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1. Introduction

The aim of this paper is to collect some open problems on βω, the Čech-Stone
compactification of the integers. It is recognized that a few of the problems
listed below may be inadequately worded, be trivial or be known. Of many
of the problems the origin is not known. For that reason we do not credit
anybody for posing a certain problem. We would like to thank our colleagues
who brought many of the problems to our attention.

In addition to this, we also comment on the status of the problems in the list
from the second author’s paper in the Handbook of Set-Theoretic Topology:
van Mill [1984], hereafter referred to as the βω-Handbook Paper.

2. Definitions and Notation

Many notions are defined in the list, but many occur so frequently that we
collect them in this section.

If f is a function from ω to ω then βf : βω → βω is its Stone extension, i.e.,
βf(p) = {P : f←[P ] ∈ p}.

The Rudin-Keisler (pre-)order ≤RK on βω is defined as follows: p ≤RK q
iff there is f ∈ ωω such that βf(q) = p. Two points p, q ∈ βω are called
RK-equivalent, in symbols p ≃RK q, if there is a permutation π: ω → ω such
that βπ(p) = q. We denote the RK-equivalence class of p by [p]RK.

Let P(ω) denote the power set of ω. Let fin denote the ideal of finite
subsets of ω. The quotient algebra P(ω)/fin is naturally isomorphic to the
Boolean algebra of clopen subsets of ω∗ = βω \ ω.

If A, B ⊆ ω, then A is almost contained in B, abbreviated A ⊆∗ B, if
|A \ B| < ω.

We denote the character of a point p ∈ ω∗ by χ(p), thus

χ(p) = min{ |B| : B is a local base at p in ω∗ }

= min{ |B| : B ⊆ p generates p }.

A point p ∈ ω∗ is called a P -point, if for every function f from ω into itself,
there is an element P ∈ p on which f is finite-to-one, or constant. Equiva-
lently, the intersection of countably many neighborhoods of p in ω∗ is again a
neighborhood of p. A simple P -point is a point with a linearly ordered local
base. If in the above definition P can always be chosen so that f is one-to-one
or constant on P , then p is called selective. Let κ be an infinite cardinal. A
subset A of a space X is called a Pκ-set if the intersection of fewer than κ
many neighborhoods of A is again a neighborhood of A. If A consists of one
point then that point is called a Pκ-point. A P -set is a Pω1

-set.
For a discussion of MA and PFA, see Weiss [1984] and Baumgart-

ner [1984]. For information on the cardinals a, b, c, d and others, see the
contribution of Vaughan in this volume.
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100 Hart and van Mill / βω [ch. 7
3. Answers to older problems

In this section we collect the problems from the βω-Handbook Paper that have
been solved. We list them, with their answers, using the original numbering.

2 Are there points p and q ∈ ω∗ such that if f : ω → ω is any finite-to-one map,
then βf(p) 6= βf(q)?

Let us abbreviate the following statement by NCF (Near Coherence of
Filters):

for every p and q ∈ ω∗ there is a finite-to-one f : ω → ω such that
βf(p) = βf(q).

So the question is whether NCF is false. Under MA it is. But not in ZFC:
Shelah produced models such that for all p and q ∈ ω∗ there is a finite-to-one
map f : ω → ω such that βf(p) = βf(q) is a P -point of character ω1 (observe
that in this model CH is false, so that a point with character ω1 has small
character), see the papers Blass and Shelah [1987, 19∞]. The latter model
is the model obtained by iterating rational perfect set forcing (Miller [1984])
ω2 times; the former model is also obtained in an ω2-step iteration but the
poset used is somewhat more difficult to describe. This iteration however
can be modified to produce a model in which there are p and q in ω∗ with
linearly ordered bases and with χ(p) = ω1 and χ(q) = ω2. This answered
a question of Nyikos who showed that if p and q in ω∗ are simple P -points
with χ(p) < χ(q) then χ(p) = b and χ(q) = d and asked whether this situation
is actually possible.

The consistency of NCF implies among other things that the Čech-Stone-
remainder H

∗ of the half-line H = [ 0,∞), which is an indecomposable con-
tinuum (see Bellamy [1971] and Woods [1968]), has (consistently) only one
composant. For details, see e.g., Rudin [1970]. In fact NCF is equivalent to
the statement that H∗ has exactly one composant (Mioduszewski [1978]).
See the papers Blass [1986] and [1987] for more information on NCF.

6 Is there a ccc P -set in ω∗?

In [1989] Frankiewicz, Shelah and Zbierski announced the consistency
of a negative answer.

Now a ccc subset of ω∗ is topologically quite small (it is nowhere dense for
example), and it is also interesting to know what nowhere dense P -sets can
look like. By way of an example one may wonder whether ω∗ can be realized
as a nowhere dense P -subset of itself. The answer to this question is in the
negative. Just [19∞] recently showed the consistency of the statement that
no nowhere dense P -set in ω∗ is homeomorphic to ω∗. In fact, Just showed
that “if A ⊆ ω∗ is a nowhere dense P -set and a continuous image of ω∗ then
A is ccc” is consistent with ZFC.
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8 Is the autohomeomorphism group of ω∗ algebraically simple?

This problem was motivated by the question in van Douwen, Monk

and Rubin [1980] whether the automorphism group Aut(B) of a homoge-
neous Boolean algebra B is algebraically simple. The Boolean algebra of
clopen subsets of ω∗ is clearly isomorphic to the quotient algebra P(ω)/fin,
which is easily seen to be homogeneous. It can be shown that under CH,
Aut (P(ω)/fin) is algebraically simple, see Štěpánek and Rubin [1989].
However,van Douwen showed in [1990] that the group of trivial (see below)
automorphisms of P(ω)/fin is not algebraically simple. It follows that in
Shelah’s model (see Shelah [1982]) where every automorphism of P(ω)/fin
is trivial, Aut (P(ω)/fin) is not algebraically simple. Independently, Kop-

pelberg [1985] constructed a different example of a homogeneous Boolean
algebra the automorphism group of which is not simple, under CH.

