
Israel Journal of Mathematics
Volume 109, 1999, Pages 29–39
S 0012-2172(XX)0000-0

ω∗ HAS (ALMOST) NO CONTINUOUS IMAGES

ALAN DOW AND KLAAS PIETER HART

Abstract. We prove that the following statement follows from the Open

Colouring Axiom (OCA): if X is locally compact σ-compact but not com-

pact and if its Čech-Stone remainder X∗ is a continuous image of ω∗ then X
is the union of ω and a compact set.

It follows that the remainders of familiar spaces like the real line or the

sum of countably many Cantor sets need not be continuous images of ω∗.

Introduction

In [6] Parovičenko proved two results that have received the status of classical
in the study of compactifications. The first states that every compact space of
weight ℵ1 is a continuous image of the space ω∗ — the Čech-Stone remainder of ω —
and consequently that the Continuum Hypothesis (CH) implies that every compact
space of weight c is a continuous image of ω∗. The second result states that CH
implies that ω∗ is, up to homeomorphism, the only compact zero-dimensional space
without isolated points that is an F -space (disjoint open Fσ-subsets have disjoint
closures) in which nonempty Gδ-subsets have nonempty interiors — a space with
these properties is now generally known as a Parovičenko space.

It is largely because of Parovičenko’s second theorem that the space ω∗ is very
well understood under CH — see for example Van Mill’s survey [5]. One of the
reasons for this success is that very many Čech-Stone remainders are Parovičenko
spaces: if X is compact and zero-dimensional and of weight c or less then (ω×X)∗ is
a Parovičenko space.

There are examples to show Parovičenko’s results cannot be improved upon: 1) if
one adds ℵ2 (or more) Cohen reals to a model of CH then the ordinal space ω2 + 1
is not a continuous image of ω∗ (this follows from results of Kunen in [4]); 2) there
are two Parovičenko spaces one of which has a point of character ℵ1 whereas in the
other every point has character c, thus showing that Parovičenko’s second theorem
is equivalent to CH (Van Douwen and Van Mill [1]); and 3) if every homeomorphism
of ω∗ is trivial then ω∗ and

(
ω× (ω +1)

)∗ are not homeomorphic (see Van Mill [5];
the antecedent was proved consistent by Shelah in [7]).

In this paper we show it consistent that ω∗ is the only ‘naturally occurring’
Parovičenko space that is a continuous image of ω∗. By naturally occurring we
mean: of the form X∗, where X is locally compact, σ-compact but not compact.

To be precise our main theorem reads as follows.
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Main Theorem (OCA). If X is locally compact, σ-compact but not compact and
if X∗ is a continuous image of ω∗ then X is the disjoint sum of ω and a compact
space. In short, X∗ is ω∗.

That X must be locally compact and not compact is clear: X∗ must be com-
pact and nonempty. The assumption of σ-compactness is there to guarantee the
Parovičenko properties (except possibly for zero-dimensionality); this is due to Fine
and Gillman [3]. We also use the σ-compactness of X in our proof: at one point
we need a perfect map from X into the real line.

The theorem is false without some extra assumption on X; the ordinal space ω1

for example is locally compact, not compact and its one-point remainder is clearly a
continuous image of ω∗ but ω1 is definitely not the disjoint sum of ω and a compact
space. In fact, every compact space K can be realized as the remainder of some
pseudocompact space, namely ω1×K. We should like to have a version of our main
theorem for nonpseudocompact spaces in general but at present we do not know
what such a version should say.

The OCA in the statement of the theorem is the Open Colouring Axiom from
Todorčević [8]. It reads as follows: if X is separable and metrizable and if [X]2 =
K0 ∪ K1, where K0 is open in the product topology of [X]2, then either X has
an uncountable K0-homogeneous subset Y or X is the union of a countably many
K1-homogeneous subsets.

One can deduce OCA from the Proper Forcing Axiom (PFA) or prove it consistent
in an ω2-length countable support proper iterated forcing construction, using ♦
on ω2 to predict all possible subsets of the Hilbert cube and all possible open
colourings of these.

We have organized the paper as follows.
In Section 1 we reduce the problem to showing that the particular remainder D∗

is not a continuous image of ω∗, where D denotes the space ω × (ω + 1). At one
point in this reduction we shall require a known consequence of OCA. This suggests
an obvious question, which we shall come back to at the end of the paper.

