ∪G) = κ(F ) ∪ κ(G); and
• κ(A) = X and κ(∅) = ∅ — by the fact that d(x, ∅) = ∞ for all x.

Following [2] we call such a function a K0-function.

1.4. Chainability. A continuum is chainable if every finite open cover has a finite
chain refinement, where a chain refinement is an indexed refinement {Vi : i < n}
with the property that Vi ∩ Vj 6= ∅ if and only if |i− j| ≤ 1. The condition that V
is a chain refinement of U can be expressed by a (rather long) first-order formula.
The condition that U has a chain refinement is, a priori, not first-order as one does
not know beforehand how large the refinement is going to be. One gets a formula
of the form (∃V)

(∨
n φn(U ,V)

)
, where φn expresses that V is an n-element chain

refinement of U — this is an Lω1,ω-formula. Chainability proper is then defined by
infinitely many such formulas: one for each possible cardinality of U .

The authors of [1] identified one way of defining first-order chainability: make
sure the disjunction becomes finite. This would mean, in words: for every natural
number m there is a natural number n such that every open cover of size m has an
open chain refinement of size n or less.

The negation of this, namely that there is a natural number m such that for
every n there is an open cover for which every chain refinement has at least n mem-
bers, was called elastically chainable in [1].

2. The main lemma

Lemma 2.1. Let X and Y be metric continua and let B and C be a lattice bases
for their respective families of closed sets. Let u be any free ultrafilter on ω. There
is a map φ from C to the ultrapower Bu that satisfies the conditions in Lemma 1.1.

Proof. We consider Y embedded in the Hilbert cube Q and we let κ : 2Y → 2Q be
a K0-function. Furthermore, fix a continuous surjection f : X → [0, 1].

Enumerate C as 〈Cn : n ∈ ω〉 and put, for each n, E = {e ⊆ ω :
⋂

i∈e Ci = ∅}.
Observe that Y ∩

⋂
i∈e κ(Ci) = ∅ whenever e ∈ E.

Fix n < ω and take a positive number εn less than 2−n and all distances between
Y and

⋂
i∈e κ(Ci) for those e ∈ E that are subsets of n. Take a continuous map

gn : [0, 1] → Q such that the image is a subset of B(Y, εn) and such that it meets
every ball B(y, εn) with y ∈ Y (here we use that Y is a continuum: it has arbitrarily
small arcwise connected neighbourhoods).

For i < n let Dn
i be the preimage h←

[
g←n [κ(Ci)]

]
. Because κ is a K0-function

we know that Dn
i ∪Dn

j = X whenever Ci ∪ Cj = Y . Also, by the choice of εn, we
know that

⋂
i∈e Dn

i = ∅ whenever e ∈ E and e ⊆ n. Now expand the sets Dn
i to

get members Bn
i of B, retaining the property that

⋂
i∈e Dn

i = ∅ whenever e ∈ E
and e ⊆ n.
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The definition of φ is now straightforward: define φ(Ci) to be the u-equivalence
class of 〈Bn

i : n > i〉. Note that φ has the required properties even when we take
the reduced power modulo the co-finite filter. �

3. The main result

The following proposition is the key to the main result.

Proposition 3.1. Let X and Z be two metric continua. There is a third metric
continuum Y such that

(1) Z is a continuous image of Y ; and
(2) Y and X have elementarily equivalent bases for the closed sets.

Proof. Take countable bases B and D respectively for the closed sets of X and Z.
Fix a free ultrafilter u on ω and apply Lemma 2.1 to find a map φ : D → Bu as
in Lemma 1.1. Next apply the Löwenheim-Skolem theorem to obtain a countable
elementary substructure C of Bu that contains φ[D]. We let Y be the Wallman space
of the lattice C. Then Y is as required: the lattice C is elementarily equivalent to Bu

and hence to B itself. The map φ enables us, via Lemma 1.1, to map Y onto Z. �

3.1. The proof. It is now straightforward to prove the main assertion of this
note. In [8] Waraszkiewicz constructed a family of continua such that no single
metric continuum maps onto all of them. Let X be any metric continuum and
fix a continuum Z from that family that is not a continuous image of X. Apply
Proposition 3.1 to find a metric continuum Y that does map onto Z and yet has a
base for the closed sets that is elementarily equivalent to a base for the closed sets
of X. Clearly X and Y are not homeomorphic.

3.2. The pseudoarc. In an earlier version of [1] it was asked whether the pseu-
doarc is inelastically chainable. If it were it would show that the pseudoarc is
categorical.

The results of this paper imply that this corollary does not hold and hence that
the pseudoarc is elastically chainable. This argument simply shows that a natural
number m as in the definition exists, it does not provide a definite value.

The present version of [1] contains a proof that every normal space elastically
chainable in the sense that for every natural number N there is a three-element
open cover that cannot be refined by a chain-cover with fewer than N elements.
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