Let us take this opportunity to correct a small mistake in the βω-Handbook
Paper which caused some confusion. On page 537, line 8 it states:

As remarked in Section 2.2, Shelah [1978] has shown it to be con-
sistent that every autohomeomorphisms of ω∗ is induced by a per-
mutation of ω.

This is not true of course. If F and G are finite subsets of ω then each bijec-
tion π: ω \ F → ω \ G induces a homeomorphism π̄ of ω∗ and Shelah proved
that consistently, all homeomorphisms of ω∗ are of this form. Let us call
such homeomorphisms trivial or induced, and let Triv denote the subgroup
of Aut (P(ω)/fin) consisting of all trivial automorphisms. So van Mill mis-
quoted Shelah’s result. All results in the βω-Handbook Paper depending on
Shelah’s result (such as Theorem 2.2.1) are correct, as can be seen by making
trivial modifications to the proofs given.

Van Douwen’s argument is now easy to summarize: if h ∈ Triv is represented
as above then the parity of |F |+|G| depends only on h; and the automorphisms
for which the parity is even form a subgroup of Triv of index 2.

10 Is every first countable compactum a continuous image of ω∗?

To put this question into perspective, note that by Arkhangel’skĭı’s result
from [1969], every first countable compactum has cardinality at most c and
hence has weight at most c, and hence is—under CH—a continuous image of
ω∗ by Parovichenko’s result in [1963]. Pertinent to this question is also the
result of Przymusiński [1982] that every perfectly normal compact space is
a continuous image of ω∗. Problem 10 was recently answered in the negative
(necessarily consistently) by Bell [19∞] who modified an older construction
of his, Bell [1982], to obtain the desired counterexample.

12 Is there a separable closed subspace of βω which is not a retract of βω?

Such spaces were constructed by Shapiro [1985] and Simon [1987]. Simon,
using heavy machinery from independent linked families, directly constructed
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a closed separable subspace of βω which is not a retract; Shapiro constructed a
certain compact separable space and showed that not every copy of its absolute
in βω could be a retract of βω. See question 24 for more information.

13 Let (∗) denote the statement that every Parovichenko space is coabsolute with
ω∗. Is (∗) equivalent to CH?

Dow [1984] answered this question in the negative by establishing the in-
teresting fact that (∗) follows from the continuum having cofinality ω1. This
suggests a question that will be posed later on.

14 Let X be the Stone space of the reduced measure algebra of [0, 1]. Is it
consistent that X is not a continuous image of ω∗?

This question was answered in the affirmative by Frankiewicz [1985], using
the oracle-cc method of Shelah [1982].

17 Is there a p ∈ ω∗ such that ω∗ \ {p} is not C∗-embedded in ω∗ ?

Recall that X is C∗-embedded in Y if every continuous function from X to
[0, 1] can be extended over Y . This question has been solved completely now.
By an old result of Gillman [1966] it follows that under CH, for every p ∈ ω∗

the space ω∗ \ {p} is not C∗-embedded in βω. However, by a result of van

Douwen, Kunen and van Mill [1989] it is consistent with MA + c = ω2

that for every p ∈ ω∗ the space ω∗ \ {p} is C∗-embedded in βω. In [1987]
Malykhin announced the result that if one adds c+ Cohen reals to any model
of set theory then one obtains a model in which ω∗\{p} is C∗-embedded in
ω∗ for every p ∈ ω∗. A proof may be found in Dow [1988a].

22 Is there a point p ∈ ω∗ such that some compactification of ω ∪ {p} does not
contain a copy of βω?

Ryll-Nardzewski and Telgársky [1970] showed that if p is a simple P -
point then the space ω∪{p} has a scattered (= every subspace has an isolated
point) compactification. Thus the answer to this problem is in the affirmative
under MA. On the other hand in [1987] Malykhin also announced that in
the same model as mentioned above for every p ∈ ω∗ every compactification
of ω ∪ {p} contains a copy of βω.

24 Is there a point p ∈ ω∗ such that if f : ω → ω is any map, then either βf(p) ∈ ω
or βf(p) has character c in βω?

Since under MA each point in ω∗ has character c in ω∗, the answer to this
question is trivially YES under MA. However, it is not YES in ZFC because
in answer 2 we already remarked that Shelah has constructed models in which
c = ω2 and in which (in particular) for every p ∈ ω∗ there is a finite-to-one
function f : ω → ω such that βf(p) has character ω1 in ω∗. In fact NCF

is equivalent to the statement that for every p ∈ ω∗ there is a finite-to-one
f : ω → ω such that χ(βf(p)) < d, so that every model for NCF provides a
negative answer to this question.
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4. Autohomeomorphisms

We consider the autohomeomorphism group of the space ω∗ or equivalently
Aut (P(ω)/fin). Recall answer 8:

The autohomeomorphism group of ω∗ may, but need not, be alge-
braically simple.

This prompts us to add a few problems about Aut (P(ω)/fin), the solutions
of which may shed some light on the possible algebraic structure of this group.
See also the contribution by Steprāns to this volume.

Question 1. Can Triv be a proper normal subgroup of Aut (P(ω)/fin), and if 200. ?

yes what is (or can be) the structure of the factor group Aut (P(ω)/fin) /Triv;
and if no what is (or can be) [ Triv : Aut (P(ω)/fin) ]?

For h ∈ Aut (P(ω)/fin) we let I(h) = {A ⊆ ω : h ↾ A is trivial }, where
“h ↾ A is trivial” means that there are a finite set F ⊆ A and a one-to-one
f : A \ F → ω such that h(X) = f [X \F ] for X ⊆ A. Let us observe that h is
trivial iff ω ∈ I(h), and that I(h) is an ideal.

To make the statements of some of the following questions a bit easier we
shall call h ∈ Aut (P(ω)/fin): totally non-trivial if I(h) = fin, somewhere

trivial if I(h) 6= fin and almost trivial if I(h) is a tall ideal. Recall that an
ideal I on ω is tall if every infinite subset of ω contains an infinite element of
I.

It is not hard to show that under CH there is a totally non-trivial auto-
morphism. Recently it was shown by Shelah and Steprāns in [1988] that
PFA implies that every h ∈ Aut (P(ω)/fin) is trivial, they also mention that
Velickovic showed it to be consistent with MA + ¬CH that a non-trivial
automorphism exists.

