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Abstract

We introduce a chain condition (B), defined for operators acting on C(K )-spaces, which is inter-
mediate between weak compactness and having weakly compactly generated range. It is motivated
by Pełczyński’s characterization of weakly compact operators on C(K )-spaces. We prove that if
K is extremally disconnected and X is a Banach space, then, for an operator T : C(K ) → X , T
is weakly compact if and only if T satisfies (B) if and only if the representing vector measure
of T satisfies an analogous chain condition. As a tool for proving the above-mentioned result,
we derive a topological counterpart of Rosenthal’s lemma. We exhibit several compact Haus-
dorff spaces K for which the identity operator on C(K ) satisfies (B), for example, both locally
connected compact spaces having countable cellularity and ladder system spaces have this prop-
erty. Using a Ramsey-type theorem, due to Dushnik and Miller, we prove that the collection of
operators on a C(K )-space satisfying (B) forms a closed left ideal of B(C(K )).

1. Introduction

The aim of this paper is to study a certain chain condition, denoted by (B), defined for (bounded,
linear) operators T : C(K ) → X , where K is a compact Hausdorff space, X is an arbitrary Banach
space and C(K ) is the Banach space of all scalar-valued continuous functions on K , equipped with
the supremum norm. The main motivation behind our work comes from a theorem of Pełczyński
which asserts that an operator T : C(K ) → X is weakly compact if and only if there is no isomorphic
copy of c0 in C(K ) on which T is bounded below. In other words, T fails to be weakly compact
provided there is a sequence of pairwise disjoint open sets {On}∞n=1 in K and a uniformly bounded
family of functions { fn}∞n=1 in C(K ) such that the support of fn is contained in On (n ∈ N) and
infn ‖T ( fn)‖ > 0. Loosely speaking, Pełczyński’s theorem characterizes weakly compact operators
from C(K )-spaces as precisely as those which annihilate the sequences of disjointly supported and
uniformly bounded functions in C(K ). Our condition (B) is similar in nature to this requirement.
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Let K be a compact Hausdorff space and X be a Banach space. The support, supp( f ), of a func-
tion f ∈ C(K ) is defined as the closure of the set {x ∈ K : f (x) �= 0}. For any pair of functions
f, g ∈ C(K ), we write f ≺ g whenever f �= g and f (x) = g(x) for each x ∈ supp( f ). The rela-
tion ≺ is a strict ordering on C(K ). For a bounded and linear operator T : C(K ) → X , the chain
condition (B) is defined as follows:

(B) for each uncountable ≺-chain F in C(K ) with sup f ∈F ‖ f ‖ < ∞,

inf{‖T f − T g‖: f, g ∈ F, f �= g} = 0.

Any uniformly bounded ≺-chain { fi }i∈I such that ‖ fi − f j‖ � δ for i, j ∈ I , i �= j , and some
positive δ, will be called a δ-≺-chain. We also say that a compact Hausdorff space K satisfies
(B) whenever the identity operator on C(K ) satisfies (B), equivalently, for each δ > 0 there is
no uncountable δ-≺-chain in C(K ).

We start Section 2 with the observations that, for each operator T : C(K ) → X , the condition (B)
is weaker than weak compactness (Proposition 2.1), and that these two properties coincide provided
that K is extremally disconnected (i.e. open sets have open closures), in which case weak compact-
ness may also be characterized by a counterpart of condition (B) for the representing measure of
T (Theorem 2.5). This result is obtained by refining a classical lemma due to Rosenthal to the
extremally disconnected setting (Lemma 2.2) and by applying some vector-measure techniques
(Proposition 2.4).

In Section 3, we give examples of compact Hausdorff spaces that satisfy (B). They include
compact Hausdorf spaces which are countable, one-point compactifications of discrete sets (Propo-
sition 3.3), compact Hausdorff spaces which are locally connected and have countable cellularity
(Theorem 3.5) and ladder system spaces (Corollary 3.8).

Like other classical chain conditions for topological spaces or Boolean algebras, this one carries
some combinatorial insight. Using Ramsey-theoretic techniques, we prove that the family of opera-
tors on a given C(K )-space satisfying (B) forms a closed left ideal of the Banach algebra B(C(K ))

of all operators on C(K ) (Theorem 4.2).
All Banach spaces are assumed to be over either real or complex scalars. By an operator, we

understand a bounded linear operator acting between Banach spaces. An operator T : E → F is
bounded below whenever there exists γ > 0 such that ‖T x‖ � γ ‖x‖ for each x ∈ E ; an operator
which is bounded below is injective and has closed range. An operator T : E → F fixes a copy
of a Banach space X , if there is a subspace E0 of E isomorphic to X such that T |E0 is bounded
below. The identity operator on a Banach space X is denoted by IX . For a topological space K , we
denote its cardinal number by |K |, and define the cellularity of K , c(K ), to be the supremum of
the cardinalities of families consisting of pairwise disjoint open sets in K . A topological space with
countable cellularity is said to satisfy countable chain condition (c.c.c.). The symbol 1A denotes the
indicator function of a set A.