In Section 2 we show that a continuous surjection from ω∗ onto D∗ cannot be
simple, where ‘simple’ means that it is induced by a map from D to [ω]<ω.

Finally then, in Section 3 we show that, under OCA, all surjections from ω∗

onto D∗ must be simple in the sense above. This proof largely parallels Veličković’s
proof, from [9] and [10], that under OCA + MA all autohomeomorphisms of ω∗ are
trivial — we shall indicate the main differences, how to avoid the use of MA for
example.

1. A reduction

In this section we reduce our problem to one particular remainder. We shall, for
the nonce, call a space ω-like if it is the disjoint sum of ω and a compact space.

We shall show that it suffices to prove that D∗ is not a continuous image of ω∗,
where, as agreed above, D = ω × (ω + 1). We do this in two steps.

First we show, by elementary topological means, that if X is not ω-like then
X∗ maps onto D∗ or H∗, where H is the half line [0,∞).

After this we show assuming OCA that if ω∗ maps onto H∗ then it also maps
onto D∗ — we do not know whether this implication holds in ZFC, see Section 4.
Thus, assuming OCA, if ω∗ maps onto X∗ for some non ω-like space X then it maps
onto D∗.
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1.1. First reduction. Let X be a locally compact σ-compact non-compact space
that is not ω-like. Write X as an increasing union of compact subsets: X =⋃

n∈ω Xn, with Xn ⊆ intXn+1 for all n.
Because X is not ω-like no complement X\Xn is discrete; we can therefore, upon

taking a subsequence of the Xn, assume that no difference Xn+1 \Xn is discrete.
Choose for each n a non-isolated point xn of Xn+1 \Xn and a neighbourhood Un

of xn whose closure is contained in Xn+1 \Xn.
It is now an easy matter to find a continuous function f̃ from

⋃
n∈ω cl Un to H

such that f̃(xn) = n + 1, f̃ [cl Un] ⊆ [n, n + 1] and f̃ [cl Un] contains a sequence Sn

in [n, n + 1) that converges to n + 1. Extend f̃ to a continuous function f : X → H
such that f [Xn+1 \ Xn] ⊆ [n, n + 1] for all n. Note that f [X] is closed in H and
that f is a perfect map.

Now there are two cases to consider:

(1) We can find a retraction of f [X] onto the union of ω and subsequences of
the Sn; in this case we obtain a perfect map from X onto D and hence
from X∗ onto D∗.

(2) There is no such retraction; in this case there are infinitely many n such
that f [X] contains an interval around n+1 = f(xn). We can then map f [X]
onto H by a perfect map and hence we can map X∗ onto H∗.

1.2. Second reduction. We assume we are in the second case mentioned above;
so we merely know that ω∗ maps onto H∗. Because H∗ is connected and D∗ is not
we cannot conclude automatically that ω∗ maps onto D∗. We show that ω∗ maps
onto D∗ anyway in two steps.

Step 1. Let f : ω∗ → H∗ be a continuous surjection and fix a clopen set C in ω∗

such that f←
[
(
⋃

n[4n, 4n + 1])∗
]
⊆ C ⊆ f←

[
(
⋃

n[4n− 1, 4n + 2])∗
]
. It is now clear

that we can find a retraction of f [C] onto
(⋃

n[4n, 4n + 1]
)∗ and hence that we can

map ω∗ onto M∗, where M = ω × [0, 1].

Step 2. We now show how to obtain a map from ω∗ onto D∗, given a map h
from ω∗ onto M∗. As mentioned above we shall need the Open Colouring Axiom
to accomplish this.

The idea will be to find a clopen set C in ω∗ that is mapped onto F ∗ by h, where
F = ω × F ′ and F ′ = {0} ∪

⋃
i[2
−2i−1, 2−2i]. This will suffice because it is easily

seen that F ∗ maps onto D∗.
To this end let G′ = {0} ∪

⋃
i[2
−2i−2, 2−2i−1] and G = ω ×G′. Observe that F

and G are regularly closed and that intF = M \ G and intG = M \ F . Standard
properties of the Čech-Stone compactification allow us to conclude that F ∗ and G∗

are regularly closed as well and that int F ∗ = M∗ \G∗ and intG∗ = M∗ \ F ∗. We
see that it suffices to find a clopen subset C of ω∗ such that intF ∗ ⊆ h[C] and
h[C] ∩ intG∗ = ∅.