We ask the following questions:

Question 2. Is it consistent with MA + ¬CH that a totally non-trivial 201. ?

automorphism exists?

Question 3. Is it consistent to have a non-trivial automorphism, while for 202. ?

every h ∈ Aut (P(ω)/fin) the ideal I(h) is the intersection of finitely many
prime ideals?

Question 4. Does the existence of a totally non-trivial automorphism imply 203. ?

that Aut (P(ω)/fin) is simple?

Question 5. Does the existence of a non-trivial automorphism imply that 204. ?

Aut (P(ω)/fin) is simple?
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The proof in Shelah and Steprāns [1988] suggests the following ques-

tions:

Question 6. If every automorphism is somewhere trivial, is then every? 205.

automorphism trivial?

Question 7. Is every ideal I(h) a P -ideal (if every automorphism is some-? 206.

where trivial)?

An ideal I on ω is said to be a P -ideal if whenever {Xn : n ∈ ω} is a
subfamily of I there is an X in I such that Xn ⊆∗ X for all n ∈ ω.

For the next group of questions we make the following definitions: if κ is a
cardinal and h ∈ Aut (P(ω)/fin) call h

κ-weakly trivial if |{ p : h(p) 6≃RK p }| < κ and,

κ-quasi trivial if for every p ∈ ω∗ there is Sp ⊆ [p]RK such that

|Sp| < κ ∧ ∀q, q′ ∈ [p]RK \ Sp : h(q) ≃RK h(q′) and |{ p : Sp 6= ∅ }| < κ

Let Wκ = { h : h, h−1κ-weakly trivial } and Qκ = { h : h, h−1κ-quasi trivial }.
It is known that Wκ is a normal subgroup of Qκ.

Question 8. Is it consistent to have a cardinal κ such that every automor-? 207.

phism is κ-weakly trivial?

Question 9. Is it consistent to have a cardinal κ such that every automor-? 208.

phism is κ-quasi trivial?

Question 10. Is it consistent to have Wκ 6= Qκ = Aut (P(ω)/fin) for some? 209.

regular κ ≤ c?

Question 11. (MA + ¬CH) if p and q are Pc-points is there an h in? 210.

Aut (P(ω)/fin) such that h(p) = q?

Note: say p ≡ q iff ω =
⋃·

n Pn =
⋃·

n Qn (finite sets) such that

∀A ∈ p ∃B ∈ q ∀n |A ∩ Pn| = |B ∩ Qn|

and conversely. Clearly RK-equivalent points are ≡-equivalent. As a partial
answer to Problem 11 the following was shown to be consistent:
MA + ¬CH+ “for all Pc-points p and q, if p ≡ q then there is an h ∈
Aut (P(ω)/fin) such that h(p) = q.”

We ask:

Question 12. Is ≡ different from RK-equivalence in ZFC?? 211.
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5. Subspaces

In this section we deal with subspaces of βω and ω∗. The following question
is well-known.

Question 13. For what p are ω∗\{p} and (equivalently) βω\{p} non- 212. ?

normal?

There are several simple proofs that, under CH, for any p ∈ ω∗, the spaces
βω\{p} and ω∗\{p} are not normal, see e.g., Rajagopalan [1972], War-

ren [1972], and van Mill [1986]. It was shown by Beslagic and Van Douwen
that CH may be relaxed to the equality r = c, here r is the least cardinality
of a “reaping” family; this is a family R of subsets of ω such that for every
subset X of ω there is an R ∈ R such that R ⊆ X or R ∩ X = ∅.

However, for years no significant progress has been made on Problem 13.
The best result so far is that if p ∈ ω∗ is an accumulation point of some count-
able discrete subset of ω∗, then ω∗\{p} is not normal. In [1982] Gryzlov

showed that also points that are not an accumulation point of any countable
subset of ω∗ may have this property.

Related to this question is the following:

Question 14. Is it consistent that there is a non-butterfly point in ω∗? 213. ?

A butterfly point is a point p for which there are sets D and E such that
D ∩ E = {p}. For a non-butterfly point p the space ω∗\{p} is normal.

In connection with Answer 17 one may also ask

Question 15. Is it consistent that ω∗\{p} is C∗-embedded in ω∗ for some 214. ?

but not all p ∈ ω∗?

Question 16. What spaces can be embedded in βω? 215. ?

In [1973] Louveau proved that under CH, a compact space X can be
embedded in βω if and only if X is a compact zero-dimensional F -space of
weight at most c (or, equivalently, the Stone space of a weakly countably
complete Boolean algebra of cardinality at most c). There is a consistent
example in van Douwen and van Mill [1980] of a compact zero-dimensional
F -space of weight c that cannot be embedded in any compact extremally
disconnected space (that is, the Stone space of a complete Boolean algebra).
So the CH assumption in Louveau’s result is essential. These remarks have
motivated Problem 16.

Question 17. Is CH equivalent to the statement that every compact zero- 216. ?

dimensional F -space of weight c is embeddable in ω∗?
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A compact space is basically disconnected if it is the Stone space of a σ-

complete Boolean algebra.

Question 18. Is there (consistently) a basically disconnected compact space? 217.

of weight c that is not embeddable in ω∗?

A natural candidate for such an example would be the Čech-Stone com-
pactification of an appropriate P -space (= a space in which every Gδ-set is
open). However, Dow and van Mill showed in [1982] that such an example
does not work. For more information, see the remarks following Problem 16

Motivated by Answer 6 we specialize Problem 16 to:

Question 19. Describe the P -sets of ω∗? 218.

Finally, to finish the questions on embeddings we ask:

Question 20. Is there a copy of ω∗ in ω∗ not of the form D \ D for some? 219.

countable and discrete D ⊆ ω∗?

Of course Just’s result cited after Answer 6 blocks an “easy” way out of this
problem: a P -set homeomorphic to ω∗ would certainly do the trick. However
it may still be possible for example, to realize ω∗ as a weak P -set in ω∗.

Question 21. Is every subspace of ω∗ strongly zero-dimensional?? 220.

We have no information on this problem.

Question 22. Is every nowhere dense subset of ω∗ a c-set?? 221.