2. (B) and weakly compact operators from C(K )-spaces

By a classical result of Pełczyński (see, for example, [3, Theorem VI.2.15]), every non-weakly com-
pact operator from a C(K )-space into an arbitrary Banach space X fixes a copy of c0. In the case
where K is extremally disconnected, the Goodner–Nachbin theorem [7, 13] says that C(K ) is (iso-
metrically) injective, and then Rosenthal’s theorem [15, Theorem 1.3] asserts that any non-weakly
compact operator T : C(K ) → X fixes a copy of �∞. The main result of this section, Theorem 2.5,
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is in the spirit of these facts. It asserts that weak compactness of an operator from a C(K )-space,
for K extremally disconnected, may be characterized in terms of the chain conditions, imposed both
upon the operator itself and its representing measure.

Let us begin with the following refinement of Pełczyński’s theorem.

Proposition 2.1 Let K be a compact Hausdorff space, X be a Banach space and T : C(K ) → X
be an operator. Then the following assertions are equivalent:

(i) T is weakly compact;
(ii) for each infinite ≺-chain F ⊆ C(K ),

inf{‖T f − T g‖ : f, g ∈ F, f �= g} = 0.

In particular, every weakly compact operator T : C(K ) → X satisfies (B).

Proof . For the implication (i) ⇒ (ii), assume contrapositively that

δ = inf{‖T f − T g‖: f, g ∈ F, f �= g} > 0.

Let F0 = ( fn)n∈N be a ≺-monotone subsequence of F . For each n ∈ N, set gn = | fn+1 − fn|. Then
Y = span{gn : n ∈ N} is an isomorphic copy of c0 and ‖T gn‖ > δ (n ∈ N). Consequently, T is
bounded below on Y . So T cannot be weakly compact.

To prove (ii) ⇒ (i) assume, for a contradiction, that T is not weakly compact. Appealing to
the proof of [3, Theorem VI.2.15], we may construct a sequence ( fn)

∞
n=1 of disjointly supported

functions in C(K ) of norm at most 1 such that infn∈N ‖T fn‖ > 0. The family F = {∑n
k=1 fk}∞n=1 is

then a uniformly bounded infinite ≺-chain for which inf{‖T f − T g‖: f, g ∈ F, f �= g} > 0. �
Given a compact Hausdorff space K and a Banach space X , every operator T : C(K ) → X

admits a Riesz-type representation (cf. [3, Chapter 6]) in the following precise sense: there exists
a w∗-countably additive vector measure μ : � → X∗∗ (called the representing measure for T ) on
the σ -algebra � of all Borel subsets of K such that:

(i) for each x∗ ∈ X∗, the map � � A 
→ μ(A)x∗ is a regular countably additive scalar measure
(and will be denoted by x∗ ◦ μ);

(ii) the map x∗ 
→ x∗ ◦ μ from X∗ into C(K )∗ is w∗-to-w∗ continuous;
(iii) x∗T ( f ) = ∫

K f d(x∗ ◦ μ) for each x∗ ∈ X∗ and f ∈ C(K );
(iv) ‖T ‖ = ‖μ‖(K ).

The representing measure μ may be expressed explicitly by the formula μ(A) = T ∗∗ϕA, where
ϕA ∈ C(K )∗∗ acts as ϕA(ν) = ν(A) (A ∈ �, ν ∈ C(K )∗). Equivalently, it may be defined by the
prescription μ(A)x∗ = μx∗(A), where μx∗ = T ∗x∗ is the scalar measure produced by the Riesz
theorem applied to the functional x∗T .

We will need the following topological counterpart of Rosenthal’s lemma (cf. [3, Lemma I.4.1]).
Although its proof is almost the same as the original one, we present it for completeness and to
demonstrate the rôle played by extremal disconnectedness.

Lemma 2.2 Let K be a compact Hausdorff space which is extremally disconnected, and let (Vn)
∞
n=1

be a sequence of pairwise disjoint open subsets of K . Suppose that (μn)
∞
n=1 is a sequence of scalar
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Borel measures on K having uniformly bounded variations. Then, for every ε > 0 there exists
a strictly increasing sequence (nk)

∞
k=1 of natural numbers such that, for each k ∈ N,

|μnk |
⎛
⎝⋃

j �=k

Vn j

⎞
⎠ < ε.

