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Abstract

Martin’s Axiom for o-centered partial orders implies that there is a cosmic space with non-coinciding dimensions.
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Introduction

A fundamental result in dimension theory states that the three basic dimension functions, dim, ind and Ind, coincide
on the class of separable metrizable spaces. Examples abound to show that this does not hold in general outside this
class. In [1] Arkhangel’skii asked whether the dimension functions coincide on the class of cosmic spaces. These are
the regular continuous images of separable metric spaces and they are characterized by the conjunction of regularity
and having a countable network, see [5]. A network for a topological space is a collection of (arbitrary) subsets such
that every open set is the union of some subfamily of that collection. In [7] Vedenisoff proved that ind and Ind coincide
on the class of perfectly normal Lindelof spaces, see also [3, Section 2.4]. As the cosmic spaces belong to this class
Arkhangel’skii’s question boils down to whether dim = ind for cosmic spaces.

In [2] Delistathis and Watson constructed, assuming the Continuum Hypothesis, a cosmic space X with dimX =1
and ind X > 2; this gave a consistent negative answer to Arkhangel’skii’s question.

The purpose of this paper is to show that the example can also be constructed under the assumption of Martin’s
Axiom for o-centered partial orders. The overall strategy is that of [2]: we refine the Euclidean topology of a one-
dimensional subset X of the plane to get a topology T with a countable network, such that dim(X, ) = 1 and in which
the boundary of every non-dense open set is (at least) one-dimensional, so that ind(X, t) > 2. The latter is achieved
by ensuring that every such boundary contains a topological copy of the unit interval or else a copy of the Cantor set
whose subspace topology is homeomorphic to Kuratowski’s graph topology, as defined in [4].
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The principal difference between our approach and that of [2] lies in the details of the constructions. In [2] the
topology is introduced by way of resolutions; however, some of the arguments given in the paper need emending
because, for example, Kuratowski’s function does not have the properties asserted and used in Lemmas 2.2 and 2.3
of [2] respectively. We avoid this and use the Tietze—Urysohn theorem to extend Kuratowski’s function to the whole
plane and thus obtain, per Cantor set, a separable metric topology on the plane that extends the graph topology.?

Also, in [2] the construction of the Cantor sets is entwined with that of the topologies, which leads to some rather
inaccessible lemmas. We separate the two strands and this, combined with the use of partial orders, leads to a cleaner
and more perspicuous construction of the Cantor sets.

We begin, in Section 1, with a description of Kuratowski’s function. We then show how to transplant the graph
topology to an arbitrary Cantor set in the plane. The remainder of the paper is devoted to a recursive construction of
the necessary Cantor sets and finishes with a verification of the properties of the new topology. An outline of the full
construction can be found in Section 3.

1. Kuratowski’s function

In this section we give a detailed description of Kuratowski’s function ([4], see also [3, Exercise 1.2.E]) and the
resulting topology on the Cantor set. We do this to make our note self-contained and because the construction makes
explicit use of this description. We leave the verification of most of the properties to the reader.

Let C be the Cantor set, represented as the topological product 2V, and for x € C write suppx = {i: x(i) = 1}. We
let D be the set of x for which supp x is finite, partitioned into the sets Dy = {x: | supp x| = k}; put k, = | supp x| and
N, = maxsuppx for x € D. Note that Dy = {0}, where 0 is the point with all coordinates 0. Let £ = C \ D, the set
of x for which supp x is infinite.

For x € C let ¢, be the counting function of suppx, so domcy ={1,...,k.} if x € D and domc, =N if x € E.
Note that Ny = domcy = .

Now define

f= Y (e
jedomey

Thus we use the parity of ¢, (j) to decide whether to add or subtract 27/, By convention an empty sum has the value 0,
so f(0)=0.

Notation: if x € C and n € N then x [ n denotes the restriction of x to the set {1,2,...,n}. Also, [x | n] denotes
the nth basic open set around x: [x [n]={y: y [n=x [ n}.