We define, for f ∈ ωω

Ff =
⋃
n∈ω

⋃
i6f(n)

{n} ×
[
2−2i−1 + 2−f(n), 2−2i − 2−f(n)

]
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and

Gf =
⋃
n∈ω

⋃
i6f(n)

{n} ×
[
2−2i−2 + 2−f(n), 2−2i−1 − 2−f(n)

]
.

It is readily seen that int F ∗ =
⋃

f∈ωω F ∗f and likewise for intG∗.
Now let IF denote the family of those subsets A of ω for which h[A∗] ⊆ intF ∗

and define IG similarly.
We use [8, Theorem 8.6] to show that OCA implies that both IF and IG are

Pℵ1-ideals, i.e., whenever I ′F is an ℵ1-sized subfamily of IF there is an A in IF

such that B∗ ⊆ A∗ for all B in I ′F and similarly for IG. Indeed, for every A ∈ IF

there is an f such that h[A∗] ⊆ F ∗f and, conversely, for every f there is an A ∈ IF

such that F ∗f ⊆ h[A∗]. Furthermore, OCA implies, by the result cited above, that
for every ℵ1-sized subfamily F of ωω there is a g ∈ ωω such that f <∗ g for every
f ∈ F .

The family I = {K ∪ L : K ∈ IF and L ∈ IG} is also a Pℵ1-ideal and we
can choose for every I ∈ I a function fI : I → {0, 1} such that f←I (0) ∈ IF and
f←I (1) ∈ IG. This family is coherent in the sense that whenever I, J ∈ I the set{
n ∈ I ∩ J : fI(n) 6= fJ(n)

}
is finite. Now Theorem 8.7 from [8] applies and we

can find one function f : ω → {0, 1} such that fI ⊆∗ f for all I ∈ I.
One readily checks that C = f←(0)∗ is the required clopen subset of ω∗.

2. No simple mappings

In this section we show that a surjection of ω∗ onto D∗ cannot have a very simple
structure. Later we shall show that OCA implies that such surjections must have
such a simple structure, thus showing that they cannot exist under this assumption.

First of all we give a description of the Boolean algebra of clopen subsets of D
that is easy to work with. We work in ω × ω and denote the n-th column {n} × ω
by Cn. The family

B =
{
X ⊆ ω × ω : (∀n ∈ ω)(Cn ⊆∗ X ∨ Cn ∩X =∗ ∅)

}
is the Boolean algebra of clopen subsets of D. We also consider the subfamily

B− =
{
X ∈ B : (∀n ∈ ω)(Cn ∩X =∗ ∅)

}
of B.

Now assume S : ω∗ → D∗ is a continuous surjection and take a map Σ : B →
P(ω) that represents S, i.e., for all X ∈ B we have Σ(X)∗ = S←[X∗]. Note that if
X is compact in D then Σ(X) is finite.

The main result of this section is that Σ cannot be simple, where simple maps
are defined as follows.

Definition 2.1. We call a map F : B− → P(ω) simple if there is a map f from
ω × ω to [ω]<ω such that F (X) =∗ f [X] for all X, where f [X] denotes the set⋃

x∈X f(x).

Theorem 2.2. The map Σ � B− is not simple.

Proof. We assume that there is a map σ : ω × ω → [ω]<ω such that σ[X] =∗ Σ(X)
for all X; this implies that σ[X]∗ = S←[X∗] for all X, so the map X 7→ σ[X] also
represents S. We may therefore as well assume that Σ(X) = σ[X] for all X.
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Claim 1. We can assume that the values σ(x) are pairwise disjoint.

Let 〈fα : α < b〉 be a sequence in ωω that is strictly increasing and unbounded
with respect to <∗; also each fα is assumed to be strictly increasing.

For each α let Lα =
{
(n, m) : m 6 fα(n)

}
and Aα = σ[Lα]. Next let

Bα =
{
i ∈ Aα : (∃x, y ∈ Lα)

(
x 6= y ∧ i ∈ σ(x) ∩ σ(y)

)}
.

Now if Bα were infinite then we could find different in in Bα and different xn

and yn in Lα such that in ∈ σ(xn) ∩ σ(yn). But then X = {xn : n ∈ ω} and
Y = {yn : n ∈ ω} would be disjoint yet σ[X] ∩ σ[Y ] would be infinite.