A set D in a topological space is called a κ-set, where κ is a cardinal
number, if there is a disjoint family U of size κ of open sets such that D ⊆ U
for every U in U . One may think of κ-sets as providing an indication of how
non-extremally disconnected a space is (in an extremally disconnected space
no nowhere dense set is even a 2-set). As is well-known, ω∗ is not extremally
disconnected and we are asking whether it is, in a way, totally non-extremally
disconnected (c is the largest cardinal we can hope for of course). It should
be noted however that, as far as we know, it is also unknown whether every
nowhere dense set in ω∗ is a 2-set. The reason we ask about c-sets is that all
partial answers seem to point into the direction of c: Balcar and Vojtáš

showed in [1980] that every one-point set is a c-set. This was improved in
Balcar, Dočkalková and Simon [1984] to sets of density less than c.
Furthermore the answer to the general question is known to be YES if either
a = c, d = c, d = ω1 or b = d. More information, including proofs of the
above YES can be found in Balcar and Simon [1989].
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A positive answer to question 22 would provide a negative answer to the
following, natural sounding, question:

Question 23. Is there a maximal nowhere dense subset in ω∗? 222. ?

Here ‘maximal’ means that it is not nowhere dense in a larger nowhere
dense subset of ω∗. One can see with a little effort that no c-set can be a
maximal nowhere dense set.

A compact space X is dyadic if it is a continuous image of a power of {0, 1}.
The absolute of a compact space X is the Stone space of the Boolean algebra
of regular open subsets of X .

Question 24. Is there an absolute retract of βω that is not the absolute of 223. ?

a dyadic space?

Recall from answer 12 that not every separable closed subspace of βω is a
retract of βω. On the other hand it was shown by Maharam in [1976] that
such a subspace can be reembedded into βω in such a way that it is a retract
of βω. This motivates the notion of an absolute retract of βω. A closed
subspace X of βω is an Absolute Retract (AR) of βω if for every embedding
h: X → βω, h[X ] is a retract of βω. It can be shown that if X ⊆ βω is
the absolute of a dyadic space then X is an AR of βω and Shapiro [1985]
established the converse in case X is the absolute of some (compact separable)
space of weight at most ω1.

6. Individual Ultrafilters

In this section we collect some questions that ask for individual points in βω
or for special ultrafilters.

Question 25. Is there a model in which there are no P -points and no 224. ?

Q-points?

Recall that p ∈ ω∗ is a Q-point if for every finite-to-one function f : ω → ω
there is an element E ∈ p such that f is one-to-one on E. We already men-
tioned that Shelah produced a model in which there are no P -points (Wim-

mers [1982]). The continuum is ω2 in this model. On the other hand there is
also a model in which there are no Q-points (Miller [1980]). In this model—
Laver’s model for the Borel Conjecture (Laver [1976])—the continuum is also
ω2. The interest in Problem 25 comes from the fact that, by results from Ke-

tonen [1976] and Mathias [1978], if c ≤ ω2 then there is either a P -point or
a Q-point.
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An ultrafilter p is called rapid if for every f ∈ ωω there exists a g ∈ ωω

such that ∀nf(n) < g(n) and g[ω] ∈ p (in words: the counting functions of
the elements of p form a dominating family). Every Q-point is rapid.

Question 26. Is there a model in which there is a rapid ultrafilter but in? 225.

which there is no Q-point?

The reason we ask this question is that in every model without Q-points
that we know of there are also no rapid ultrafilters.

In [1982] Shelah showed that it is consistent that there is, up to permu-
tation, only one selective ultrafilter. Of course one may then also ask:

Question 27. Is it consistent that there is, up to permutation, only one? 226.

P -point in ω∗?

Question 28. Is there a model in which every point of ω∗ is an R-point?? 227.

A point p ∈ ω∗ is an R-point if there is an open Fσ-set U ⊆ ω∗ such that
(i) p ∈ U , and
(ii) ∀A ∈ [U ]<c : p 6∈ A.

Note that an R-point is not a P -point. So we are asking for a special model
without P -points. R-points were introduced in van Mill [1983] but have
played no role of importance so far. So this question is probably not very
much of interest.

Question 29. Is there p ∈ ω∗ such that every compactification of ω ∪ {p}? 228.

contains βω?

This question was motivated by an example in van Douwen and Przy-

musińsky [1979]: there is a countable space with only one non-isolated point,
every compactification of which contains a copy of βω. Compare this question
also with Answer 22: it is consistent that for every p ∈ ω∗ every compactifi-
cation of ω ∪ {p} contains a copy of βω. There is however, as far as we know,
no ZFC-construction of a point with these properties.

For the next question identify ω with Q.

Question 30. Is there p ∈ ω∗ such that {A ∈ p : A is closed and nowhere? 229.

dense in Q and also homeomorphic to Q } is a base for p?

This question arose in the study of remote points. A point p in βX \
X is called a remote point of X if for every nowhere dense subset D of X
one has p 6∈ D. For us it is important to know that Q has remote points
(van Douwen [1981b] and Chae and Smith [1980]). Q also has non-remote
points: simply take p ∈ N, such a point is also a real ultrafilter on the set Q.
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Problem 30 asks for a not-so-simple non-remote point, which is still a real
ultrafilter on Q. The answer is known to be YES under MAcountable. A
related question is the following:

Question 31. Is there a p ∈ ω∗ such that whenever 〈xn : n ∈ ω〉 is a sequence 230. ?

in Q there is an A ∈ p such that { xn : n ∈ A } is nowhere dense?

For the next question let

G =
〈

〈fα : α ∈ ω1〉, 〈gα : α ∈ ω1〉
〉

be a Hausdorff Gap in ωω, and let

IG = {M : ∃h ∈ Mω ∀α fα ↾ M <∗ h <∗ gα ↾ M }

Under MA + ¬CH this ideal is tall.

Question 32. (MA + ¬CH) Are there G and p (P -point, selective) such 231. ?

that p ⊆ I+

G
?

This question is more delicate than it may seem: it is a theorem of Woodin,
see Dales and Woodin [1987], that under MA+¬CH one can find for every
p ∈ ω∗ an h ∈ ωω such that for all α ∈ ω1 fα <p h <p gα, where f <p g
means that {n : f(n) < g(n) } ∈ p.