For x € D we write V, = [x | N,]. Using the V, it is readily seen that the sets Dy are relatively discrete: simply
observe that V,, N Uigkx D; = {x}. In fact, for a fixed k the family Dy = {V,: x € Dy} is pairwise disjoint. For later
use we put Dy ={y € Dy _41: ¥y | Ny =x [ N} and we observe that V, = {x} U U{Vy: y € Dy}

1.1. Continuity
We begin by identifying the points of continuity of f.
Proposition 1. The function f is continuous at every point of E.

The function f is definitely not continuous at the points of D. This will become clear from the following discussion
on the distribution of the values of f.

Proposition 2. Let t € [—1, 1]. The preimage f*(t) is uncountable, crowded and its intersection with E is closed
in E.

Proposition 3. Let x € D and k = ky. Then x is an accumulation point of f < (t) if and only if f(x) —27% <t <
) +27%

2 M. Charalambous found a similar adaptation of Delistathis and Watson’s construction with the added advantage that it works in ZFC alone.
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1.2. The dimension of the graph

We identify f with its graph in C x [—1, 1] and we write [ = [—1, 1]. Forx € D welet I, = [ f(x) — 275, f(x) +
2%+, The discussion in the previous subsection can be summarized by saying that the closure of f in C x I is equal
totheset K = fU(J,.p{x} x I).

Proposition 4. ind f < 1.
Proposition 5. If x € E thenind, r(x) f =0.
Proposition 6. If x € D then indx r(x)) f = 1.

We put 74 ={Oy¢: O openin C x I}, where O¢ = {x: (x, f(x)) € O}; this is the topology of the graph, trans-
planted to C.

2. Making one Cantor set

We intend to copy the topology 7 to many Cantor sets in the plane, or rather, we intend to construct many Cantor
sets and copy 7y to each of them. Here we describe how we will go about constructing just one Cantor set K, together
with a homeomorphism 4 : C — K, and how to refine the topology of the plane so that all points but those of 2[D]
retain their usual neighbourhoods and so that at the points of [ D] the dimension of K will be 1.

All we need to make a Cantor set are two maps o : D — R? and £: D — w. Using these we define W(d) =
B(o(d), 27Dy and U(d) = B(o (d), 274D~y for each d € D. We want the following conditions fulfilled:

(1) the sequence (o (e): e € Dg) converges to o (d), for all d;
(2) clW(e) CU() \ {o(d)} whenever e € Dg;
3) {clW(d): d € D,} is pairwise disjoint for all n.

The following formula then defines a Cantor set:

K = ﬁcl(U{W(d): deD,}), ($)

One readily checks that {o(d): d € D} is a dense subset and that the map o extends to a homeomorphism /#:C — K
with the property that A[V;] = K N W(d) for all d € D. Also note that in (}) we could have used the U (d) instead of
the W(d) and that even h[Vy] = K NU (d) for all d.

Copying the Kuratowski function from C to K is an easy matter: we let fx = f o h~!. To copy the topology t f
to K and to preserve as much as possible of the Euclidean topology we use the sets U (d) and W (d).

We apply the Tietze—Urysohn theorem to extend fx to a function fx defined on the whole plane that is continuous
everywhere except at the points of o[ D]. The topology tx that we get by identifying the plane with the graph of fx
is separable and metrizable and its restriction to K is the graph topology.

As will become clear below we cannot take just any extension of fx because we will have to have some amount
of continuity at the points of o[D]. To this end we define for each d € D a closed set F(d) by F(d) =clU(d) \
UeeDd W (e). The family {F(d): d € D} is pairwise disjoint: if F(d;) and F(d2) meet then so do U (dy) and U (d2).
Because of conditions (2) and (3) above this is only possible if, say, U (d;) 2 U(d>). But, unless d; = d», this would
entail U (d>) € U (e) for some e € Dy and so F(d>) would be disjoint from F(d;) after all.