We conclude that each Bα is finite and because b is regular we can assume that
all Bα are equal to the same set B. Fix n such that [n, ω) × ω ⊆

⋃
α Lα and note

that on [n, ω) × ω we have σ(x) ∩ σ(y) ⊆ B whenever x 6= y. Replace σ(x) by
σ(x) \B and ω × ω by [n,∞)× ω.

In a similar fashion we can prove the following claim.

Claim 2. We can assume that the values σ(x) are all nonempty.

There are only finitely many n for which there is an m such that σ(n, m) = ∅.
Otherwise we could find a noncompact X ∈ B− for which Σ(X) = ∅. Drop these
finitely many columns from ω × ω.

For each n let Dn = σ[Cn] and work inside D =
⋃

n Dn. Also define, for f ∈ ωω,
the sets Lf =

{
(n, m) : m 6 f(n)

}
and Mf = σ[Lf ].

Now observe the following: for each f and n the intersection Mf ∩Dn is finite
and if X ⊆ D is such that X ∩Dn =∗ ∅ for all n then X ⊆ Mf for some f .

In D∗ we consider the top line T =
(
ω × {ω}

)∗ and its complement O. First we
note that O =

⋃
f L∗f and so

S←[O] =
⋃
f

S←[L∗f ] =
⋃
f

σ[Lf ]∗ =
⋃
f

M∗f .

This means that S[D∗n] ⊆ T for all n, because D∗n is disjoint from
⋃

f M∗f . Also,
the boundary of the cozero set

⋃
n D∗n is the boundary of

⋃
f M∗f ; by continuity this

boundary is mapped onto the boundary of O, which is T .
This argument works for every infinite subset A of ω: the boundary of

⋃
n∈A D∗n

is mapped exactly onto the set TA =
(
A × {ω}

)∗ and so TA is contained in the
closure of S[

⋃
n∈A D∗n] and S[D∗n] ⊆ TA for all but finitely many n ∈ A.

From the fact that nonempty Gδ-sets in ω∗ have nonempty interior one readily
deduces that no countable family of nowhere dense subsets of ω∗ has a dense union.
We conclude that there is an n0 such that intT S[D∗n0

] is nonempty. Choose an
infinite subset A0 of (n0, ω) such that TA0 ⊆ S[D∗n0

].
Continue this process: once ni and Ai are found one finds ni+1 ∈ Ai such that

S[D∗ni+1
] has nonempty interior and is contained in TAi

, next choose an infinite
subset Ai+1 of Ai ∩ (ni+1, ω) such that TAi+1 ⊆ S[D∗ni+1

].
Finally then let A = {n2i : i ∈ ω} and B = {n2i+1 : i ∈ ω}. Note that

TA ⊆
⋂

n∈B S[D∗n] but also that S[D∗n] ∩ TA = ∅ for all but finitely many n ∈ B.
This contradiction completes the proof of Theorem 2.2. �
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3. All maps must be simple

In this section we finish the proof of our main result by showing that, under OCA,
every map Σ that represents S must be simple. For this we must localize the notion
of simplicity.

Definition 3.1. Let B ⊆ ω × ω and let F : B− → P(ω) be any map. We call F
simple on B if there is σ : B → [ω]<ω such that F (X) =∗ σ[X] for all subsets X of
B that are in B−.

The next proposition tells us that simple is the same as locally simple.

Proposition 3.2 (OCA). A map F : B− → P(ω) is simple iff it is simple on Lh

for every h ∈ ωω.

Proof. Assume there is for each h a witness σh to the simplicity of F on Lh. It
should be clear that for any two functions h and k the maps differ on Lh ∩ Lk in
only finitely many points. As at the end of Section 1 we apply Theorem 8.7 from
[8] to find one map σ on ω × ω such that for all h we have σ � Lh =∗ σh. Clearly σ
witnesses that F is simple on B−. �

An obvious consequence of Theorem 2.2 is that our map Σ is not simple on any
set of the form A× ω. Therefore we can find, by Proposition 3.2, for every infinite
subset A of ω a function fA such that Σ is not simple on LfA

∩A× ω.
We shall obtain a contradiction by showing that Σ must be trivial on one of the

sets LfA
∩ (A × ω). We follow the strategy laid out in Veličković’ papers [9] and

[10]. In what follows we shall assume that the reader has these two papers on hand.
In the proof we consider a power set P(X) as a topological space by identifying it
with the Cantor cube 2X . Terms such as ‘continuity’ and ‘Borel measurable’ will
be used with respect to this topology and its corresponding family of Borel sets.