Proof . Let us suppose, with no loss of generality, that |μn|(K ) � 1 for each n ∈ N. Consider any
sequence (Mp)

∞
p=1 of pairwise disjoint infinite subsets of N such that N = ⋃

p Mp. We consider two
cases.

Case 1. First, if there is some p ∈ N for which

|μk |

⎛
⎜⎜⎝⋃

j∈Mp
j �=k

Vj

⎞
⎟⎟⎠ < ε for each k ∈ Mp,

then we get the assertion from the induced enumeration of Mp: {n1 < n2 < · · · }.
Case 2. Now suppose that, for every p ∈ N, there is kp ∈ Mp such that

|μkp |

⎛
⎜⎜⎝⋃

j∈Mp
j �=kp

Vj

⎞
⎟⎟⎠ � ε. (2.1)

Fix, for a moment, any p ∈ N. Since
⋃

q Vkq is disjoint from the open set
⋃

j∈Mp, j �=kp
Vj , so is its

closure. Hence, ⋃
j∈Mp, j �=kp

Vj ⊂
⋃
n∈N

Vn \
⋃
q∈N

Vkq . (2.2)

Observe that
⋃

q Vkq is open, as K is extremally disconnected, whence
⋃

n Vn \⋃q Vkq is closed.
Therefore, by (2.2), we get ⋃

j∈Mp
j �=kp

Vj ⊂
⋃
n∈N

Vn \
⋃
q∈N

Vkq . (2.3)

Obviously, we have

|μkp |
⎛
⎝⋃

q∈N

Vkq

⎞
⎠+ |μkp |

⎛
⎝⋃

n∈N

Vn \
⋃
q∈N

Vkq

⎞
⎠ � 1,

so (2.3) and (2.1) imply

|μkp |
⎛
⎝⋃

q∈N

Vkq

⎞
⎠ � 1 − ε,

and this inequality is valid for every p ∈ N.
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Consequently, we may repeat the same argument replacing the space K with the clopen subspace⋃
q∈N

Vkq (which is extremally disconnected as this property is inherited by open subspaces) and
the sequences (μn)

∞
n=1 and (Vn)

∞
n=1 with (μkp )

∞
p=1 and (Vkp )

∞
p=1, respectively. By continuing this, we

would get subsequent upper bounds 1 − 2ε, 1 − 3ε, . . . for some of the variations |μn|. Since this
process has to terminate, we will end up with Case 1, where the assertion has been proved. �

Proposition 2.3 Let K be a compact Hausdorff space which is extremally disconnected, and let
X be a Banach space. Every operator from C(K ) into X which satisfies (B) is weakly compact.

Proof . It suffices to consider the real space CR(K ), since we prove (arguing by contraposition) that
there is a δ-≺-chain in CR(K ) which will also do the job in CC(K ).

Assume that T : CR(K ) → X is a non-weakly compact operator, and let μ be its representing
measure. Then (see the proof of [1, Theorem 5.5.3]) there exist a number ε > 0, a sequence (On)

∞
n=1

of pairwise disjoint open subsets of K and a sequence (x∗
n )∞n=1 in the unit ball of X∗ such that

(x∗
n ◦ μ)(On) > ε for each n ∈ N (recall that x∗

n ◦ μ = T ∗x∗
n ). Since x∗

n ◦ μ is a regular measure and
K is extremally disconnected, we may assume that each On is clopen. By Lemma 2.2, we may also
assume that

|x∗
n ◦ μ|

⎛
⎝⋃

j �=n

O j

⎞
⎠ <

ε

2
for each n ∈ N.

Let {qn : n ∈ N} be an enumeration of the rational numbers and define At = {n : qn < t} for t ∈
R. Then {At : t ∈ R} is an increasing chain of infinite subsets of N. For each t , the set Ct = ⋃

n∈At
Ot

is clopen, hence its characteristic function, call it ft , is continuous. The family {Ct : t ∈ R} is a
strictly increasing chain of clopen sets, so that s < t readily implies fs ≺ ft . Clearly, ‖ ft‖ = 1 for
all t .

Now, let s < t . Then, there is n ∈ At \ As (in fact the set is infinite). Since

supp( ft − fs) ⊂
⋃
k∈N

Ok = On ∪
⋃
k �=n

Ok,

and ft − fs equals 1 on On , we get

‖T ( ft ) − T ( fs)‖ � x∗
n T ( ft − fs) =

∫
K
( ft − fs) d(x∗

n ◦ μ)

=
(∫

On

+
∫
⋃

k �=n Ok

)
( ft − fs) d(x∗

n ◦ μ)

� (x∗
n ◦ μ)(On) − |x∗

n ◦ μ|
⎛
⎝⋃

k �=n

Ok

⎞
⎠

> ε − ε

2
= ε

2
(i, j ∈ N, i �= j),

which proves that T does not satisfy (B). �
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We now introduce a counterpart of condition (B) for vector measures. Namely, for a set alge-
bra �, Banach space X and (finitely) additive vector measure μ : � → X , consider the following
property:

(R) for each uncountable chain (with respect to inclusion) {Ei }i∈I in �,

inf{‖μ(Ei ) − μ(E j )‖: i, j ∈ I, i �= j} = 0.