The set Kt = K U UdeD F(d) is closed and we can extend fx to KT by setting f;(r(x) = f(d), whenever
x € F(d). Because for every ¢ > 0 there are only finitely many d for which the diameter of F(d) is larger than ¢
this extended function is continuous at all points of K \ o[D]. The new function f IJ{ is certainly continuous at the
points of KT \ K (it is even locally constant there), so we can apply the Tietze—Urysohn theorem to find a function
fx :R? — [—1, 1] that extends f I}L and that is continuous at all points, except those of o[ D].
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In fact, it not hard to verify that, if L is a subset of the plane that meets only finitely many of the sets W (d) then the
restriction of fx to L is continuous. Indeed, we only have to worry about points in o[D]. Butif d € D then F(d) N L
contains a neighbourhood of o (d) in L and f I? is constant on F'(d).

3. The plan

In this section we outline how we will construct a cosmic topology 7 on a subset X of the plane that satisfies
dim(X,t) =1 and ind(X, 7) > 2.

We let Q denote the family of all non-trivial line segments in the plane with rational end points. Our subset X will
be R%\ A, where A = {(p++/2,q): p,q € Q}. Note that A is countable, dense and disjoint from (J Q. Also note that,
with respect to the Euclidean topology 7., one has ind(X, 7.) = 1: on the one hand basic rectangles with end points
in A have zero-dimensional boundaries (in X), so that ind(X, 7,) < 1, and on the other hand, because X is connected
we have ind(X, 7,) > 1.

We will construct t in such a way that its restrictions to X \ | Q and each element of Q will be the same as the
restrictions of 7,; this ensures that (X, ) has a countable network: take a countable base B for the Euclidean topology
of X\ J Q, then QU B is a network for (X, 7). Also, the t,-interior of every open set in (X, t) will be nonempty so
that [ Q and X \ | Q will be dense with respect to 7.

It what follows cl will be the closure operator with respect to t and cl, will be the Euclidean closure operator.

3.1. The topology

We let {(Uy, Vi): a < ¢} numerate all pairs of disjoint open sets in the plane whose union is dense and for each o
we put Sy = cl, Uy Ncl, V. We shall construct for each o a Cantor set K, in X N S, unless there isa 0, € Q that is
contained in S, . The construction of the K, will be as described in Section 2, so that we will be able to extend 7, to a
topology 7, whose restriction to Ky, is a copy of the topology 7r. For notational convenience we let I be the set of as
for which we have to construct K, and for « € ¢\ I we set T, = .. As an aside we mention that ¢\ / is definitely not
empty: if the boundary of U, is a polygon with rational vertices then o ¢ 1.

Thus we may (and will) define, for any subset J of ¢ a topology 7;: the topology generated by the subbase |, ; Ta-
The new topology t will ..

There will be certain requirements to be met (the first was mentioned already):

(1) The restriction of  to X \ | Q and each Q € Q must be the same as that of the Euclidean topology;
(2) Different topologies must not interfere: the restriction of 7 to K, should be the same as that of 7,;
(3) For each «, depending on the case that we are in, the set K, or Q, must be part of the t-boundary of Uy,.

If these requirements are met then the topology t will be as required. We have already indicated that (1) implies
that it has a countable network.

3.2. The inductive dimensions

To see that ind(X, t) > 2 we take an element O of T and show that its boundary is at least one-dimensional. There
will be an « such that ¢l, O = cl, U,: there is O’ € 7, such that O N JQ = O’ N|J Q and we can take « such that
U, = intcl, O’ and V, = R? \ cle U. In case @ € I the combination of (2) and (3) shows that indFr O > ind K, =1
and in case o ¢ I we use (1) and (3) to deduce that indFr O > ind Q, = 1.