First fix a bijection c from ω onto the binary tree 2<ω and choose an almost
disjoint family A = {Aα : α < ω1} of subsets of ω such that each image c[Aα] is
a branch through 2<ω — in [10] such a family is called neat. Next fix, as in the
penultimate paragraph of Section 1, one function f such that fAα <∗ f for all α.
We abbreviate Lf ∩ (Aα × ω) by Lα.

To apply OCA we need a separable metric space; we take

X =
{
〈a, b〉 : (∃α < ω1)(b ⊆ a ⊆ Lα)

}
,

topologized by identifying 〈a, b〉 with
〈
a, b, Σ(a),Σ(b)

〉
— that is, X is identified

with a subset of P(ω)4. We define a partition [X]2 = K0 ∪K1 by:
{
〈a, b〉, 〈c, d〉

}
∈

K0 iff 1) a and c are in different Lα’s; 2) a ∩ d = c ∩ b, and 3) Σ(a) ∩ Σ(d) 6=
Σ(c) ∩ Σ(b).

One uses neatness of the family A to show that K0 is open. The proof of [10,
Lemma 2.2] now applies: there is no uncountable K0-homogeneous set, so X is the
union of countably many K1-homogeneous sets. This then implies that for all but
countably many α the restriction of Σ to Lα can be covered by countably many
Borel maps. We may now apply Proposition 5.2 from the Appendix to see that
Σ is simple on Lα and hence on LfAα

∩ (Aα × ω) for those α’s. This proposition
generalizes Theorem 1.2 from [10]; the proofs are almost identical.
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4. Questions

The proof of the second reduction raises the obvious question whether one really
needs OCA to show that ω∗ maps onto D∗ if it maps onto H∗ or, equivalently,
onto M∗.

Question 4.1. If ω∗ maps onto H∗ then does it map onto D∗?

It would be very intriguing indeed if it were consistent that ω∗ does map onto H∗
but not onto D∗. In that case ω∗ would not map onto (ω×2ω)∗ either and we would
have a map from ω∗ onto M∗ that would not lift to a map onto (ω × 2ω)∗ via the
obvious quotient mapping (i.e., the map induced by the familiar surjection of the
Cantor set onto the unit interval).

We proved that ω∗ maps onto M∗ if it maps onto H∗ mainly for convenience.
What we could not decide however was the following:

Question 4.2. Does every map from ω∗ onto H∗ lift to a map onto M∗?

The lifting we are seeking is via the Čech-Stone extension of the 2-to-1-surjection
from M onto H defined by q(n, x) = n + x. The same argument as in Section 1
will show that the answer is yes under OCA: one gets a clopen set C that maps
onto

(⋃
n[2n, 2n + 1]

)∗ and whose complement maps onto
(⋃

n[2n + 1, 2n + 2]
)∗.

Of course, we have just proved that OCA implies that there is no continuous map
from ω∗ onto H∗ so this seems vacuous but in the reduction we did not use the full
force of OCA.

Regarding (ω × 2ω)∗ we have the following two questions:

Question 4.3. If ω∗ maps onto H∗ then does it map onto (ω × 2ω)∗?

Question 4.4. Does every map from ω∗ onto M∗ lift to a map onto (ω × 2ω)∗.

This lifting should go via the usual 2-to-1 surjection of the Cantor set onto the
unit interval.

5. Appendix: modifying Veličković’s proof

Many mathematicians have noticed that more can be deduced from Veličković’s
proof than is stated in [10]. However, to our knowledge, the specific result that
we need is not available in the literature. We therefore include this appendix for
the convenience of the interested reader. We also note that this and many other
modifications of [10] were obtained by Farah in [2].

We remind the reader that we assume she has [9] and [10] on hand. We also recall
that we have a surjection S : ω∗ → D∗ and a map Σ : B → P(ω) that represents S,
in the sense that Σ[X]∗ = S←[X∗] for all elements of B. Our goal, as announced
at the end of Section 3 is to prove Proposition 5.2 below.

Proposition 5.1 (Compare [9, Lemma 2]). If B ∈ B− and if Σ is continuous on
P(B) or even on a dense Gδ-subset of P(B) then it is simple on B.