Now let p be a Pc-point, and find A ∈ p such that A ⊆∗ {n : fα(n) <
h(n) < gα(n) } for all α. It follows that A ∈ IG. Loosely speaking one can
say that to a Pc-point ω1 seems countable. What we are asking for here is an
ultrafilter with some strong properties that, in spite of MA+¬CH, considers
ω1 to be uncountable.

7. Dynamics, Algebra and Number Theory

For the next question identify ω with Z, and consider the shift σ: Z → Z

defined by σ(n) = n + 1. Denote its extension to βZ also by σ, and likewise
its restriction to Z∗. For p ∈ Z∗ we let Op denote its orbit { σn(p) : n ∈ Z }
and Cp is the closure of Op. Cp is called an orbit closure. An orbit closure is
called maximal if it is not a proper subset of any other orbit closure.

Question 33. Is there a point in ω∗ that is not an element of any maximal 232. ?

orbit closure?

It would also be of interest to know the answer to the following, related,
question:

Question 34. Is there an infinite strictly increasing sequence of orbit clo- 233. ?

sures?
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The next question is related to Furstenberg’s multiple recurrence theorem,

Furstenberg [1981]. A convenient way to state this theorem is for us: if
f and g are commuting continuous selfmaps of the Cantor set ω2 then there
are a p ∈ ω∗ and an x ∈ ω2 such that p− lim fn(x) = p− lim gn(x) = x. The
question is whether one can switch quantifiers, i.e.

Question 35. Is there a p ∈ ω∗ such that for every pair of commuting? 234.

continuous maps f, g : ω2 → ω2 there is an x ∈ ω2 such that p− lim fn(x) =
p− lim gn(x) = x?

There are ultrafilters p such that for every f there is an x such that x =
p− lim fn(x): take an idempotent in the semigroup 〈ω∗, +〉 (see below), pick
y arbitrary and let x = p− lim fn(y). An equivalent question is whether the
Cantor cube c2 satisfies the conclusion of Furstenberg’s theorem. The answer
is known to be yes under MA.

Let Sω denote the permutation group of ω, it acts on ω∗ in the obvious
way.

Question 36. For what nowhere dense sets A ⊆ ω∗ do we have? 235.
⋃

π∈Sω

π[A] 6= ω∗?

Let n be the smallest number of nowhere dense sets needed to cover ω∗.
In Balcar, Pelant and Simon [1980] it is shown that c < n is consistent,
hence we can say “for all nowhere dense sets” in models for this inequality.
However also n ≤ c is consistent, and in such models we do not have an easy
answer. Some nowhere dense sets satisfy the inequality in ZFC: singletons
work since |ω∗| > |Sω|. In addition Gryzlov has shown in [1984] that in
ZFC the following nowhere dense P -set also works:

A =
⋂

{X∗ : X ⊆ ω and δ(X) = 1 },

where

δ(X) = lim
n→∞

|X ∩ n|

n

if this limit exists (δ(X) is called the density of X in ω).
There is a natural nowhere dense set in ω∗ the permutations of which

consistently cover ω∗: identify ω and ω2, and for every n ∈ ω and f ∈ ωω
put U(f, n) = { 〈k, l〉 : k ≥ n, l ≥ f(k) }. The set B =

⋂

{U(f, n)∗ : f ∈ ωω
and n ∈ ω } is nowhere dense and

⋃

π∈Sω

π[B] = ω∗ \ { p : p is a P -point }. A
probably more difficult question is:

Question 37. For what nowhere dense sets A ⊆ ω∗ do we have
⋃

{ h[A] :? 236.

h ∈ H(ω∗) } 6= ω∗?
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Again singletons work, but now the reason is deeper: ω∗ is not homo-
geneous. Clearly the set B of the question 36 also satisfies

⋃

{ h[B] : h ∈
H(ω∗) } = ω∗\{ p : p is a P -point }. As a start one may investigate the set A
defined above.

For the next set of questions we consider binary operations on βω. If ∗ is
any binary operation on ω then one can extend it in a natural way to βω as
follows: first define p ∗n for p ∈ ω∗ and n ∈ ω by p ∗n = p− limm ∗n; then if
q ∈ ω∗ we define p∗q = q− lim p∗n. It is not hard to verify that this operation
is continuous in the second coordinate. We shall be especially interested in
the cases ∗ = + and ∗ = ×. In these cases 〈βω, ∗〉 is a right-continuous
semigroup. A lot is known about these semigroups, see Hindman [1979] and
van Douwen [19∞b], but some questions still remain.

Question 38. Can 〈βN, +〉 be embedded in 〈N∗, +〉? 237. ?

Question 39. Are there p, q, r and s in N∗ such that p + q = r × s? 238. ?

Question 40. What are the maximal subgroups of 〈βN, +〉 and 〈βN,×〉? 239. ?

The next two questions are from van Douwen [1981a], where one can find
much more information on the topic of these problems. To begin a definition:
a map h: X × Y → S × T is said to be elementary if it is a product of two
mappings or a product composed with (if possible) a reflection on S ×T . Let
X be ω∗ or βω.

Question 41. If h: X2 → X2 is a homeomorphism, is there a disjoint open 240. ?

cover U of X such that for all U, V ∈ U the map h ↾ U × V is elementary?

Question 42. If ϕ: X2 → X is continuous, is there a disjoint open cover U of 241. ?

X such that for all U, V ∈ U the map ϕ ↾ U × V depends on one coordinate?

8. Other

The following question is one of the most, if not the most, interesting problems
about βω.

Question 43. Are ω∗ and ω∗1 ever homeomorphic? 242. ?

In spite of its simplicity and the general gut reaction: NO!, it is still unan-
swered. A nice touch to this question is its Boolean Algebraic variant:

are the Boolean Algebras P(ω)/fin and P(ω1)/[ω1]
<ω ever isomorphic?