3.3. The covering dimension

As ind(X, 7) > 2 it is immediate that dim(X, ) > 1. To see that dim(X, ) < 1 we consider a finite open cover O.
Because (X, 7) is hereditarily Lindelof we find that each element of O is the union of countably many basic open sets.
This in turn implies that there is a countable set J such that O C t;. The topology 7 is separable and metrizable and
it will suffice to show that dim(X, t;) < 1.
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If J is finite then we may apply the countable closed sum theorem: O = X \ |, ; K« is open, hence an F;-set,
say O = U,oil F;. Each F; is (at most) one-dimensional as is each K, and hence so is X, as the union of countably
many one-dimensional closed subspaces.

If J is infinite we numerate it as {«;, : n € N} and set J, = {«;: i < n}. Then (X, ty) is the inverse limit of the
sequence ((X ,TJ,) NE N), where each bonding map i, : (X, t;,,,) — (X, 7;,) is the identity. By Nagami’s theorem
([6], see also [3, Theorem 1.13.4]) it follows that dim(X, t;) < 1.

4. The execution

The construction will be by recursion on « < c¢. At stage «, if no O, can be found, we take our cue from Section 2
and construct maps oy : D — S, and £, : D — o, in order to use the associated balls W, (d) = B(0q(d), 2 @) in
formula (%) to make the Cantor set K,. We also get a homeomorphism 4, : C — K, as an extension of d, and use
this to copy Kuratowski’s function to K: we set f, = f o hy L

We use the procedure from the end of Section 2 to construct the topology 7. We let Uy (d) = B(oy(d), 2~ ta(d)=1y
put Fy(d) =clUqy(d) \ U,cp , Wa(e) and define K F and f; as above. We obtain 7, as the graph topology from an

extension f, of f.".
4.1. The partial order

We construct o, and £, by an application of Martin’s Axiom to a partial order that we describe in this subsection.
To save on notation we suppress « for the time being. Thus, S = 8y, 0 = gy, etc.

To begin we observe that [ JQ N S is dense in S: if x € S and ¢ > 0 then there are points @ and b with rational
coordinates in B(x, ¢) that belong to U and V respectively. The segment Q = [a, b] belongs to Q, is contained
in B(X, ¢) and meets S. Actually, Q N S is nowhere dense in Q because no subinterval of Q is contained in S—this
is where we use the assumption that no element of Q is contained in S. There is therefore even a point y in Q N S that
belongs to cl(Q NU) Ncl(Q N V): orient Q so that a is its minimum, then y = inf(Q N V) is as required. It follows
that the set " of those y € S for which there is Q € Q such that y € cI(Q NU) Ncl(Q NV) is dense in S. We fix a
countable dense subset T of S’. We also fix a numeration {a,: n € N} of A, the complement of our set X.

The elements p of our partial order P have four components:

(1) a finite partial function o), from D to T,
(2) afinite partial function £, from D to w,
(3) afinite subset F, of @ N1,

(4) a finite subset Q,, of Q.

We require that domo), = dom £, and we abbreviate this common domain as dom p. It will be convenient to have
dom p downward closed in D, by which we mean that if e € dom p N D, then d € dom p.

The intended interpretation of such a condition is that o}, and £, approximate the maps o and ¢ respectively;
therefore we also write W, (d) = B(o,(d),2~ @) and U,(d) = B(o,(d),2~4@~1). The list of requirements in
Section 2 must be translated into conditions that we can impose on 0, and £,.

(D) llop(e) —op(d)l < 2Ne whenever d, e € dom p are such that e € Dy, this will ensure that (o (e): e € Dg) will
converge to o (d);

(2) cle Wy(e) CU,(d) \ {op(d)} whenever d, e € dom p are such that e € Dy; and

(3) for every n the family {cl, W,(d): d € D, N dom p} is pairwise disjoint.