A vector measure μ : � → X is called strongly additive provided that for every sequence
(En)

∞
n=1 ⊂ � of pairwise disjoint sets, the series

∑∞
n=1 μ(En) is unconditionally convergent in X .

Proposition 2.4 Let � be a σ -algebra of sets and X be a Banach space. A bounded vector
measure μ : � → X satisfies (R) if and only if it is strongly additive.

Proof . (⇐) Suppose that μ does not satisfy (R). Then there exists a monotone (with respect to
inclusion) sequence (En)

∞
n=1 ⊂ � such that ‖μ(Em) − μ(En)‖ > δ for m, n ∈ N, m �= n and for

some δ > 0. Put Dn = En+1 \ En provided (En)
∞
n=1 is increasing and Dn = En \ En+1 otherwise. In

any case, (Dn)
∞
n=1 forms a sequence of pairwise disjoint elements from � such that ‖μ(Dn)‖ > δ

for each n ∈ N. Consequently, μ is not strongly additive.
(⇒) Now, suppose that μ fails to be strongly additive. Then the Diestel–Faires theorem (cf. [3,

Theorem I.4.2]) produces a closed subspace Y of X and an isomorphism T : �∞ → Y such
that T (en) = μ(An) for some pairwise disjoint sets (An)

∞
n=1 ⊂ �. For any n ∈ N, we have 1 =

‖en‖ � ‖T −1‖ · ‖μ(An)‖, hence for some x∗
n in the unit ball of X∗ we have x∗

nμ(An) � ‖T −1‖−1.
Since (x∗

nμ)∞n=1 is a uniformly bounded sequence of scalar measures, Rosenthal’s lemma produces
a subsequence (x∗

nk
μ)∞k=1 such that

|x∗
nk

μ|
⎛
⎝⋃

j �=k

An j

⎞
⎠ <

1

2
‖T −1‖−1 for each k ∈ N.

Let C be an uncountable chain of subsets of N and for each C ∈ C define E(C) = ⋃
j∈C An j .

Plainly, {E(C)}C∈C is an uncountable chain of members of �. Moreover, for any C1, C2 ∈ C with
C1 � C2, and any k ∈ C2 \ C1, we have

‖μ(E(C2)) − μ(E(C1))‖ = ‖μ(E(C2 \ C1))‖ =
∥∥∥∥∥∥μ
⎛
⎝ ⋃

j∈C2\C1

An j

⎞
⎠
∥∥∥∥∥∥

�

∣∣∣∣∣∣x∗
nk

μ

⎛
⎝ ⋃

j∈C2\C1

An j

⎞
⎠
∣∣∣∣∣∣ � |x∗

nk
μ(Ank )| − |x∗

nk
μ|
⎛
⎝⋃

j �=k

An j

⎞
⎠

> ‖T −1‖−1 − 1

2
‖T −1‖−1 = 1

2
‖T −1‖−1. (2.4)

This shows that μ fails to satisfy (R), so the proof is complete. �
We are now prepared to proceed to the main result of this section.
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Theorem 2.5 Let K be a compact Hausdorff space which is extremally disconnected, and X be
a Banach space, let � be the Borel σ -algebra of K and let T : C(K ) → X be an operator with
representing measure μ : � → X∗∗. Then the following assertions are equivalent:

(i) T is weakly compact;
(ii) μ is strongly additive;

(iii) T satisfies (B);
(iv) μ satisfies (R).

Proof . The equivalence of clauses (i) and (ii) is the Bartle–Dunford–Schwartz theorem (cf.
[3, Theorem VI.2.5]) and is valid for any compact Hausdorff space K . The equivalence of clauses
(i) and (iii) follows from Propositions 2.1 and 2.3. The equivalence of (ii) and (iv) is immediate from
Proposition 2.4. �

It is easily seen that the implication (⇐) of Proposition 2.4 holds true for any set algebra �,
not necessarily a σ -algebra. However, the situation is not so clear for the implication (⇒), so the
natural question arises: how can one characterize the class of set algebras � for which every vector
measure μ : � → X satisfying (R) is strongly additive? An inspection of the proof of Proposi-
tion 2.4 suggests that some kind of interpolation property of � could do the job, so we may make
our problem more precise. A set algebra � has the subsequential completeness property (SCP) when-
ever for every sequence (En)

∞
n=1 of pairwise disjoint sets from � there is a subsequence (Enk )

∞
k=1

with
⋃

k Enk ∈ �. (Haydon constructed a set algebra with (SCP) which is not a σ -algebra; see
[9, Proposition 1E].)