The proof is identical to the one given in [9] except that there is no need to show
that for almost all x ∈ B the set σ(x) consists of exactly one point.

Proposition 5.2 (Compare [10, Theorem 1.2]). If B ∈ B− and if Σ �P(B) can be
covered by countable many Borel measurable maps then it is simple on B.
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The proof in [10] will work but with one important exception. To deal with this
exception we let I denote the ideal of subsets of B on which Σ is simple. At one
point in the proof of the following lemma Veličković explicitly uses the fact that
his map induces an automorphism of the Boolean algebra P(ω)/fin; we show how
to avoid this.

Lemma 5.3 (Compare [10, Lemma 1.3]). The ideal I is not a non-principal max-
imal ideal.

Proof. As in the proof of Lemma 1.3 in [10] one can find a subset A of B such
that Σ is not simple on A and such that Σ � P(A) is covered by countably many
continuous maps. One then lets T denote the family of subsets of A that are in I;
we fix for every T in T a map σT : T → [ω]<ω such that Σ(X) =∗ σT [X] for all
X ⊆ T . As in the proof of Theorem 2.2 we may assume that, for every T , the
values σT (x) are pairwise disjoint.

Still following [10] we find continuous maps Hn : P(A) → P(ω) such that for
every T ∈ T there is n for which Hn(X) = σT [X] for all subsets X of T . We let
Tn denote the set of those T ∈ T for which one can choose Hn.

As in [10] the assumption that some Tn is cofinal in 〈T ,⊆∗〉 leads to a contradic-
tion. Therefore, we can partition A into sets Tn from T such that no T ∈ T almost
contains all the Tn. By our tacit assumption that I is a non-principal maximal
ideal we know that U , the family of those subsets of A that are almost disjoint from
all Tn, is a subfamily of T . Moreover, this family U is σ-directed, so there is an n
such that Un = U ∩Tn is cofinal in 〈U ,⊆∗〉. Let σ =

⋃
U∈Un

σU ; using Hn it follows
that σ determines Σ on all elements of U .

Just as in Claim 1 of Theorem 2.2 one proves that there is an n0 such that
σ(x) ∩ σ(y) = ∅ whenever x and y are distinct elements of

⋃
n>n0

Tn.

Claim 1. Let T be an element of T . Then there is an nT such that σ�T ′ = σT �T ′,
where T ′ = T ∩

⋃
n>nT

Tn.

Indeed, assume that for infinitely many n there is xn ∈ T ∩Tn such that σ(xn) 6=
σT (xn). The set U of those xn belongs to U and, if necessary, we can thin out U so
as to get the unions σ(xn) ∪ σT (xn) pairwise disjoint. This gives a contradiction,
because now σ[U ] 6=∗ σT [U ], whereas also σ[U ] =∗ Σ(U) =∗ σT [U ].

Using this claim and the fact that T is a non-principal maximal ideal we find
an n1 >n0 such that σ induces Σ on all Tn with n>n1: if no such n1 can be found
we find infinitely many ‘bad’ Tn, say {Tn : n ∈ P}. Find an infinite subset P ′ of P
such that

⋃
n∈P ′ Tn ∈ T ; then all but finitely many of these Tn are ‘good’ anyway.

This now gives us our final contradiction: let T ∈ T ; write T as the union of T ′

and the sets T ∩ Tn with n < nT :

T =
⋃

n<n1

(T ∩ Tn) ∪
⋃

n16n<nT

(T ∩ Tn) ∪ T ′.
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Apply Σ and use the facts established above to find:

Σ(T ) =∗
⋃

n<n1

Σ(T ∩ Tn) ∪
⋃

n16n<nT

Σ(T ∩ Tn) ∪ Σ(T ′)

=∗
⋃

n<n1

σTn
[T ∩ Tn] ∪

⋃
n16n<nT

σ[T ∩ Tn] ∪ σ[T ′]

=∗
⋃

n<n1

σTn
[T ∩ Tn] ∪ σ

[
T \

⋃
n<n1

Tn

]
Using the fact that T is a non-principal maximal ideal once more we find, us-
ing complements, that this formula holds for all subsets of A. This contradiction
completes the proof. �

As in [10] one now uses Proposion 5.1 to finish the proof of Proposition 5.2.
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