The order on P will be defined to make p force that for 8 € F), and Q € Q,, the intersection {o(d): d € D} N
(Kg U Q) is contained in the range of 0, and even that when d ¢ dom p the intersection cl, W(d) N (Kg U Q) is
empty. We also want p to guarantee that K N {a;: i < |dom p|} = 0.

Before we define the order, however, we must introduce an assumption on our recursion that makes our density
arguments go through with relatively little effort; unfortunately it involves a bit of notation.



2454 A. Dow, K.P. Hart / Topology and its Applications 154 (2007) 2449-2456

Forxel|JQsetl,={Bel: x¢€ og[D]}. Foreach g € I, letdg = a/;_(x) and write Dy g = Ddﬁ. If it so happens
that ¢ € P and x = 0, (d) for some d € D and if e € Dy \ domg then we must be able to choose an extension p
of g with e € dom p, without interfering too much with the sets Wg(a), where B € I, and a € Dy g. The following
assumption enables us to do this (and we will be able to propagate it):

(¥) If x € | Q then for every finite subset F of I, N« there is an ¢ > 0 such that the family Wr , = {cl, Wg(a): B €
F,a € Dy g and 0 (a) € B(x, €)} is pairwise disjoint.

It is an elementary exercise to verify that in such a case the difference B(x, ¢) \ | WpF.¢ is connected. Assump-
tion () will also be useful when we verify some of the properties of the topology 7.
We define p < g if

(I) o) extends o, and £, extends £;

2) FpQFq andeQQq;

(3) ifd € dom p \ domgq and i < |domg]| then a; ¢ cl, Wy (d);

(4) if d edom p \ domg and J € Q, U{Kg: B € F)} then cl, W,(d) is disjoint from J;

(5) ifd € domg and x = 0, (d) and if e € dom p \ dom g is such that e € Dy then cl, W), (e) is disjoint from cl, Wg(a)
whenever B € F, N Ay and a € Dy g.

It is clear that p and ¢ are compatible whenever o, = 0, and £, = £; as there are only countably many possible
os and ¢s we find that IP is a o -centered partial order.

4.2. Dense sets
In order to apply Martin’s Axiom we need, of course, a suitable family of dense sets.
For B < o the set {p: B € F)} is dense. Given p and B extend p by adding B to F),.
For Q € Q the set {p: Q € Q),}isdense. Given p and Q extend p by adding Q to Q.
For n € N the set {p: |dom p| > n} is dense. This follows from the density of the sets below.

For e € D the set {p: e € dom p} is dense. Here is where we use assumption (x). Since every e € D has only finitely
many predecessors with respect to the transitive closure of the relation “Dy > e” it will suffice to consider the case
where g € P and e € D,y \ domg for some d € domg.

We extend ¢ to a condition p by setting F), = F,;, Q, = 94, dom p = {e¢} Udom ¢ and by defining d,(e) and £, (e)
as follows. Let x = 0, (d), put n = k. and consider H = U{cle Wy(a): a € Dyyy Ndom p N Dy}

Fix &1 <27 Ne so that B(x, 2¢;) is disjoint from H, this is possible because of condition (2) in the definition of
the elements of IP. Observe that if we choose o, (e) and £, (e) in such a way that cl, W, (e) € B(x, £1/2) then p is an
element of P.

Next, using (%), find &5 < &1/2 that works for the finite set F, N I,.. The set W = {x} U |J Wr g, is closed and does
not separate the ball B(x, &) and the set S does separate this ball because the latter meets both U and V. Therefore
we can find a point y in S N B(x, &2) \ W; we choose § > 0 so small that cl, B(y, ) € B(x,&2) \ W.

The set S N B(y, §) separates B(y, §), hence it is (at least) one-dimensional. The union of the Kg (for B € Fy)
together with the Q N S (for Q € Q) is zero-dimensional because each individual set is: each Kg is a Cantor set
and each O N § is nowhere dense in Q and hence zero-dimensional. This means that, finally, we can choose o, (e)
in T N B(y, ) but not in this union and then we take £, (e) so large that cl, W) (e) is a subset of B(y, §) minus that
union. Also, at this point we ensure that a; ¢ cl. W), (e) for i < |domg|: this is possible because o, (e) ¢ A.