Question 2.6 Suppose that a set algebra � has (SCP). Is it true that, for any Banach space X ,
every vector measure μ : � → X satisfying (R) is necessarily strongly additive?

Remark 2.7 The second- and third-named authors [10] have recently studied the operator ideal
WCG of weakly compactly generated operators, that is, operators whose range is contained in
a weakly compactly generated subspace of their codomain. (A Banach space is weakly compactly
generated whenever it contains a linearly dense weakly compact subset.) The class WCG contains
all weakly compact operators and all operators having separable range, but in contrast, a weakly
compactly generated operator defined on a C(K )-space need not satisfy (B) (cf. Proposition 2.1).

To see this, consider the ordinal interval K = [0, ω1] equipped with the order topology
which makes it a compact Hausdorff space. Let D = {0} ∪ {α + 1 : α < ω1}. Define a mapping
ϕ : [0, ω1] → [0, ω1] by

ϕ(α) =
{

α + 1 if α ∈ D,

α if α ∈ [0, ω1] \ D.

Plainly, ϕ is continuous, hence the operator Cϕ : C[0, ω1] → C[0, ω1] defined by Cϕ f = f ◦ ϕ is
bounded.

We note that T = IC[0,ω1] − Cϕ maps the Schauder basis {1[0,α]}0�α�ω1 of C[0, ω1] onto the set
{1{α}}α∈D ∪ {0}. Consequently, the range of T is isomorphic to c0(ω1), which is a weakly compactly
generated Banach space, so that T ∈ WCG(C[0, ω1]). On the other hand, T maps the 1-≺-chain
{1[0,α]}α∈D onto {1{α}}α∈D , so T fails (B).
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It is natural to ask whether the condition (B) is the same as a seemingly weaker similar statement
(Bwo) in which the δ-≺-chains are assumed to be well-ordered. This is, however, not the case, as we
shall see using the following observation.

Proposition 2.8 Let K be a compact Hausdorff space satisfying c.c.c. Then the identity map IC(K )

satisfies (Bwo).

Proof . Let K be a compact Hausdorff space which does not satisfy the condition (Bwo). With
no loss of generality, we may assume that, for some δ > 0, there exists an uncountable, well-
ordered δ-≺-chain { fα}α<ω1 ⊂ C(K ). For each ordinal α < ω1, set gα = | fα+1 − fα|. The family
{g−1

α ((δ,∞)) : α < ω1} consists of uncountably many pairwise disjoint open sets, so K fails the
c.c.c. condition. �

Corollary 2.9 The condition (Bwo) is strictly weaker than (B).

Proof . In the light of Proposition 2.8, it is sufficient to exhibit an example of a compact Hausdorff
space which is c.c.c., yet fails (B).

Let K be the double arrow space, that is, K is the set ((0, 1] × {0}) ∪ ([0, 1) × {1}) endowed with
the order topology arising from the lexicographic order. It is well known that K is a first-countable,
non-metrizable, compact Hausdorff space which is separable (hence also c.c.c.), see [5, 3.10.C]. We
note that for each 0 < b < 1 the order-interval Ib := [(0, 1), (b, 0)] is clopen in K , which means
that its characteristic function fb = 1Ib is continuous. Consequently, { fb}0<b<1 is an uncountable
1-≺-chain, so K fails (B), as desired. �

3. Compact Hausdorff spaces enjoying (B)

In this section, we analyse certain compact spaces to show that the identity operator on a C(K )-space
can satisfy (B). We note that there is no loss of generality in considering only ≺-chains consisting of
non-negative functions. Indeed, if f ≺ g, then | f | ≺ |g|. In the remainder of this section, we shall
therefore assume that every ≺-chain has this property.

For a ≺-chain F , we denote by A(F, f ) the set of predecessors of f , that is, A(F, f ) =
{g ∈ F : g ≺ f }; furthermore, we set

Z(F, f ) = {x ∈ K : f (x) �= 0} \
⋃

{supp(g) : g ∈ A(F, f )}.

Lemma 3.1 Let K be a compact Hausdorff space, let δ > 0 and let F ⊂ C(K ) be a δ-≺-chain.
Then, for each f ∈ F, Z(F, f ) is non-empty; in particular, there is x ∈ Z(F, f ) such that
f (x) � δ.

Proof . This is clear if f has a direct predecessor g in F ; in that case

Z(F, f ) = {x ∈ K : x /∈ supp(g) and f (x) > 0}.
As ‖ f − g‖ � δ, there must be x ∈ K \ supp(g) with f (x) � δ; hence, x belongs to Z(F, f ).