This variant also makes sense in the absence of the Axiom of Choice (AC):
the spaces ω∗ and ω∗1 then need not exist (Feferman [1964/65]); but the
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algebras P(ω)/fin and P(ω1)/[ω1]

<ω always do. It would be very interesting
indeed if on the one hand in ZFC the spaces ω∗ and ω∗1 are not homeomorphic,
while on the other hand it would be consistent with ZF that P(ω)/fin and
P(ω1)/[ω1]

<ω are isomorphic.
In Balcar and Frankiewicz [1978] it is shown that if ω∗ and κ∗ are

homeomorphic for some uncountable regular κ then there is a κ-scale in ωω.
As a consequence one obtains that if b < d the spaces ω∗ and ω∗1 are not
homeomorphic. The same conclusion follows from MA: if CH is true then
|ω∗| < |ω∗1 | and if CH is false then there is no ω1-scale. The results from
Frankiewicz [1977] allow one to conclude that ω∗1 and ω∗2 are not homeo-
morphic and that then, in fact, κ∗ and λ∗ are not homeomorphic if ω ≤ κ < λ
and 〈κ, λ〉 6= 〈ω, ω1〉. Some of the consequences of a positive answer have been
shown to be consistent, see e.g., Steprāns [1985].

Related to this question is the following:

Question 44. Is there consistently an uncountable cardinal κ such that ω∗? 243.

and U(κ) are homeomorphic?

Here, U(κ) is the subspace of βκ consisting of all uniform ultrafilters. Let
us observe that for such a κ we would have cof(κ) = ω and 2ω = 2κ, see van

Douwen [19∞a] for more information, including a proof of the following
curious fact: there is at most one n ∈ ω for which there is a κ > ωn with
U(ωn) and U(κ) homeomorphic.

Recall from question 36 that n is the minimal number of nowhere dense
sets needed to cover ω∗. For any dense-in-itself topological space X one can
define n(X) (wn(X)) as the minimal cardinality of a family of nowhere dense
sets that covers X (has a dense union). The number wn(ω∗) is equal to
the cardinal h (see the article by Vaughan). It is straightforward to show
that n(Xn) ≥ n(Xm) and wn(Xn) ≥ wn(Xm) whenever n ≤ m. The gen-
eral question is about the behaviour of the sequences 〈n(ω∗) : n ∈ N〉 and
〈wn(ω∗) : n ∈ N〉. Some specific questions:

Question 45. When do the sequences 〈n(ω∗) : n ∈ N〉 and 〈wn(ω∗) : n ∈ N〉? 244.

become constant?

Question 46. Is it consistent that n(ω∗) > n(ω∗ × ω∗), that wn(ω∗) >? 245.

wn(ω∗ × ω∗)?

What is known is that n > c implies n(ω∗) = n(ω∗ × ω∗).
Here we pose the question suggested by Answer 13:

Question 47. Does the statement that all Parovichenko spaces are co-? 246.

absolute (with ω∗) imply that cf(c) = ω1?
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Question 48. Let X be a compact space that can be mapped onto ω∗. Is X 247. ?

non-homogeneous?

Van Douwen proved in [1978] proved that the answer to this question is in
the affirmative provided that X has weight at most c. In general, the problem
is unsolved. For more information, see the article by Kunen in this volume.

Question 49. Is it consistent that every compact space contains either a 248. ?

converging sequence or a copy of βω?

Under various extra-set-theoretical assumptions compact spaces have been
constructed that contain neither a converging sequence nor a copy of βω, but
no ZFC-example is known. It is as far as we know also unknown what the ef-
fect of MA+¬CH is on this problem. Of this question there is also a Boolean
Algebraic variant: is it consistent that every infinite Boolean Algebra has ei-
ther a countably infinite homomorphic image or a complete homomorphic
image.

Question 50. Is there a locally connected continuum such that every proper 249. ?

subcontinuum contains a copy of βω?

Question 51. Is there an extremally disconnected normal locally compact 250. ?

space that is not paracompact?

Kunen and Parsons proved in [1979] proved that if κ is weakly compact,
then the space βκ \ U(κ) is normal but not paracompact. In addition, van

Douwen [1979] proved that there is a locally compact basically disconnected
(= the closure of every open Fσ-set is open) space which is normal but not
paracompact. This is basically all we know about this problem.

Question 52. Is every compact hereditarily paracompact space of weight at 251. ?

most c a continuous image of ω∗?

This question is related to Answer 10: Przymusiński showed that every per-
fectly normal (= hereditarily Lindelöf) compact space is a continuous image
of ω∗, whereas the first-countable nonimage by Bell is hereditarily metacom-
pact. Since perfectly normal compact spaces are (hereditarily) ccc, and since
separable compact spaces are clearly continuous images of ω∗, we are also led
to ask:

Question 53. Is every hereditarily ccc compact space a continuous image 252. ?

of ω∗?

The answer is yes under MAω1
by Szentmiklossy’s result from [1978]

that then compact hereditarily ccc spaces are perfectly normal, and under
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CH by Parovichenko’s theorem, since compact hereditarily ccc spaces are of
size at most c, see e.g., Hodel [1984].

Identify P(ω) with ω2, and define ≤α by p ≤α q iff there is a map f :P(ω) →
P(ω) of Baire class α such that f(q) = p.

Question 54. Suppose that p ≤α q and q ≤α p. Are p and q RK-equivalent,? 253.

or can they be mapped to each other by a Baire isomorphism of class α?

Question 55. Do ≤α-minimal points exist, and can they be characterized?? 254.

Question 56. Do ≤α-incomparable points exist?? 255.

For the next question identify ω with Q.

Question 57. If I is the ideal of nowhere dense subsets of Q can I be? 256.

extended to a (tall) P -ideal?

See Dow [1990] for more information on this problem (a YES answer implies
that the space of minimal prime ideals of C(ω∗) is not basically disconnected).

The following question is probably more about forcing than about βω.

Question 58. Is there a ccc forcing extension of L, in which there are no? 257.

P -points?

Now we formulate some problems on characters of ultrafilters. It it easy to
show that ω1 ≤ χ(p) ≤ c for all p ∈ ω∗. Furthermore in [1939] Posṕı̌sil has
shown that there are 2c points in ω∗ of character c. This is the best one can
say: under MA we have χ(p) = c for all p ∈ ω∗ while by exercise VII A10 in
Kunen [1980] the existence of a p ∈ ω∗ with χ(p) = ω1 is consistent with any
cardinal arithmetic.