We have chosen W), (e) to meet requirements (3), (4) and (5) in the definition of p < ¢.
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4.3. A generic filter

Let G be a filter on PP that meets all of the above dense sets. Then o, = J{o,: p € G} and £, = J{€,: p € G}
are the sought after maps. We define W,, and K, as in Section 2.

Assumption (x) is propagated. In verifying this we only have to worry about the points in o, [ D] of course.

Therefore let x € o,[D] and let F be a finite subset of I, N «; we have to find an ¢ for F' = F U {«}. First fix
&1 that works for F itself. Next take p € G such that dy, € dom p and F C F),. Using condition (5) in the definition
of < and a density argument we find that cl, W, (e) is disjoint from cl, Wg(a) whenever e € D, o \ domp, B € F
and a € Dy g. Now choose ¢ smaller than &1 and all distances ||x — oy (e)||, where e € Dy o Ndom p. Then Wg , is
pairwise disjoint.

Ky meets Kg in a finite set whenever B < a. Let B € NI and take p € G such that 8 € F,. Choose n such
that dom p C ngn Dy. By formula (}) we know that Ky € cl, (| J{Wy: d € Dy41}) the latter closure is equal to
ngn Dy U U{Wy: d € Dyy1} and the intersection of rhis set with Kg is contained in dom p; this follows from
condition (4) in the definition of <.

Ky meets each Q € Q in a finite set. The proof is identical to the previous one: take p € G with Q € Q.
5. The remaining properties of the topologies

We check conditions (1), (2) and (3) from Section 3.
A useful observation is that a typical new basic neighbourhood of a point x of | J Q contains a set of the form
O(x,&,G) = B(x,&) N[ g Fp(dp), where e > 0 and G is a finite subset of /.

5.1. X\ U Q retains its Euclidean topology
This is immediate from the observation that every function f,, (for o € I) is continuous at the points of X \ Ua.
5.2. Each Q € Q retains its Euclidean topology

We should show that f,, | Q is continuous for each & in I and each Q € Q. The only points at which this restriction
could possibly be discontinuous are those in o, [D] N Q, which is a finite set. Let d € D be such that x = 0, (d) € Q.
By construction all but finitely many of the sets cl Wy (e), where e € Dy, meet Q. This implies that Fy(d) N Q is
actually a neighbourhood of x in Q. As f, is constant on F, (d) this shows that f, | Q is continuous at x.

5.3. 14 and tg do not interfere

If o # B then there are only finitely many points in K, N Kg and it is only at these points that 7, and 75 might
interfere and even then only at a point of o[ D] N og[D]. Let x be such a point and apply assumption () to the set
G = {a, B} to find & > 0 such that W . is pairwise disjoint. But then f; | K is constant on a neighbourhood of x
in Kg, namely O(x, ¢, {a}) N Kg and, by symmetry, f; | K, is constant on the neighbourhood O(x, ¢, {8}) N K,
of x in K.

5.4. Qg is still in the boundary of Uy
If x € O, then, by construction, all points of the intersection Q, N O(x, ¢, G) (except x itself) belong to the

Euclidean interior of O(x, ¢, G), Because these points are in the boundary of U, that interior meets both U, and V.
Therefore each basic neighbourhood of x meets these sets as well.
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5.5. Ky is still in the boundary of U,

Let x € Ky, assume [, # () and consider some O(x, ¢, G).

If o ¢ I, then the same argument as above will work: the intersections B(x, ) N Ky and O (x, &, G) N K are equal
when ¢ is small enough.

If @ € I, then we assume o € G and observe that if € is small enough then O (x, ¢, G) is a Euclidean neighbourhood
of many points of S .
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