In the case where f does not have a direct predecessor, we take an increasing and cofinal (possibly
transfinite) sequence {gα : α < θ} in A(F, f ). For each α, we pick xα ∈ supp(gα+1) \ supp(gα) such
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that gα+1(xα) � δ. Note that this implies that f (xα) � δ for all α; therefore, f (x) � δ for all x ∈ L ,
where

L =
⋂
α<θ

{xβ : β � α}.

On the other hand, if g ≺ f , then g ≺ gα for some α and then g(xβ) = 0 for β � α and hence
g(x) = 0 for x ∈ L . This yields that the intersection L ∩ supp(g) is empty for all g ∈ A(F, f ) and
hence that L ⊆ Z(F, f ). �

Corollary 3.2 Every compact Hausdorff space which is countable satisfies (B).

For an order type α, we denote by α∗ the reverse of α.

Proposition 3.3 Let K be the one-point compactification of a discrete space �, let δ > 0 and let
a δ-≺-chain F ⊂ C(K ) be given. Then there are α, β � ω such that the order type of F is α + β∗.

Proof . Let F be a δ-≺-chain. Split F into F1 = { f : f (∞) = 0} and F2 = { f : f (∞) > 0}. (Recall
that we are assuming that F consists of non-negative functions only.) Note that f ≺ g whenever
f ∈ F1 and g ∈ F2.

For f ∈ F1, set ϒ f = {x : f (x) � δ}; this set is finite. If f ≺ g in F1, then ϒ f is a proper subset
of ϒg . This implies that the order type of F1 is at most ω.

Likewise, for f ∈ F2 set ϒ f = {x : f (x) = 0}, which is again a finite set. In this case, ϒ f con-
tains properly ϒg whenever f ≺ g in F2. It follows that F2 is order-isomorphic to a subset of
{−n : n ∈ ω} ⊆ Z. �

We have now arrived at one of the main results of this section. We shall prove that local connect-
edness is a sufficient condition for the absence of uncountable δ-≺-chains of functions on spaces
satisfying c.c.c. A topological space is locally connected if each point has a neighbourhood basis
consisting of connected sets. The disjoint union of finitely many copies of the unit interval is an easy
example of a (linearly ordered) compact space which is locally connected, but not connected.

Theorem 3.4 Let K be a compact Hausdorff space which is locally connected and let δ > 0. The
cardinality of any δ-≺-chain in K does not exceed the cellularity of K .

Proof . Let F = { fi }i∈I ⊂ C(K ) be a δ-≺-chain for some δ > 0. The sets Z(F, fi ) (i ∈ I ) are non-
empty and pairwise disjoint. It is enough to prove that each Z(F, fi ) (i ∈ I ) is open, as this will
immediately yield the inequality |I | � c(K ).

Fix i ∈ I and x ∈ Z(F, fi ); our aim is to prove that x lies in the interior of Z(F, fi ). Choose
an open connected neighbourhood U ⊆ K of x such that f (y) > 1

2 f (x) for each y ∈ U . We claim
that U ∩ supp( f j ) = ∅ for each f j ≺ fi , which means that U ⊆ Z(F, fi ). Suppose that this is not
the case, that is, U ∩ supp( f j ) �= ∅ for some f j ≺ fi . Because supp( f j ) is the closure of the open
set V = {w ∈ K : f j (w) �= 0}, there must be y ∈ U ∩ supp( f j ) such that f j (y) �= 0. Since U is
connected, x ∈ U \ supp( f j ) and y ∈ U ∩ V , the set U intersects the boundary of V ; let z be an
element of this intersection. Then, z ∈ U , so fi (z) �= 0. On the other hand, z ∈ supp( f j ), yet z does
not belong to V , so 0 = f j (z) = fi (z), as f j ≺ fi , which is a contradiction. �

Corollary 3.5 Every locally connected compact Hausdorff space which satisfies c.c.c. also
satisfies (B).
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Proof . This is a direct reformulation of Theorem 3.4 for spaces having countable cellularity. �

Remark 3.6 (i) Compact spaces which are connected need not be locally connected; a standard
example of such a space (which is also not path-connected) is the so-called topologist’s closed sine
curve, that is, the graph of sin(1/x), x ∈ (0, 1] with the interval {0} × [−1, 1] adjoined, endowed
with the relative Euclidean topology. Nevertheless, it is easily seen from the very definition of the
order topology that every connected linearly ordered compact space is also locally connected.