There are several models in which one has a p ∈ ω∗ with χ(p) < c, but
these models have a few properties in common.

The first is that in all of these models there are P -points in ω∗.
These constructions fall roughly speaking into two categories: in the first

of these, and the models from Kunen [1980] fall into this one, the ultrafilter
of small character is build in an iterated forcing construction and is almost
unavoidably a P -point.

In the constructions of the second category one normally starts with a model
of CH and enlarges the continuum while preserving some ultrafilters from the
ground model. Again the ultrafilters that are preserved are most of the time
P -points. An extreme case of this are the models for NCF from Blass and
Shelah [1987, 19∞]: there the ultrafilters that are preserved are precisely
the P -points and in the final model we even have χ(p) < c if and only if p is
a P -point.
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In Hart [1989] the first author showed that in the model obtained by adding
any number of Sacks-reals side-by-side there are many types of ultrafilters
of character ω1 including very many non P -points. Unfortunately all these
ultrafilters were constructed using P -points. This leads us to our first problem:

Question 59. Is there a model in which there are no P -points, but there is 258. ?

an ultrafilter of character less than c?

This is probably a very difficult problem and an answer to the following
problem may be easier to give:

Question 60. Is there a model in which there is an ultrafilter of character 259. ?

less than c without any P -point below it in the Rudin-Keisler order?

The second property of these models is maybe not so obvious: in all models
that we know of there seems to be only one character below c. In the majority
of these models we have c = ω2 so that an ultrafilter of small character
automatically has character ω1. In various other models usually nothing is
known about ultrafilters other than the ones constructed explicitly. Thus we
get to our second problem: let Ξ = {χ(p) : p ∈ ω∗ and χ(p) < c }.

Question 61. What are the possibilities for Ξ; can Ξ be the set of all (regular) 260. ?

cardinals below c, with c large; what is Ξ in the side-by-side Sacks model?

In [1989] Frankiewicz, Shelah and Zbierski announce the consistency
of “c > ω2 and for every regular κ ≤ c there is an ultrafilter of character κ”.

Here we mention a well-known question on the Rudin-Keisler order, which
has some partial answers involving characters of ultrafilters.

Question 62. Is there for every p ∈ ω∗ a q ∈ ω∗ such that p and q are 261. ?

≤RK-incomparable?

It is known that there exist p and q in ω∗ such that p and q are ≤RK-
incomparable (Kunen [1972]). However, the full answer to this problem is
not known yet, some partial positive results can be found in Hindman [1988]
and Butkovičová [19∞b]; for example if p is such that χ(r) = c for every
r ≤RK then there is a q that is ≤RK-incomparable with p, and if 2κ > c for
some κ < c then such a q can be found for every p of character c. The ideas
in Blass and Shelah [1987, 19∞] may shed light on this problem.

The π-character of a point p in a space X is the minimum cardinality of a
family of nonempty open sets such that every neighborhood of p contains one
of them.
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Question 63. Is there consistently a point in ω∗ whose π-character has? 262.

countable cofinality?

Under MA the π-character of any ultrafilter is c. It was shown by Bell

and Kunen in [1981] that there is always a p with πχ(p) ≥ cof(c) and that it
is consistent that both c = ℵω1

and πχ(p) = ω1 for all p ∈ ω∗.
Another character problem is the following:

Question 64. Is it consistent that t(p, ω∗) < χ(p) for some p ∈ ω∗?? 263.

The tightness t(p, X) of a point p in a space X is the smallest cardinal κ
such that: whenever p ∈ A there is a B ⊆ A with |B| ≤ κ such that p ∈ A.

For the next few questions we consider the product ω × I, the projection
π: ω × I → ω and its Čech-Stone-extension βπ. For p ∈ ω∗ we put Ip =
βπ←(p). It is not too hard to show that Ip is a continuum, and in fact a
component of the remainder of ω × I. Our first question is:

Question 65. Are there p and q with Ip and Iq not homeomorphic?? 264.

Ip has many cutpoints: for every f : ω → I the point fp = p− lim〈n, f(n)〉
is a cutpoint of Ip provided {n : f(n) 6= 0, 1 } ∈ p. The question is whether
there are any others.

Question 66. Are there cutpoints in Ip other than the points fp for f : ω → I?? 265.

Under MAcountable such points exist, and it is conjectured that there are
none in Laver’s model (Laver [1976]) for the Borel Conjecture.

Question 67. How many subcontinua does Ip have?? 266.

Smith [1986] and van Douwen [1977] have a few.
The next few questions come from analysis. We refer the reader to the book

by Dales and Woodin [1987] for more information on, and references for,
what follows.

It is an old problem of Kaplansky for what (if any) compact spaces X the
algebra C(X) admits an incomplete norm. For the moment call X incomplete

if C(X) does admit an incomplete norm. It is not overly difficult to show
that if βω is incomplete then so is every space X . Moreover if some space is
incomplete then so is ω + 1 (the converging sequence).

The problem itself is solved to a large extent. Dales and Esterle inde-
pendently showed that under CH the space βω—and hence every space—is
incomplete. Woodin showed that it is consistent with MA+¬CH that ω+1—
and hence every space—is not incomplete. What remains is the following
question:
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Question 68. If C(ω + 1) admits an incomplete norm then does C(βω) 267. ?

admit one too?

To make the question maybe a bit more managable and also to be able to
pose some more specialized problems we take the following facts from Dales

and Woodin [1987]: to begin observe that C(βω) is the same as ℓ∞. For
p ∈ ω∗ put Mp = { x ∈ ℓ∞ : p− limx = 0 } and Ip = { x ∈ ℓ∞ : {n : x(n) =
0} ∈ p }. The quotient algebra Mp/Ip is denoted by Ap. Now one can show
that βω is incomplete iff for some p ∈ ω∗ the algebra Ap admits a non-trivial
seminorm. One can do a similar thing for ω+1. We write c0/p for the algebra
c0/Ip, where as usual c0 = { x ∈ ℓ∞ : limx = 0}. Now ω + 1 is incomplete iff
for some p ∈ ω∗ the algebra c0/p admits a non-trivial seminorm.

We see that if there is a p ∈ ω∗ such that Ap is seminormable then there is
a q ∈ ω∗ such that c0/q is seminormable. Problem 68 now becomes: “if c0/p
is seminormable for some p, is there a q such that Aq is seminormable?” A
stronger question is:

Question 69. If p ∈ ω∗ and c0/p is seminormable, is Ap seminormable? 268. ?

It would also be interesting to know the answer to the following:

Question 70. If p ∈ ω∗ and Ap is seminormable, is c0/p seminormable? 269. ?

Finally, to end this set, we mention a question connected to Woodin’s proof.
First we define a partial order << on the algebras Ap and c0/p: say a << b iff
there is a c such that a = bc. If B is Ap or c0/p we call B weakly seminormable
iff there are a nonempty downward closed—wrt. <<—subset S of B \ {0} and
a strictly increasing map of 〈S, <<〉 into 〈ωω, <∗〉. It can be shown that if B is
seminormable, it is also weakly seminormable. In addition if there is a p such
that c0/p is weakly seminormable, there is also a q such that Aq is weakly
seminormable. Thus a positive answer to the following question would also
answer question 68 positively.

Question 71. If p ∈ ω∗ and Ap is weakly seminormable, is Ap seminormable, 270. ?

or is Aq for some other q?

We now turn to the Rudin-Froĺık order ≤RF on ω∗, which is defined as
follows: p ≤RF q iff there is an embedding i: βω → βω such that i(p) = q. A
lot is known about this order but a few problems remain:

Question 72. What are the possible lengths of unbounded ≤RF-chains? 271. ?

In [1985, 1984] Butkovičová has shown that ω1 and c+ are both possible.
Another question is related to decreasing ≤RF-chains:
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Question 73. For what cardinals κ is there a strictly decreasing chain of? 272.

copies of βω in ω∗ with a one-point intersection?

Van Douwen [1985] showed that c works. It is readily seen that for any
κ for which there is a positive answer to this question one gets a strictly
decreasing ≤RF-chain of length κ without a lower bound.

However Butkovičová [19∞a] has shown that such chains exist for every
infinite κ < c. What is needed, in case κ has uncountable cofinality, to produce
such a chain, is a strictly decreasing sequence 〈Xα : α < κ〉 of copies of βω
and a point p in K =

⋂

α<κ Xα which is not an accumulation point of any
countable discrete subset of K. Butkovičová constructed such a sequence and
such a point directly, but one naturally wonders whether this can be done for
every sequence of copies of βω.

Question 74. If κ ≤ c has uncountable cofinality and if 〈Xα : α < κ〉 is? 273.

a strictly decreasing sequence of copies of βω with intersection K, is there
a point p in K that is not an accumulation point of any countable discrete
subset of K?

9. Uncountable Cardinals

In this section we collect some questions on ultrafilters on uncountable car-
dinals, and we are mainly interested in uniform ultrafilters here. We let κ
denote an arbitrary infinite cardinal. To begin we ask whether ultrafilters of
small character may exist.

Question 75. Is there consistently an uncountable cardinal κ with a p ∈ U(κ)? 274.

such that χ(p) < 2κ?

Let us note that for “small” uncountable cardinals there is no easy ana-
logue of Kunen’s method mentioned above (see problem 59): to preserve the
cardinals below κ one seems to need a κ-complete ultrafilter, and that brings
us immediately to measurable cardinals. So we ask in particular:

Question 76. Is it consistent to have a measurable cardinal κ with a p ∈ U(κ)? 275.

such that χ(p) < 2κ?

And to stay somewhat down to earth we also ask specifically:

Question 77. Is it consistent to have a uniform ultrafilter on ω1 of character? 276.

less than 2ω1 e.g., ω2?

A related and intriguing question is:
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Question 78. Is it consistent to have cardinals κ < λ with points p ∈ U(κ) 277. ?

and q ∈ U(λ) such that χ(p) > χ(q)?

A question with a topological background is the following:

Question 79. If κ ≥ ω is nonmeasurable and F is a countably complete 278. ?

uniform filter on κ+ then what is the cardinality of the set { u ∈ U(κ+) : F ⊆
u }?

If the cardinality is 22
κ
+

then there are almost Lindelöf spaces X and Y
with X × Y not even almost κ-Lindelöf. For κ = ω the cardinality is indeed
22

ω1
, see Balcar and Štěpánek [1986].

The next question is purely topological. To state it we must make some
definitions. In general if A is a subset of a topological space X we let [A]<κ

denote the set
⋃

{B : B ∈ [A]<κ }. Furthermore if κ ⊆ X ⊆ βκ then βXκ
is the maximal subset of βκ for which every (continuous) f : κ → X has a
continuous extension f̄ : βXκ → X . The question is

Question 80. Assume that κ is regular, that κ ⊆ X ⊆ βκ is such that 279. ?

[X ]<κ = X and βXκ = X . Now if Y is a closed subspace of a power of X , is
then also X a closed subspace of a power of Y ?

The answer is yes for κ = ω, see Hušek and Pelant [1974] for the proof
and more information.

The following question is related to the analysis-type problems from the
previous section. If p is a (uniform) ultrafilter on κ then we denote by Rp

the ultrapower of R modulo the ultrafilter p. On it we define an equivalence
relation ≡ by a ≡ b iff there is an n ∈ N such that |a| < |nb| and |b| < |na|,
here < is the natural linear order of Rp. The equivalence classes under ≡ are
called the Archimedean classes of Rp. The question is whether the cardinality
of Rp can be larger than the cardinality of Rp/ ≡, specifically:

Question 81. Are there κ and p ∈ U(κ) such that |Rp| > |Rp/ ≡ | = c? 280. ?

Dales and Woodin have shown that a positive answer is consistent relative
to the existence of a large cardinal.

We finish with two questions about ω1.

Question 82. Is there a C∗-embedded bi-Bernstein set in U(ω1)? 281. ?

A bi-Bernstein set is a set X such that X and its complement intersect
every uncountable closed subset of U(ω1).
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Question 83. Are there open sets G1 and G2 in U(ω1) such that G1 ∩ G2? 282.

consists of exactly one point?

See Dow [1988b] for more information on ω∗1 .
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