Evidently, the unit interval satisfies the assumptions of Corollary 3.5. The existence of other
linearly ordered connected (hence locally connected) examples of compact spaces satisfying c.c.c. is
equivalent to the negation of the Souslin hypothesis, SH, which is consistent with and independent
of ZFC. Namely, under ¬SH, one may consider the two-point compactification of a Souslin line
(recall that a Souslin line is a non-separable, linearly ordered, connected space without end-points
which satisfies c.c.c.). Consistently, there may exist non-homeomorphic Souslin lines.

(ii) There are consistent examples of non-metrizable, locally connected compact spaces which
are hereditarily Lindelöf and hereditarily separable (hence also c.c.c.) (see [6, 11]). Curiously, there
may be no non-trivial convergent sequences in spaces satisfying the assumptions of Corollary 3.5 as
shown by van Mill under CH [16]. Assuming Jensen’s diamond principle ♦, one has an example of
such a space which is moreover one-dimensional (cf. [12]).

We refer to [8, Chapter b-11] for an exposition concerning local connectedness and further
examples.

Corollary 3.5 is optimal in the sense that there may exist uncountable ≺-chains, yet for any δ > 0
there may be no uncountable δ-≺-chains.

Example 3.7 Let � ⊆ [0, 1] be the ternary Cantor set. For each d ∈ �, set fd : [0, 1] → [0, 1] by
fd(x) = dist(x,�) · 1[d,1](x). Each function fd (d ∈ �) is continuous and the family { fd}d∈� forms
an uncountable ≺-chain in C[0, 1]. On the other hand, it is not hard to see that it is not a δ-≺-chain
for any positive δ.

Now, we exhibit another example of a compact, totally disconnected Hausdorff space which
enjoys (B). This is a well-known construction in point-set topology, where it is sometimes called
a ladder system space.

We equip the ordinal number ω1 with a topology as follows:

(i) we declare zero and each countable successor number to be an isolated point;
(ii) for each non-zero limit ordinal λ, we choose a set {αn,λ : n < ω} ⊆ λ of order type ω

consisting of successor numbers and cofinal in λ (a ladder); then we define basic open
neighbourhoods of λ to be of the form Uλ,m = {λ} ∪ {αn,λ : n � m} (m < ω).

Of course, the topology on ω1 depends on the choice of ladders, but in any case the space ω1

topologized in this manner is first countable, locally compact and Hausdorff.

Theorem 3.8 Let K be the one-point compactification of a ladder system space on ω1, and let
δ > 0. Then every δ-≺-chain in C(K ) is countable. In particular, K satisfies (B).

Proof . We model the proof after that of Proposition 3.3: we take a δ-≺-chain F and divide it into
two sets: F1 = { f ∈ F : f (ω1) = 0} and F2 = { f ∈ F : f (ω1) > 0}.
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Let Lλ denote the ladder associated to λ, and set L+
λ = Lλ ∪ {λ}. Note that a closed subset of ω1

is compact if and only if it is covered by finitely many sets of the form L+
λ and possibly a finite

number of isolated points.
We claim that F1 is countable. For f in F1, let ϒ f = {x ∈ ω1 : f (x) � δ}. Each ϒ f is compact,

hence countable. Lemma 3.1 implies that if g ≺ f , then Z(F, g) ∩ ϒ f �= ∅. As the sets Z(F, f )

and Z(F, g) are disjoint, this shows that A(F, f ) is countable for any f ∈ F1. Also, if g ≺ f in F1,
then ϒg is a proper subset of ϒ f .

It suffices to show that F1 has countable cofinality. We assume, seeking of a contradiction, that
{ fα : α < ω1} is a strictly increasing sequence in F1. Then the sets ϒ fα form a strictly increasing
sequence as well so that the union

⋃
α<ω1

ϒ fα is uncountable.
Given α < ω1, let βα > α be such that

(i)
⋃

γ�α ϒ fγ ⊆ βα; and
(ii) there is a γ < βα such that x > α for some x ∈ ϒ fγ .

Next, let C be a closed and unbounded set such that, for each γ ∈ C, we have βα < γ whenever
α < γ .

Let γ ∈ C be such that C ∩ γ has order type ω2. We show that ϒ fγ is not compact. To this end,
we note that, by the above two items there is a point in ϒ fγ between η and ξ , whenever η and ξ are
consecutive elements of C ∩ γ . This shows that the order type of ϒ fγ ∩ γ is at least ω2.

Let H be a finite subset of �. We show that the set ϒ fγ \⋃λ∈H L+
λ is infinite. This follows from

the following three observations:

(i) if λ ∈ H ∩ γ , then L+
λ is bounded below by γ ;

(ii) ϒ fγ \ L+
γ is cofinal in γ (because of the order types of both sets); and

(iii) if λ ∈ H is larger than γ, then L+
λ ∩ γ is finite.

Thus, we see that ϒ fγ is not compact.
For f ∈ F2, we consider the compact set ϒ f = {x ∈ X : f (x) = 0}. Arguing similarly as before,

we conclude that F2 is countable, yet the order of F2 is reversed in the following sense: if f ≺ g in
F2, then ϒ f ⊇ ϒg and there is x ∈ ϒ f \ ϒg such that g(x) � δ. �

A compact Hausdorff space is Eberlein if it is homeomorphic to a weakly compact subset of a
Banach space. Countable compact Hausdorff spaces, the one-point compactification of a discrete
space (Proposition 3.3) as well as the unit interval (cf. Remark 3.6(i)) are classical examples of
Eberlein compact spaces. A space K is Eberlein if and only if the Banach space C(K ) is weakly
compactly generated (cf. [2, Theorem 2]). Every weakly compactly generated Banach space is
necessarily Lindelöf in its weak topology. Wage observed that no ladder system space K is Eberlein
[17], while Pol proved that the Banach space C(K ) is Lindelöf in its weak topology [14]. In the light
of these observations, we raise the following question.

Question 3.9 Does the class of compact Hausdorff spaces satisfying (B) contain all Eberlein
compact spaces? More generally, does every compact Hausdorff space K for which the Banach
space C(K ) is Lindelöf in its weak topology satisfy (B)?

4. The left ideal structure of operators satisfying (B)

Let [A]2 stand for the set of all two-element subsets of a given set A. The Dushnik and Miller parti-
tion lemma [4] asserts that, for every infinite regular aleph ℵα , and any colouring c : [ℵα]2 → {0, 1},
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at least one of the following conditions holds true:

(i) there is a set A ⊂ ℵα with |A| = ℵα and [A]2 ⊂ c−1{0};
(ii) for every set A ⊂ ℵα with |A| = ℵα, there are a ∈ A and a set B ⊂ A such that |B| = ℵα and

{a, b} ∈ c−1{1} for each b ∈ B.

Proposition 4.1 Let K be a compact Hausdorff space and let X be a Banach space. If operators
T, U : C(K ) → X satisfy (B), then so does T + U.

Proof . Assume, in search of a contradiction, that there are δ > 0 and a ≺-chain { fi }i∈I in C(K ),
where I has cardinality ℵ1, such that supi∈I ‖ fi‖ < ∞ and

‖(T + U )( fi ) − (T + U )( f j )‖ � δ (i, j ∈ I, i �= j). (*)

Set
I = {{i, j} ∈ [I ]2 : ‖U ( fi ) − U ( f j )‖ � δ/4},

and consider the partition [I ]2 = I ∪ ([I ]2 \ I).
If assertion (i) from the partition lemma holds (where α = 1 and c−1{0} = [I ]2 \ I), then we get

a contradiction with the fact that U satisfies (B).
If assertion (ii) is valid (where c−1{1} = I), then there is an i0 ∈ I and a set B ⊂ I with |B| = ℵ1,

such that {i0, j} ∈ I for each j ∈ B. Then, for every j, k ∈ B, we have

‖U ( f j ) − U ( fk)‖ � ‖U ( fi0) − U ( f j )‖ + ‖U ( fi0) − U ( fk)‖ � δ/2,

hence our assumption (*) implies that ‖T ( f j ) − T ( fk)‖ � δ/2 for all j, k ∈ B, j �= k, which
contradicts the condition (B) for T . �

Theorem 4.2 For every compact Hausdorff space K , the set of all operators T ∈ B(C(K ))

satisfying (B) forms a closed left ideal of the Banach algebra B(C(K )).

Proof . From the very definition of (B), it is evident that if (Tn)
∞
n=1 ⊂ B(C(K )) norm converges to

some T ∈ B(C(K )) and each Tn satisfies (B), then T does as well.
Now, suppose that T ∈ B(C(K )) satisfies (B) and let S ∈ B(C(K )). If for some δ > 0 there

were an uncountable chain { fi }i∈I with ‖ST ( fi ) − ST ( f j )‖ > δ for all i, j ∈ I , i �= j , then for all
such i, j we would also have ‖T ( fi ) − T ( f j )‖ > δ/‖S‖, which is a contradiction. Finally, an appeal
to Proposition 4.1 completes the proof. �

We have already noted that for K extremally disconnected the family of operators T : C(K ) →
C(K ) which satisfy (B) coincides with the two-sided ideal of weakly compact operators. Examples
in Section 3 demonstrate that in some particular cases every operator on a C(K )-space may sat-
isfy (B), which means that the left ideal of operators satisfying (B) is again a two-sided ideal, the
improper ideal B(C(K )). This raises the following open question.

Question 4.3 Is the set of operators on a C(K )-space which satisfy (B) always a right, and hence
a two-sided ideal of B(C(K ))?
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